1
|
Nikiforow S, Whangbo JS, Reshef R, Tsai DE, Bunin N, Abu-Arja R, Mahadeo KM, Weng WK, Van Besien K, Loeb D, Nasta SD, Nemecek ER, Zhao W, Sun Y, Galderisi F, Wahlstrom J, Mehta A, Gamelin L, Dinavahi R, Prockop S. Tabelecleucel for EBV+ PTLD after allogeneic HCT or SOT in a multicenter expanded access protocol. Blood Adv 2024; 8:3001-3012. [PMID: 38625984 PMCID: PMC11215195 DOI: 10.1182/bloodadvances.2023011626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/27/2024] [Accepted: 03/31/2024] [Indexed: 04/18/2024] Open
Abstract
ABSTRACT Patients with Epstein-Barr virus (EBV)-positive posttransplant lymphoproliferative disease (EBV+ PTLD) in whom initial treatment fails have few options and historically low median overall survival (OS) of 0.7 months after allogeneic hematopoietic cell transplant (HCT) and 4.1 months after solid organ transplant (SOT). Tabelecleucel is an off-the-shelf, allogeneic EBV-specific cytotoxic T-lymphocyte immunotherapy for EBV+ PTLD. Previous single-center experience showed responses in patients with EBV+ PTLD after HCT or SOT. We now report outcomes from a multicenter expanded access protocol in HCT (n = 14) and SOT (n = 12) recipients treated with tabelecleucel for EBV+ PTLD that was relapsed/refractory (R/R) to rituximab with/without chemotherapy. The investigator-assessed objective response rate was 65.4% overall (including 38.5% with a complete and 26.9% with a partial response), 50.0% in HCT, and 83.3% in SOT. The estimated 1- and 2-year OS rates were both 70.0% (95% confidence interval [CI], 46.5-84.7) overall, both 61.5% (95% CI, 30.8-81.8) in HCT, and both 81.5% (95% CI, 43.5-95.1) in SOT (median follow-up: 8.2, 2.8, and 22.5 months, respectively). Patients responding to tabelecleucel had higher 1- and 2-year OS rates (94.1%) than nonresponders (0%). Treatment was well tolerated, with no reports of tumor flare, cytokine release syndrome, or rejection of marrow and SOT. Results demonstrate clinically meaningful outcomes across a broad population treated with tabelecleucel, indicating a potentially transformative and accessible treatment advance for R/R EBV+ PTLD after HCT or SOT. This trial was registered at www.ClinicalTrials.gov as #NCT02822495.
Collapse
Affiliation(s)
- Sarah Nikiforow
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Jennifer S. Whangbo
- VOR Bio, Cambridge, MA
- Department of Pediatrics, Boston Children’s Hospital, Boston, MA
| | - Ran Reshef
- Blood and Marrow Transplantation and Cell Therapy Program, Columbia University Irving Medical Center, New York, NY
| | - Donald E. Tsai
- Department of Medicine, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Nancy Bunin
- Division of Pediatric Hematology/Oncology and Blood and Marrow Transplant, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Rolla Abu-Arja
- Division of Pediatric Hematology/Oncology and Blood and Marrow Transplant, Nationwide Children’s Hospital, Columbus, OH
| | - Kris Michael Mahadeo
- Division of Pediatric Transplant and Cellular Therapy, Duke University Medical Center, Durham, NC
| | - Wen-Kai Weng
- BMT-Cellular Therapy, Department of Medicine, Stanford University, School of Medicine, Stanford, CA
| | - Koen Van Besien
- Department of Medicine, University Hospitals Seidman Cancer Center, Cleveland, OH
| | - David Loeb
