1
|
Duda HC, von Toerne C, Korbonits L, Didier A, Scholz AM, Märtlbauer E, Hauck SM, Deeg CA. Cathepsin S Is More Abundant in Serum of Mycobacterium avium subsp. paratuberculosis-Infected Dairy Cows. Metabolites 2024; 14:215. [PMID: 38668343 PMCID: PMC11051907 DOI: 10.3390/metabo14040215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of bovine paratuberculosis, a chronic granulomatous enteritis leading to economic losses and posing a risk to human health due to its zoonotic potential. The pathogen cannot reliably be detected by standard methods, and immunological procedures during the infection are not well understood. Therefore, the aim of our study was to explore host-pathogen interactions in MAP-infected dairy cows and to improve diagnostic tests. Serum proteomics analysis using quantitative label-free LC-MS/MS revealed 60 differentially abundant proteins in MAP-infected dairy cows compared to healthy controls from the same infected herd and 90 differentially abundant proteins in comparison to another control group from an uninfected herd. Pathway enrichment analysis provided new insights into the immune response to MAP and susceptibility to the infection. Furthermore, we found a higher abundance of Cathepsin S (CTSS) in the serum of MAP-infected dairy cows, which is involved in multiple enriched pathways associated with the immune system. Confirmed with Western blotting, we identified CTSS as a potential biomarker for bovine paratuberculosis. This study enabled a better understanding of procedures in the host-pathogen response to MAP and improved detection of paratuberculosis-diseased cattle.
Collapse
Affiliation(s)
- Heidi C. Duda
- Chair of Physiology, Department of Veterinary Sciences, Ludwig Maximilian University of Munich, D-82152 Martinsried, Germany
| | - Christine von Toerne
- Metabolomics and Proteomics Core, Helmholtz Center Munich, German Research Center for Environmental Health, D-85763 Neuherberg, Germany (S.M.H.)
| | - Lucia Korbonits
- Chair of Physiology, Department of Veterinary Sciences, Ludwig Maximilian University of Munich, D-82152 Martinsried, Germany
| | - Andrea Didier
- Chair of Hygiene and Technology of Milk, Department of Veterinary Sciences, Ludwig Maximilian University of Munich, D-85764 Oberschleißheim, Germany; (A.D.)
| | - Armin M. Scholz
- Livestock Center of the Faculty of Veterinary Medicine, Ludwig Maximilian University of Munich, D-85764 Oberschleißheim, Germany;
| | - Erwin Märtlbauer
- Chair of Hygiene and Technology of Milk, Department of Veterinary Sciences, Ludwig Maximilian University of Munich, D-85764 Oberschleißheim, Germany; (A.D.)
| | - Stefanie M. Hauck
- Metabolomics and Proteomics Core, Helmholtz Center Munich, German Research Center for Environmental Health, D-85763 Neuherberg, Germany (S.M.H.)
| | - Cornelia A. Deeg
- Chair of Physiology, Department of Veterinary Sciences, Ludwig Maximilian University of Munich, D-82152 Martinsried, Germany
| |
Collapse
|
2
|
Arango-Sabogal JC, Labrecque O, Fairbrother JH, Buczinski S, Roy JP, Arsenault J, Wellemans V, Fecteau G. Comparison of 2 PCR assays on environmental samples cultured for Mycobacterium avium subsp. paratuberculosis. J Vet Diagn Invest 2024; 36:24-31. [PMID: 37853659 PMCID: PMC10734583 DOI: 10.1177/10406387231203970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the causal agent of paratuberculosis, a chronic, contagious, and incurable enteric disease of ruminants. An in-house IS900 PCR assay validated for MAP detection in sheep has been shown to have a higher sensitivity than a commercial PCR and fecal culture. We have now compared the performance of this in-house IS900 PCR assay with a commercial ISMap02 PCR assay for the detection of MAP DNA in bovine dairy farm environmental samples. We purposefully selected 30 culture-positive, 62 culture-negative, and 62 non-interpretable environmental samples. We applied the IS900 PCR assay directly to the frozen inoculum of these samples. Inocula were incubated in an automated system, and growth was confirmed by an acid-fast bacilli stain and the IS900 PCR assay. Among culture-positive samples before incubation, the IS900 PCR assay yielded significantly more positive results than the ISMap02 PCR assay; however, among culture-negative samples, the IS900 PCR assay yielded positive results both before and after incubation. The ISMap02 PCR assay did not flag positively among the culture-negative samples either before or after incubation. The IS900 PCR assay is a sensitive method that can be used to detect MAP DNA in environmental samples before incubation. The ISMap02 PCR assay is a specific method used to detect MAP DNA in environmental samples both before and after incubation.
