1
|
da Silva GN, Pereira IOA, Lima APB, Almeida TC, Sávio ALV, Costa RP, Leite KRM, Salvadori DMF. Combined expression of JHDM1D/KDM7A gene and long non-coding RNA RP11-363E7.4 as a biomarker for urothelial cancer prognosis. Genet Mol Biol 2024; 47:e20230265. [PMID: 39136575 PMCID: PMC11320665 DOI: 10.1590/1678-4685-gmb-2023-0265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 06/25/2024] [Indexed: 08/16/2024] Open
Abstract
Bladder cancer is the tenth most frequently diagnosed cancer globally. Classification of high- or low-grade tumors is based on cytological differentiation and is an important prognostic factor. LncRNAs regulate gene expression and play critical roles in the occurrence and development of cancer, however, there are few reports on their diagnostic value and co-expression levels with genes, which may be useful as specific biomarkers for prognosis and therapy in bladder cancer. Thus, we performed a marker lesion study to investigate whether gene/lncRNA expression in urothelial carcinoma tissues may be useful in differentiating low-grade and high-grade tumors. RT-qPCR was used to evaluate the expression of the JHDM1D gene and the lncRNAs CTD-2132N18.2, SBF2-AS1, RP11-977B10.2, CTD-2510F5.4, and RP11-363E7.4 in 20 histologically diagnosed high-grade and 10 low-grade tumors. A protein-to-protein interaction network between genes associated with JHDM1D gene was constructed using STRING website. The results showed a moderate (positive) correlation between CTD-2510F5.4 and CTD2132N18.2. ROC curve analyses showed that combined JHDM1D and RP11-363E7.4 predicted tumor grade with an AUC of 0.826, showing excellent accuracy. In conclusion, the results indicated that the combined expression of JHDM1D and RP11-363E7.4 may be a prognostic biomarker and a promising target for urothelial tumor therapy.
Collapse
Affiliation(s)
- Glenda Nicioli da Silva
- Universidade Federal de Ouro Preto, Escola de Farmácia, Departamento de Análises Clínicas, Ouro Preto, MG, Brazil
| | | | - Ana Paula Braga Lima
- Universidade Federal de Ouro Preto, Escola de Farmácia, Departamento de Análises Clínicas, Ouro Preto, MG, Brazil
| | | | - André Luiz Ventura Sávio
- Faculdade Centro Oeste Paulista, Departamento de Odontologia, Piratininga, SP, Brazil
- Universidade do Oeste Paulista, Departamento de Ciências Médicas, Jaú, SP, Brazil
| | | | | | | |
Collapse
|
2
|
Deng H, Tang F, Zhou M, Shan D, Chen X, Cao K. Identification and Validation of N6-Methyladenosine-Related Biomarkers for Bladder Cancer: Implications for Immunotherapy. Front Oncol 2022; 12:820242. [PMID: 35311150 PMCID: PMC8924666 DOI: 10.3389/fonc.2022.820242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/07/2022] [Indexed: 12/14/2022] Open
Abstract
N6-methyladenosine (m6A) has emerged as one of the most important modifications of RNA. Based on the expression of 23 different modes of m6A regulatory factors, we identified three different m6A modification patterns in bladder cancer. The effects of the three different modes of m6A modification on clinicopathological characteristics, immune cell infiltration levels and expression levels of immune checkpoint genes were comprehensively analyzed. In addition, the effects of different modes of m6A modification on the therapeutic efficacy of anti-PD-L1 immunotherapy (atezolizumab) are also discussed. Our results confirm that m6A methylation plays an important role in immune cell recruitment in the tumor microenvironment of bladder cancer, which influences the efficacy of anti-PD-L1 therapy for bladder cancer. We further confirmed the important role of FTO protein in the biological function of bladder cancer cells by performing in vitro experiments. FTO functions as an oncogene in bladder cancer cells, and upon FTO knockdown, the level of m6A enzyme activity in bladder cancer cells was significantly increased, apoptosis was increased, and cell proliferation and cell invasion were reduced. In addition, our study also confirmed that K216H and K216E are probably important targets for regulating FTO. We provide new insights into the regulatory pathways of the immune microenvironment and the methylation function of m6A in bladder cancer, which will help in designing novel diagnostic methods, prognostic tools, and therapeutic targets.