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Sunita Dwivedy Nasta
- Department of Medicine, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Eneida R. Nemecek
- Pediatric Transplant & Cellular Therapy, Oregon Health and Science University, Portland, OR
| | | | - Yan Sun
- Atara Biotherapeutics, Thousand Oaks, CA
| | | | | | | | | | | | - Susan Prockop
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- VOR Bio, Cambridge, MA
- Department of Pediatrics, Boston Children’s Hospital, Boston, MA
- Dana-Farber Cancer Institute/Boston Children's Hospital Cancer and Blood Disorders Center, Boston, MA
| |
Collapse
|
2
|
Chaganti S, Barlev A, Caillard S, Choquet S, Cwynarski K, Friedetzky A, González-Barca E, Sadetsky N, Schneeberger S, Thirumalai D, Zinzani PL, Trappe RU. Expert Consensus on the Characteristics of Patients with Epstein-Barr Virus-Positive Post-Transplant Lymphoproliferative Disease (EBV + PTLD) for Whom Standard-Dose Chemotherapy May be Inappropriate: A Modified Delphi Study. Adv Ther 2023; 40:1267-1281. [PMID: 36681739 PMCID: PMC9988727 DOI: 10.1007/s12325-022-02383-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/17/2022] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Following hematopoietic stem cell transplantation or solid organ transplantation, patients are at risk of developing Epstein-Barr virus-positive post-transplant lymphoproliferative disease (EBV+ PTLD), which is an ultra-rare and potentially lethal hematologic malignancy. Common treatments for EBV+ PTLD include rituximab alone or combined with chemotherapy. Given specific considerations for this population, including severity of the underlying condition requiring transplant, the rigors of the transplant procedure, as well as risks to the transplanted organ, there is a group of patients with EBV+ PTLD for whom chemotherapy may be inappropriate; however, there is limited information characterizing these patients. This study aimed to reach expert consensus on the key characteristics of patients for whom chemotherapy may be inappropriate in a real-world setting. METHODS A two-round modified Delphi study was conducted to reach consensus among clinicians with expertise treating EBV+ PTLD. Articles identified in a targeted literature review guided the development of round 1 and 2 topics and related statements. The consensus threshold for round 1 statements was 75.0%. If consensus was achieved in round 1, the statement was not discussed further in round 2. The consensus thresholds for round 2 were moderate (62.5-75.0%), strong (87.5%), or complete (100.0%). RESULTS The panel was composed of a total of eight clinicians (seven hematologists/hemato-oncologists) from six European countries. The panel generated a final list of 43 consensus recommendations on the following topics: terminology used to describe patients for whom chemotherapy may be inappropriate; demographic characteristics; organ transplant characteristics; comorbidities that preclude the use of chemotherapy; EBV+ PTLD characteristics; and factors related to treatment-related mortality and morbidity. CONCLUSIONS This modified Delphi panel successfully achieved consensus on key topics and statements that characterized patients with EBV+ PTLD for whom chemotherapy may be inappropriate. These recommendations will inform clinicians and aid in the treatment of EBV+ PTLD.