Collapse
Affiliation(s)
- Juan Carlos Arango-Sabogal
- Departments of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Olivia Labrecque
- Laboratory of Epidemiological Animal Surveillance of Québec, Ministry of Agriculture, Fisheries and Food of Québec, Saint-Hyacinthe, Québec, Canada
| | - Julie-Hélène Fairbrother
- Laboratory of Epidemiological Animal Surveillance of Québec, Ministry of Agriculture, Fisheries and Food of Québec, Saint-Hyacinthe, Québec, Canada
| | - Sébastien Buczinski
- Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Jean-Philippe Roy
- Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Julie Arsenault
- Departments of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Vincent Wellemans
- Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Gilles Fecteau
- Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| |
Collapse
|
3
|
Duffy SC, Lupien A, Elhaji Y, Farag M, Marcus V, Behr MA. Establishment of persistent enteric mycobacterial infection following streptomycin pre-treatment. Gut Pathog 2023; 15:46. [PMID: 37789445 PMCID: PMC10546655 DOI: 10.1186/s13099-023-00573-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of paratuberculosis, a chronic gastrointestinal disease affecting ruminants. This disease remains widespread in part due to the limitations of available diagnostics and vaccines. A representative small animal model of disease could act as a valuable tool for studying its pathogenesis and to develop new methods for paratuberculosis control, but current models are lacking. Streptomycin pre-treatment can reduce colonization resistance and has previously been shown to improve enteric infection in a Salmonella model. Here, we investigated whether streptomycin pre-treatment of mice followed by MAP gavage could act as a model of paratuberculosis which mimics the natural route of infection and disease development in ruminants. The infection outcomes of MAP were compared to M. avium subsp. hominissuis (MAH), an environmental mycobacterium, and M. bovis and M. orygis, two tuberculous mycobacteria. Streptomycin pre-treatment was shown to consistently improve bacterial infection post-oral inoculation. This model led to chronic MAP infection of the intestines and mesenteric lymph nodes (MLNs) up to 24-weeks post-gavage, however there was no evidence of inflammation or disease. These infection outcomes were found to be specific to MAP. When the model was applied to a bacterium of lesser virulence MAH, the infection was comparatively transient. Mice infected with bacteria of greater virulence, M. bovis or M. orygis, developed chronic intestinal and MLN infection with pulmonary disease similar to zoonotic TB. Our findings suggest that a streptomycin pre-treatment mouse model could be applied to future studies to improve enteric infection with MAP and to investigate other modifications underlying MAP enteritis.
Collapse
Affiliation(s)
- Shannon C Duffy
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- McGill International TB Centre, Montreal, QC, Canada
- The Infectious Diseases and Immunity in Global Health Program, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Andréanne Lupien
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- McGill International TB Centre, Montreal, QC, Canada
- The Infectious Diseases and Immunity in Global Health Program, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
| | - Youssef Elhaji
- Diagnostic Genomic Division, Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar
| | - Mina Farag
- Department of Pathology, McGill University, Montreal, QC, Canada
- Department of Laboratory Medicine, Division of Pathology, McGill University Health Center, Montreal, QC, Canada
| | - Victoria Marcus
- Department of Pathology, McGill University, Montreal, QC, Canada
- Department of Laboratory Medicine, Division of Pathology, McGill University Health Center, Montreal, QC, Canada
| | - Marcel A Behr
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada.
- McGill International TB Centre, Montreal, QC, Canada.