Collapse
Affiliation(s)
- Hongyu Deng
- Department of Clinical Laboratory, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Faqing Tang
- Department of Clinical Laboratory, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Ming Zhou
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Dongyong Shan
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xingyu Chen
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Ke Cao
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
3
|
Gong M, Song E, Huang G, Ni W, Dong W, Yuan R. Enhanced Expression of CNTD2/CCNP Predicts Poor Prognosis in Bladder Cancer Based on the GSE13507. Front Genet 2021; 12:579900. [PMID: 33613629 PMCID: PMC7886781 DOI: 10.3389/fgene.2021.579900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 01/08/2021] [Indexed: 11/13/2022] Open
Abstract
Bladder cancer is one of the most common urogenital malignancies in the world, and there are no adequate prognostic indicators. CNTD2 is one of the atypical cyclins, which may be related to the cell cycle and even the development of cancers. Early studies have shown that CNTD2 is closely related to the occurrence and development of many malignant tumors. However, the mechanism of CNTD2 in bladder cancer has not been reported. In our research, we explored the different expressions of CNTD2 between 411 bladder cancers and 19 normal bladder tissues based on the TCGA dataset. CNTD2-related signaling pathways were identified through the GSEA. We analyzed the associations of CNTD2 expression and bladder cancer progression and survival using GSE13507. Compared with 19 cases of normal bladder tissue, CNTD2 gene expression was increased in 411 cases of bladder cancer. The high expression of CNTD2 strongly correlated with grade (P < 0.0001), T classification (P = 0.0001), N classification (P = 0.00011), M classification (P = 0.044), age (P = 0.027), and gender (P = 0.0012). Bladder cancer patients with high CNTD2 expression had shorter overall survival (P < 0.001). In the meantime, univariate and multivariate analyses showed that the increased expression of CNTD2 was an independent factor for poor prognosis in bladder cancer patients (P < 0.001 and P < 0.001, respectively). CNTD2 expression is closely related to bladder cancer progression, and the high expression of CNTD2 may be an adverse biomarker in bladder cancer patients.
Collapse
Affiliation(s)
- Mancheng Gong
- Department of Urology, The People's Hospital of Zhongshan, Zhongshan, China
| | - Erlin Song
- Department of Urology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guiying Huang
- Department of Urology, The People's Hospital of Zhongshan, Zhongshan, China
| | - Wenjun Ni
- Department of Urology, The People's Hospital of Zhuhai, Zhuhai, China
| | - Wenjing Dong
- Department of Oncology, The People's Hospital of Zhongshan, Zhongshan, China
| | - Runqiang Yuan
- Department of Urology, The People's Hospital of Zhongshan, Zhongshan, China
| |
Collapse
|
4
|
Harty G, Jarrett J, Jofre-Bonet M. Consequences of Biomarker Analysis on the Cost-Effectiveness of Cetuximab in Combination with FOLFIRI as a First-Line Treatment of Metastatic Colorectal Cancer: Personalised Medicine at Work. APPLIED HEALTH ECONOMICS AND HEALTH POLICY 2018; 16:515-525. [PMID: 29948926 PMCID: PMC6028886 DOI: 10.1007/s40258-018-0395-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
BACKGROUND Therapies may be more efficacious when targeting a patient subpopulation with specific attributes, thereby enhancing the cost-effectiveness of treatment. In the CRYSTAL study, patients with metastatic colorectal cancer (mCRC) were treated with cetuximab plus FOLFIRI or FOLFIRI alone until disease progression, unacceptable toxic effects or withdrawal of consent. OBJECTIVE To determine if stratified use of cetuximab based on genetic biomarker detection improves cost-effectiveness. METHODS We used individual patient data from CRYSTAL to compare the cost-effectiveness, cost per life-year (LY) and cost per quality-adjusted LY (QALY) gained of cetuximab plus FOLFIRI versus FOLFIRI alone in three cohorts of patients with mCRC: all randomised patients (intent-to-treat; ITT), tumours with no detectable mutations in codons 12 and 13 of exon 2 of the KRAS protein ('KRAS wt') and no detectable mutations in exons 2, 3 and 4 of KRAS and exons 2, 3 and 4 of NRAS ('RAS wt'). Survival analysis was conducted using RStudio, and a cost-utility model was modified to allow comparison of the three cohorts. RESULTS The deterministic base-case ICER (cost per QALY gained) was £130,929 in the ITT, £72,053 in the KRAS wt and £44,185 in the RAS wt cohorts for cetuximab plus FOLFIRI compared with FOLFIRI alone. At a £50,000 willingness-to-pay threshold, cetuximab plus FOLFIRI has a 2.8, 20 and 63% probability of being cost-effective for the ITT, KRAS wt and RAS wt cohorts, respectively, versus FOLFIRI alone. CONCLUSION Screening for mutations in both KRAS and NRAS may provide the most cost-effective approach to patient selection.