Collapse
Affiliation(s)
- Sridhar Chaganti
- Centre for Clinical Haematology, University Hospital Birmingham, Birmingham, UK
| | - Arie Barlev
- Atara Biotherapeutics, South San Francisco, CA, USA
| | - Sophie Caillard
- Department of Nephrology Transplantation, Strasbourg University Hospitals, Strasbourg, France
| | - Sylvain Choquet
- Department of Hematology, Hospitalier Pitié Salpétrière, Paris, France
| | - Kate Cwynarski
- Department of Haematology, University College Hospital, London, UK
| | | | - Eva González-Barca
- Department of Hematology, Institut Català d'Oncologia, IDIBELL, Universitat de Barcelona, Barcelona, Spain
| | | | - Stefan Schneeberger
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Pier L Zinzani
- IRCCS Azienda Ospedaliero-Universitaria di Bologna Istituto di Ematologia "Seràgnoli", Bologna, Italy.,Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale Università di Bologna, Bologna, Italy
| | - Ralf U Trappe
- Department of Hematology and Oncology, DIAKO Hospital Bremen, Bremen, Germany
| |
Collapse
|
3
|
T-Cell Dysfunction as a Limitation of Adoptive Immunotherapy: Current Concepts and Mitigation Strategies. Cancers (Basel) 2021; 13:cancers13040598. [PMID: 33546277 PMCID: PMC7913380 DOI: 10.3390/cancers13040598] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary T cells are immune cells that can be used to target infections or cancers. Adoptive T-cell immunotherapy leverages these properties and/or confers new features to T cells through ex vivo manipulations prior to their use in patients. However, as a “living drug,” the function of these cells can be hampered by several built-in physiological constraints and external factors that limit their efficacy. Manipulating T cells ex vivo can impart dysfunctional features to T cells through repeated stimulations and expansion, but it also offers many opportunities to improve the therapeutic potential of these cells, including emerging interventions to prevent or reverse T-cell dysfunction developing ex vivo or after transfer in patients. This review outlines the various forms of T-cell dysfunction, emphasizes how it affects various types of T-cell immunotherapy approaches, and describes current and anticipated strategies to limit T-cell dysfunction. Abstract Over the last decades, cellular immunotherapy has revealed its curative potential. However, inherent physiological characteristics of immune cells can limit the potency of this approach. Best defined in T cells, dysfunction associated with terminal differentiation, exhaustion, senescence, and activation-induced cell death, undermine adoptive cell therapies. In this review, we concentrate on how the multiple mechanisms that articulate the various forms of immune dysfunction impact cellular therapies primarily involving conventional T cells, but also other lymphoid subtypes. The repercussions of immune cell dysfunction across the full life cycle of cell therapy, from the source material, during manufacturing, and after adoptive transfer, are discussed, with an emphasis on strategies used during ex vivo manipulations to limit T-cell dysfunction. Applicable to cellular products prepared from native and unmodified immune cells, as well as genetically engineered therapeutics, the understanding and potential modulation of dysfunctional features are key to the development of improved cellular immunotherapies.
Collapse
|
4
|
Leon E, Ranganathan R, Savoldo B. Adoptive T cell therapy: Boosting the immune system to fight cancer. Semin Immunol 2020; 49:101437. [PMID: 33262066 DOI: 10.1016/j.smim.2020.101437] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 01/06/2023]
Abstract
Cellular therapies have shown increasing promise as a cancer treatment. Encouraging results against hematologic malignancies are paving the way to move into solid tumors. In this review, we will focus on T-cell therapies starting from tumor infiltrating lymphocytes (TILs) to optimized T-cell receptor-modified (TCR) cells and chimeric antigen receptor-modified T cells (CAR-Ts). We will discuss the positive preclinical and clinical findings of these approaches, along with some of the persisting barriers that need to be overcome to improve outcomes.
Collapse
Affiliation(s)
- Ernesto Leon
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| | - Raghuveer Ranganathan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| | - Barbara Savoldo
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Immunology and Microbiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
5
|
Bellizzi A, Ahye N, Jalagadugula G, Wollebo HS. A Broad Application of CRISPR Cas9 in Infectious Diseases of Central Nervous System. J Neuroimmune Pharmacol 2019; 14:578-594. [PMID: 31512166 PMCID: PMC6898781 DOI: 10.1007/s11481-019-09878-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/26/2019] [Indexed: 12/16/2022]
Abstract
Virus-induced diseases or neurological complications are huge socio-economic burden to human health globally. The complexity of viral-mediated CNS pathology is exacerbated by reemergence of new pathogenic neurotropic viruses of high public relevance. Although the central nervous system is considered as an immune privileged organ and is mainly protected by barrier system, there are a vast majority of neurotropic viruses capable of gaining access and cause diseases. Despite continued growth of the patient population and a number of treatment strategies, there is no successful viral specific therapy available for viral induced CNS diseases. Therefore, there is an urgent need for a clear alternative treatment strategy that can effectively target neurotropic viruses of DNA or RNA genome. To address this need, rapidly growing gene editing technology based on CRISPR/Cas9, provides unprecedented control over viral genome editing and will be an effective, highly specific and versatile tool for targeting CNS viral infection. In this review, we discuss the application of this system to control CNS viral infection and associated neurological disorders and future prospects. Graphical Abstract CRISPR/Cas9 technology as agent control over CNS viral infection.
