1
|
Kaur M, Mozaheb N, Paiva TO, Herent MF, Goormaghtigh F, Paquot A, Terrasi R, Mignolet E, Décout JL, Lorent JH, Larondelle Y, Muccioli GG, Quetin-Leclercq J, Dufrêne YF, Mingeot-Leclercq MP. Insight into the outer membrane asymmetry of P. aeruginosa and the role of MlaA in modulating the lipidic composition, mechanical, biophysical, and functional membrane properties of the cell envelope. Microbiol Spectr 2024; 12:e0148424. [PMID: 39373473 PMCID: PMC11537012 DOI: 10.1128/spectrum.01484-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/14/2024] [Indexed: 10/08/2024] Open
Abstract
In Gram-negative bacteria, the outer membrane (OM) is asymmetric, with lipopolysaccharides (LPS) in the outer leaflet and glycerophospholipids (GPLs) in the inner leaflet. The asymmetry is maintained by the Mla system (MlaA-MlaBCDEF), which contributes to lipid homeostasis by removing mislocalized GPLs from the outer leaflet of the OM. Here, we ascribed how Pseudomonas aeruginosa ATCC 27853 coordinately regulates pathways to provide defense against the threats posed by the deletion of mlaA. Especially, we explored (i) the effects on membrane lipid composition including LPS, GPLs, and lysophospholipids, (ii) the biophysical properties of the OM such as stiffness and fluidity, and (iii) the impact of these changes on permeability, antibiotic susceptibility, and membrane vesicles (MVs) generation. Deletion of mlaA induced an increase in total GPLs and a decrease in LPS level while also triggering alterations in lipid A structures (arabinosylation and palmitoylation), likely to be induced by a two-component system (PhoPQ-PmrAB). Altered lipid composition may serve a physiological purpose in regulating the mechanobiological and functional properties of P. aeruginosa. We demonstrated an increase in cell stiffness without alteration of turgor pressure and inner membrane (IM) fluidity in ∆mlaA. In addition, membrane vesiculation increased without any change in OM/IM permeability. An amphiphilic aminoglycoside derivative (3',6-dinonyl neamine) that targets P. aeruginosa membranes induced an opposite effect on ∆mlaA strain with a trend toward a return to the situation observed for the WT strain. Efforts dedicated to understanding the crosstalk between the OM lipid composition, and the mechanical behavior of bacterial envelope, is one needed step for designing new targets or new drugs to fight P. aeruginosa infections.IMPORTANCEPseudomonas aeruginosa is a Gram-negative bacterium responsible for severe hospital-acquired infections. The outer membrane (OM) of Gram-negative bacteria acts as an effective barrier against toxic compounds, and therefore, compromising this structure could increase sensitivity to antibiotics. The OM is asymmetric with the highly packed lipopolysaccharide monolayer at the outer leaflet and glycerophospholipids at the inner leaflet. OM asymmetry is maintained by the Mla pathway resulting in the retrograde transport of glycerophospholipids from the OM to the inner membrane. In this study, we show that deleting mlaA, the membrane component of Mla system located at the OM, affects the mechanical and functional properties of P. aeruginosa cell envelope. Our results provide insights into the role of MlaA, involved in the Mla transport pathway in P. aeruginosa.