Collapse
Affiliation(s)
- Gerard Harty
- Merck Serono Ltd, Bedfont Cross, Stanwell Road, Feltham, Middlesex, TW14 8NX, UK
| | - James Jarrett
- Mapi Group, Ltd, 73 Collier Street, London, N1 9BE, UK
| | | |
Collapse
|
5
|
Sun M, Chen Z, Tan S, Liu C, Zhao W. Knockdown of fibrous sheath interacting protein 1 expression reduces bladder urothelial carcinoma cell proliferation and induces apoptosis via inhibition of the PI3K/AKT pathway. Onco Targets Ther 2018; 11:1961-1971. [PMID: 29670371 PMCID: PMC5896667 DOI: 10.2147/ott.s158275] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background FSIP1 plays a vital role in tumorigenesis and cancer progression. In bladder cancer, FSIP1 overexpression was associated with poor prognosis of bladder urothelial carcinoma. In this study, we investigated whether FSIP1 is essential in the progression of bladder cancer and the mechanism by which it mediates this effect. Methods FSIP1 expression was knocked down in bladder cancer cells using lentiviral-mediated short hairpin RNA (shRNA). FSIP1 expression was detected using Western blotting, immunohistochemistry (IHC), and quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). The effects of FSIP1 knockdown on tumor cells were assessed using colony formation, 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), and flow cytometry (FCM) apoptosis assays in vitro and BALB/c nude mouse xenograft model in vivo. Results The findings suggested that FSIP1 protein was highly expressed in bladder cancer cell lines. Knockdown of FSIP1 resulted in reduced tumor cell viability, cell cycle arrest at G0/G1 phase and apoptosis of bladder cancer cell lines (P<0.05). Moreover, knockdown of FSIP1 expression suppressed the tumor formation and growth of bladder cancer xenografts (P<0.05). At the gene level, knockdown of FSIP1 expression downregulated the activity of the PI3K/AKT signaling pathway. Conclusion This study demonstrated that knockdown of FSIP1 suppressed bladder cancer cell malignant behaviors in vitro and in vivo through the inhibition of the PI3K/AKT signaling pathway, suggesting that targeting FSIP1 could be further evaluated as a potential therapeutic strategy in bladder cancer.
Collapse
Affiliation(s)
| | | | | | | | - Wenyan Zhao
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
6
|
Woldu SL, Hutchinson RC, Krabbe LM, Sanli O, Margulis V. The Rho GTPase signalling pathway in urothelial carcinoma. Nat Rev Urol 2017; 15:83-91. [PMID: 29133936 DOI: 10.1038/nrurol.2017.184] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Urothelial carcinoma remains a clinical challenge: non-muscle-invasive disease has a high rate of recurrence and risk of progression, and outcomes for patients with advanced disease are poor, owing to a lack of effective systemic therapies. The Rho GTPase family of enzymes was first identified >30 years ago and contains >20 members, which are divided into eight subfamilies: Cdc42, Rac, Rho, RhoUV, RhoBTB, RhoDF, RhoH, and Rnd. Rho GTPases are molecular on-off switches, which are increasingly being understood to have a critical role in a number of cellular processes, including cell migration, cell polarity, cell adhesion, cell cycle progression, and regulation of the cytoskeleton. This switch is an evolutionarily conserved system in which GTPases alternate between GDP-bound (inactive) and GTP-bound (active) forms. The activities of these Rho GTPases are many, context-dependent, and regulated by a number of proteins that are being progressively elucidated. Aberrations of the Rho GTPase signalling pathways have been implicated in various malignancies, including urothelial carcinoma, and understanding of the role of Rho GTPases in these diseases is increasing. This signalling pathway has the potential for therapeutic targeting in urothelial carcinoma. Research in this area is nascent, and much work is necessary before current laboratory-based research can be translated into the clinic.