Collapse
Affiliation(s)
- Anna Bellizzi
- Center for Neurovirology, Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Room 756 MERB, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Nicholas Ahye
- Center for Neurovirology, Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Room 756 MERB, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Gauthami Jalagadugula
- Center for Neurovirology, Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Room 756 MERB, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Hassen S Wollebo
- Center for Neurovirology, Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Room 756 MERB, 3500 N. Broad Street, Philadelphia, PA, 19140, USA.
| |
Collapse
|
6
|
Stanland LJ, Luftig MA. Molecular features and translational outlook for Epstein-Barr virus-associated gastric cancer. Future Virol 2018; 13:803-818. [PMID: 34367314 PMCID: PMC8345226 DOI: 10.2217/fvl-2018-0071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epstein-Barr Virus (EBV) was the first discovered human tumor virus and is the etiological agent of B cell lymphomas and also epithelial cancers. Indeed, nearly 10% of gastric cancers worldwide are EBV-positive and display unique molecular, epigenetic, and clinicopathological features. EBV-positive gastric cancers display the highest rate of host genome methylation of all tumor types studied and harbor recurrent mutations activating PI3Kα, silencing ARID1A, and amplifying PD-L1. While EBV infection of B cells can be studied efficiently, de novo epithelial cell infection is much more difficult. We propose that new culture models including 3D-based gastric organoids and xenografts can bring new insight into EBV-induced gastric carcinogenesis and will lead to improved precision medicine-based therapies for patients with EBV-positive gastric cancer.
Collapse
Affiliation(s)
- Lyla J. Stanland
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Micah A. Luftig
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University School of Medicine, Durham, NC, 27710, USA
| |
Collapse
|
7
|
Fernandes Q, Merhi M, Raza A, Inchakalody VP, Abdelouahab N, Zar Gul AR, Uddin S, Dermime S. Role of Epstein-Barr Virus in the Pathogenesis of Head and Neck Cancers and Its Potential as an Immunotherapeutic Target. Front Oncol 2018; 8:257. [PMID: 30035101 PMCID: PMC6043647 DOI: 10.3389/fonc.2018.00257] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 06/22/2018] [Indexed: 12/18/2022] Open
Abstract
The role of Epstein-Barr virus (EBV) infection in the development and progression of tumor cells has been described in various cancers. Etiologically, EBV is a causative agent in certain variants of head and neck cancers such as nasopharyngeal cancer. Proteins expressed by the EVB genome are involved in invoking and perpetuating the oncogenic properties of the virus. However, these protein products were also identified as important targets for therapeutic research in the past decades, particularly within the context of immunotherapy. The adoptive transfer of EBV-targeted T-cells as well as the development of EBV vaccines has opened newer lines of research to conceptualize novel therapeutic approaches toward the disease. This review addresses the most important aspects of the association of EBV with head and neck cancers from an immunological perspective. It also aims to highlight the current and future prospects of enhanced EBV-targeted immunotherapies.
Collapse
Affiliation(s)
- Queenie Fernandes
- Translational Cancer Research Facility, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Maysaloun Merhi
- Translational Cancer Research Facility, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Afsheen Raza
- Translational Cancer Research Facility, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Varghese Philipose Inchakalody
- Translational Cancer Research Facility, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Nassima Abdelouahab
- Translational Cancer Research Facility, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Abdul Rehman Zar Gul
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Interim Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Said Dermime
- Translational Cancer Research Facility, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
8
|
Grant M, Bollard CM. Developing T-cell therapies for lymphoma without receptor engineering. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2017; 2017:622-631. [PMID: 29222313 PMCID: PMC6142576 DOI: 10.1182/asheducation-2017.1.622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
T-cell therapy has emerged from the bench for the treatment of patients with lymphoma. Responses to T-cell therapeutics are regulated by multiple factors, including the patient's immune system status and disease stage. Outside of engineering of chimeric antigen receptors and artificial T-cell receptors, T-cell therapy can be mediated by ex vivo expansion of antigen-specific T cells targeting viral and/or nonviral tumor-associated antigens. These approaches are contributing to enhanced clinical responses and overall survival. In this review, we summarize the available T-cell therapeutics beyond receptor engineering for the treatment of patients with lymphoma.