Collapse
Affiliation(s)
- M. Kaur
- UCLouvain, Louvain Drug Research Institute, Cellular & Molecular Pharmacology, Brussels, Belgium
| | - N. Mozaheb
- UCLouvain, Louvain Drug Research Institute, Cellular & Molecular Pharmacology, Brussels, Belgium
| | - T. O. Paiva
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, nanoBiophysics, Louvain-la-Neuve, Belgium
| | - M.-F. Herent
- UCLouvain, Louvain Drug Research Institute, Pharmacognosy, Brussels, Belgium
| | - F. Goormaghtigh
- UCLouvain, Louvain Drug Research Institute, Cellular & Molecular Pharmacology, Brussels, Belgium
| | - A. Paquot
- UCLouvain, Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids, Brussels, Belgium
| | - R. Terrasi
- UCLouvain, Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids, Brussels, Belgium
| | - E. Mignolet
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, Biochemistry of Nutrition and Environmental Toxicology Louvain-la-Neuve, Brussels, Belgium
| | - J.-L. Décout
- Université Grenoble Alpes, CNRS, DPM, Grenoble, France
| | - J. H. Lorent
- UCLouvain, Louvain Drug Research Institute, Cellular & Molecular Pharmacology, Brussels, Belgium
| | - Y. Larondelle
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, Biochemistry of Nutrition and Environmental Toxicology Louvain-la-Neuve, Brussels, Belgium
| | - G. G. Muccioli
- UCLouvain, Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids, Brussels, Belgium
| | - J. Quetin-Leclercq
- UCLouvain, Louvain Drug Research Institute, Pharmacognosy, Brussels, Belgium
| | - Y. F. Dufrêne
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, nanoBiophysics, Louvain-la-Neuve, Belgium
| | - M.-P. Mingeot-Leclercq
- UCLouvain, Louvain Drug Research Institute, Cellular & Molecular Pharmacology, Brussels, Belgium
| |
Collapse
|
2
|
Kim YC, Jun SW, Ahn YH. Single bacteria identification with second-harmonic generation in MoS 2. Biosens Bioelectron 2023; 241:115675. [PMID: 37725844 DOI: 10.1016/j.bios.2023.115675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/21/2023]
Abstract
Transition-metal dichalcogenides exhibit extraordinary optical nonlinearities, making them promising candidates for advanced photonic applications. Here, we present the microbial control over second-harmonic generation (SHG) in monolayer MoS2 and the identification of single-cell bacteria. Bacteria deposited on monolayer MoS2 induce a change in the SHG signal, in the form of anisotropic polarization responses that depend on the relative orientation of the bacteria with respect to the MoS2 crystallographic direction. The anisotropic enhancement is consistent with the presence of a tensile stress along the lateral direction of bacteria axis; SHG imaging is highly effective in monitoring biomaterial strain as low as 0.1%. We also investigate the ultraviolet-induced removal of single bacteria, through the SHG imaging of MoS2. By monitoring the transient SHG signals, we determine the rupture times for bacteria, which varies noticeably for each species. This allows us to distinguish specific bacteria that share habitats; SHG imaging is useful for label free identification of pathogens at the single cell levels such as E. coli and L. casei. This label-free detection and identification of pathogens at the single-cell level can have a profound impact on the development of diagnostic tools for various applications.
Collapse
Affiliation(s)
- Young Chul Kim
- Department of Physics and Department of Energy Systems Research, Ajou University, Suwon 16499, South Korea
| | - Seung Won Jun
- Department of Physics and Department of Energy Systems Research, Ajou University, Suwon 16499, South Korea
| | - Yeong Hwan Ahn
- Department of Physics and Department of Energy Systems Research, Ajou University, Suwon 16499, South Korea.
| |
Collapse
|
3
|
Lipoprotein Lpp regulates the mechanical properties of the E. coli cell envelope. Nat Commun 2020; 11:1789. [PMID: 32286264 PMCID: PMC7156740 DOI: 10.1038/s41467-020-15489-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 03/09/2020] [Indexed: 12/16/2022] Open
Abstract
The mechanical properties of the cell envelope in Gram-negative bacteria are controlled by the peptidoglycan, the outer membrane, and the proteins interacting with both layers. In Escherichia coli, the lipoprotein Lpp provides the only covalent crosslink between the outer membrane and the peptidoglycan. Here, we use single-cell atomic force microscopy and genetically engineered strains to study the contribution of Lpp to cell envelope mechanics. We show that Lpp contributes to cell envelope stiffness in two ways: by covalently connecting the outer membrane to the peptidoglycan, and by controlling the width of the periplasmic space. Furthermore, mutations affecting Lpp function substantially increase bacterial susceptibility to the antibiotic vancomycin, indicating that Lpp-dependent effects can affect antibacterial drug efficacy. Lipoprotein Lpp provides a covalent crosslink between the outer membrane and the peptidoglycan in E. coli. Here, the authors use atomic force microscopy to show that Lpp contributes to cell envelope stiffness by covalently connecting the two layers and by controlling the width of the periplasmic space.