- The Infectious Diseases and Immunity in Global Health Program, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
- Department of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
4
|
Detection of Low MAP Shedder Prevalence in Large Free-Stall Dairy Herds by Repeated Testing of Environmental Samples and Pooled Milk Samples. Animals (Basel) 2022; 12:ani12111343. [PMID: 35681807 PMCID: PMC9179536 DOI: 10.3390/ani12111343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/21/2022] [Accepted: 05/22/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Paratuberculosis is a disease which affects ruminants worldwide. Many countries have implemented certification and monitoring systems to control the disease, particularly in dairy herds. Monitoring herds certified as paratuberculosis non-suspect is an important component of paratuberculosis herd certification programs. The challenge is to detect the introduction or reintroduction of the infectious agent as early as possible with reasonable efforts but high certainty. In our study, we evaluated different low-cost testing schemes in herds where the share of infected animals was low, resulting in a low within-herd prevalence of animals shedding the bacteria that causes paratuberculosis in their feces. The test methods used were repeated pooled milk samples and fecal samples from the barn environment. Our study showed that numerous repetitions of different samples are necessary to monitor such herds with sufficiently high certainty. In the case of herds with a very low prevalence, our study showed that a combination of different sampling approaches is required. Abstract An easy-to-use and affordable surveillance system is crucial for paratuberculosis control. The use of environmental samples and milk pools has been proven to be effective for the detection of Mycobacterium avium subsp. paratuberculosis (MAP)-infected herds, but not for monitoring dairy herds certified as MAP non-suspect. We aimed to evaluate methods for the repeated testing of large dairy herds with a very low prevalence of MAP shedders, using different sets of environmental samples or pooled milk samples, collected monthly over a period of one year in 36 herds with known MAP shedder prevalence. Environmental samples were analyzed by bacterial culture and fecal PCR, and pools of 25 and 50 individual milk samples were analyzed by ELISA for MAP-specific antibodies. We estimated the cumulative sensitivity and specificity for up to twelve sampling events by adapting a Bayesian latent class model and taking into account the between- and within-test correlation. Our study revealed that at least seven repeated samplings of feces from the barn environment are necessary to achieve a sensitivity of 95% in herds with a within-herd shedder prevalence of at least 2%. The detection of herds with a prevalence of less than 2% is more challenging and, in addition to numerous repetitions, requires a combination of different samples.
Collapse
|
5
|
Field NL, McAloon CG, Gavey L, Mee JF. Mycobacterium avium subspecies paratuberculosis infection in cattle - a review in the context of seasonal pasture-based dairy herds. Ir Vet J 2022; 75:12. [PMID: 35590382 PMCID: PMC9121589 DOI: 10.1186/s13620-022-00217-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/24/2022] [Indexed: 11/17/2022] Open
Abstract
Johne’s disease is an infectious disease affecting cattle, other ruminants and non-ruminant wildlife worldwide, caused by Mycobacterium avium subspecies paratuberculosis (MAP). This review provides an up-to-date concise overview of the pathogenesis of MAP, the significance of Johne’s disease in cattle and the use of diagnostic testing at both animal and herd level in the context of seasonal pasture-based herds. While MAP can only replicate intracellularly, the bacterium is sufficiently robust to survive for months in the environment. Transmission of MAP is mostly via the faecal-oral route, however in-utero transmission in also possible. The bacteria evade the immune system by persisting in macrophages in the small intestine submucosa, with this latent stage of infection lasting, in most cases, for at least two years before bacterial shedding and clinical signs begin. The slowly progressive nature of MAP infection, poor performance of diagnostic tests and management systems that expose susceptible calves to infection make control of Johne’s disease challenging, particularly in seasonal calving herds. Testing of individual animals provides little assurance for farmers and vets due to the poor sensitivity and, in the case of ELISA, imperfect specificity of the available tests. Repeated herd-level testing is utilised by the IJCP to detect infected herds, identify high risk animals, and provide increasing confidence that test-negative herds are free of infection. The IJCP aims to control the spread of Johne’s disease in cattle in Ireland, in order to protect non-infected herds, limit the economic and animal health impact of the disease, improve calf health and reassure markets of Johne’s disease control in Ireland.
Collapse
Affiliation(s)
- Niamh L Field
- Animal and Bioscience Research Department, Teagasc, Moorepark Research Centre, Fermoy, Co. Cork, P61 P302, Ireland. .,UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin, D04 W6F6, Ireland.
| | - Conor G McAloon
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin, D04 W6F6, Ireland
| | | | - John F Mee
- Animal and Bioscience Research Department, Teagasc, Moorepark Research Centre, Fermoy, Co. Cork, P61 P302, Ireland
| |
Collapse
|