Collapse
Affiliation(s)
- Solomon L Woldu
- University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9110, USA
| | - Ryan C Hutchinson
- University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9110, USA
| | - Laura-Maria Krabbe
- University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9110, USA
| | - Oner Sanli
- University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9110, USA
| | - Vitaly Margulis
- University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9110, USA
| |
Collapse
|
7
|
Robertson AG, Kim J, Al-Ahmadie H, Bellmunt J, Guo G, Cherniack AD, Hinoue T, Laird PW, Hoadley KA, Akbani R, Castro MAA, Gibb EA, Kanchi RS, Gordenin DA, Shukla SA, Sanchez-Vega F, Hansel DE, Czerniak BA, Reuter VE, Su X, de Sa Carvalho B, Chagas VS, Mungall KL, Sadeghi S, Pedamallu CS, Lu Y, Klimczak LJ, Zhang J, Choo C, Ojesina AI, Bullman S, Leraas KM, Lichtenberg TM, Wu CJ, Schultz N, Getz G, Meyerson M, Mills GB, McConkey DJ, Weinstein JN, Kwiatkowski DJ, Lerner SP. Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer. Cell 2017; 171:540-556.e25. [PMID: 28988769 PMCID: PMC5687509 DOI: 10.1016/j.cell.2017.09.007] [Citation(s) in RCA: 1451] [Impact Index Per Article: 207.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/30/2017] [Accepted: 09/06/2017] [Indexed: 12/20/2022]
Abstract
We report a comprehensive analysis of 412 muscle-invasive bladder cancers characterized by multiple TCGA analytical platforms. Fifty-eight genes were significantly mutated, and the overall mutational load was associated with APOBEC-signature mutagenesis. Clustering by mutation signature identified a high-mutation subset with 75% 5-year survival. mRNA expression clustering refined prior clustering analyses and identified a poor-survival "neuronal" subtype in which the majority of tumors lacked small cell or neuroendocrine histology. Clustering by mRNA, long non-coding RNA (lncRNA), and miRNA expression converged to identify subsets with differential epithelial-mesenchymal transition status, carcinoma in situ scores, histologic features, and survival. Our analyses identified 5 expression subtypes that may stratify response to different treatments.
Collapse
Affiliation(s)
- A Gordon Robertson
- Canada's Michael Smith Genome Sciences Center, BC Cancer Agency, Vancouver, BC V5Z 4S6, Canada
| | - Jaegil Kim
- Cancer Program, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Hikmat Al-Ahmadie
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Joaquim Bellmunt
- PSMAR-IMIM Lab, Bladder Cancer Center, Department of Medicine, Dana-Farber Cancer Institute and Harvard University, Boston, MA 02215, USA
| | - Guangwu Guo
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard University, Boston, MA 02115, USA
| | - Andrew D Cherniack
- Cancer Program, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Toshinori Hinoue
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Peter W Laird
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Katherine A Hoadley
- Department of Genetics, Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Rehan Akbani
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mauro A A Castro
- Bioinformatics and Systems Biology Laboratory, Federal University of Paraná Polytechnic Center, Curitiba, PR CEP 80.060-000, Brazil
| | - Ewan A Gibb
- Canada's Michael Smith Genome Sciences Center, BC Cancer Agency, Vancouver, BC V5Z 4S6, Canada
| | - Rupa S Kanchi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dmitry A Gordenin
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Sachet A Shukla
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard University, Boston, MA 02115, USA
| | - Francisco Sanchez-Vega
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Donna E Hansel
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Bogdan A Czerniak
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Victor E Reuter
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Xiaoping Su
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Benilton de Sa Carvalho
- Biostatistics and Computational Biology Laboratory, Department of Statistics, University of Campinas, São Paulo, 13.083-859, Brazil
| | - Vinicius S Chagas
- Bioinformatics and Systems Biology Laboratory, Federal University of Paraná Polytechnic Center, Curitiba, PR CEP 80.060-000, Brazil
| | - Karen L Mungall
- Canada's Michael Smith Genome Sciences Center, BC Cancer Agency, Vancouver, BC V5Z 4S6, Canada
| | - Sara Sadeghi
- Canada's Michael Smith Genome Sciences Center, BC Cancer Agency, Vancouver, BC V5Z 4S6, Canada
| | | | - Yiling Lu
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Leszek J Klimczak
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Jiexin Zhang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Caleb Choo
- Canada's Michael Smith Genome Sciences Center, BC Cancer Agency, Vancouver, BC V5Z 4S6, Canada
| | - Akinyemi I Ojesina
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Susan Bullman
- Cancer Program, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kristen M Leraas
- Biospecimen Core Resource, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Tara M Lichtenberg
- Biospecimen Core Resource, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nicholaus Schultz
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Gad Getz
- Cancer Program, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Matthew Meyerson
- Pathology and Medical Oncology, Dana-Farber Cancer Institute and Harvard University, Boston, MA 02115, USA
| | - Gordon B Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David J McConkey
- Greenberg Bladder Cancer Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - John N Weinstein
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA.
| | - David J Kwiatkowski
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Seth P Lerner
- Scott Department of Urology, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|