Collapse
Affiliation(s)
- Melanie Grant
- Center for Cancer and Immunology Research, Children’s National Health System, Washington, DC; and
| | - Catherine M. Bollard
- Center for Cancer and Immunology Research, Children’s National Health System, Washington, DC; and
- Departments of Pediatrics and Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC
| |
Collapse
|
9
|
Developing T-cell therapies for lymphoma without receptor engineering. Blood Adv 2017; 1:2579-2590. [PMID: 29296911 DOI: 10.1182/bloodadvances.2017009886] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/14/2017] [Indexed: 12/19/2022] Open
Abstract
T-cell therapy has emerged from the bench for the treatment of patients with lymphoma. Responses to T-cell therapeutics are regulated by multiple factors, including the patient's immune system status and disease stage. Outside of engineering of chimeric antigen receptors and artificial T-cell receptors, T-cell therapy can be mediated by ex vivo expansion of antigen-specific T cells targeting viral and/or nonviral tumor-associated antigens. These approaches are contributing to enhanced clinical responses and overall survival. In this review, we summarize the available T-cell therapeutics beyond receptor engineering for the treatment of patients with lymphoma.
Collapse
|
10
|
Yu F, Tan WJ, Lu Y, MacAry PA, Loh KS. The other side of the coin: Leveraging Epstein-Barr virus in research and therapy. Oral Oncol 2016; 60:112-7. [PMID: 27531881 PMCID: PMC7108324 DOI: 10.1016/j.oraloncology.2016.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/09/2016] [Indexed: 12/22/2022]
Abstract
Epstein-Barr virus is (EBV) a ubiquitous virus prevalent in 90% of the human population. Transmitted through infected saliva, EBV is the causative agent of infectious mononucleosis (IM) and is further implicated in malignancies of lymphoid and epithelial origins. In the past few decades, research efforts primarily focused on dissecting the mechanism of EBV-induced oncogenesis. Here, we present an alternate facet of the oncovirus EBV, on its applications in research and therapy. Finally, discussions on the prospective utilization of EBV in nasopharyngeal carcinoma (NPC) diagnosis and therapy will also be presented.
Collapse
Affiliation(s)
- Fenggang Yu
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Wei Jian Tan
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yanan Lu
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Paul A MacAry
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kwok Seng Loh
- Department of Otolaryngology-Head and Neck Surgery, National University Health System, Singapore
| |
Collapse
|
11
|
Roemhild A, Reinke P. Virus-specific T-cell therapy in solid organ transplantation. Transpl Int 2015; 29:515-26. [PMID: 26284570 DOI: 10.1111/tri.12659] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/07/2015] [Accepted: 08/12/2015] [Indexed: 12/12/2022]
Abstract
This article reviews the current state of T-cell therapy as therapeutic option for virus-associated diseases against the background of the most common viral complications and their standard treatment regimens after SOT. The available data of clinical T-cell trials in SOT are summarized. References to the hematopoietic stem cell transplantation are made if applicable data in SOT are not available and their content was considered likewise valid for cell therapy in SOT. Moreover, aspects of different manufacturing approaches including beneficial product characteristics and the importance of GMP compliance are addressed.
Collapse
Affiliation(s)
- Andy Roemhild
- Department of Nephrology and Internal Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapy (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Petra Reinke
- Department of Nephrology and Internal Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapy (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|