Collapse
|
4
|
Beaussart A, El-Kirat-Chatel S. Microbial adhesion and ultrastructure from the single-molecule to the single-cell levels by Atomic Force Microscopy. Cell Surf 2019; 5:100031. [PMID: 32743147 PMCID: PMC7389263 DOI: 10.1016/j.tcsw.2019.100031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 12/29/2022] Open
Abstract
In the last decades, atomic force microscopy (AFM) has evolved towards an accurate and lasting tool to study the surface of living cells in physiological conditions. Through imaging, single-molecule force spectroscopy and single-cell force spectroscopy modes, AFM allows to decipher at multiple scales the morphology and the molecular interactions taking place at the cell surface. Applied to microbiology, these approaches have been used to elucidate biophysical properties of biomolecules and to directly link the molecular structures to their function. In this review, we describe the main methods developed for AFM-based microbial surface analysis that we illustrate with examples of molecular mechanisms unravelled with unprecedented resolution.
Collapse
|
5
|
Gulyuk AV, LaJeunesse DR, Collazo R, Ivanisevic A. Characterization of Pseudomonas aeruginosa Films on Different Inorganic Surfaces before and after UV Light Exposure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:10806-10815. [PMID: 30122052 DOI: 10.1021/acs.langmuir.8b02079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The changes of the surface properties of Au, GaN, and SiO x after UV light irradiation were used to actively influence the process of formation of Pseudomonas aeruginosa films. The interfacial properties of the substrates were characterized by X-ray photoelectron spectroscopy and atomic force microscopy. The changes in the P. aeruginosa film properties were accessed by analyzing adhesion force maps and quantifying the intracellular Ca2+ concentration. The collected analysis indicates that the alteration of the inorganic materials' surface chemistry can lead to differences in biofilm formation and variable response from P. aeruginosa cells.
Collapse
Affiliation(s)
- Alexey V Gulyuk
- Department of Materials Science and Engineering , North Carolina State University , Raleigh , North Carolina 27695 , United States
| | - Dennis R LaJeunesse
- Joint School of Nanoscience and Nanoengineering , University of North Carolina-Greensboro and North Carolina A&T State University , Greensboro , North Carolina 27401 , United States
| | - Ramon Collazo
- Department of Materials Science and Engineering , North Carolina State University , Raleigh , North Carolina 27695 , United States
| | - Albena Ivanisevic
- Department of Materials Science and Engineering , North Carolina State University , Raleigh , North Carolina 27695 , United States
| |
Collapse
|
6
|
|
7
|
Hasim S, Allison DP, Retterer ST, Hopke A, Wheeler RT, Doktycz MJ, Reynolds TB. β-(1,3)-Glucan Unmasking in Some Candida albicans Mutants Correlates with Increases in Cell Wall Surface Roughness and Decreases in Cell Wall Elasticity. Infect Immun 2017; 85:e00601-16. [PMID: 27849179 PMCID: PMC5203643 DOI: 10.1128/iai.00601-16] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/08/2016] [Indexed: 11/20/2022] Open
Abstract
Candida albicans is among the most common human fungal pathogens, causing a broad range of infections, including life-threatening systemic infections. The cell wall of C. albicans is the interface between the fungus and the innate immune system. The cell wall is composed of an outer layer enriched in mannosylated glycoproteins (mannan) and an inner layer enriched in β-(1,3)-glucan and chitin. Detection of C. albicans by Dectin-1, a C-type signaling lectin specific for β-(1,3)-glucan, is important for the innate immune system to recognize systemic fungal infections. Increased exposure of β-(1,3)-glucan to the immune system occurs when the mannan layer is altered or removed in a process called unmasking. Nanoscale changes to the cell wall during unmasking were explored in live cells with atomic force microscopy (AFM). Two mutants, the cho1Δ/Δ and kre5Δ/Δ mutants, were selected as representatives that exhibit modest and strong unmasking, respectively. Comparisons of the cho1Δ/Δ and kre5Δ/Δ mutants to the wild type reveal morphological changes in their cell walls that correlate with decreases in cell wall elasticity. In addition, AFM tips functionalized with Dectin-1 revealed that the forces of binding of Dectin-1 to all of the strains were similar, but the frequency of binding was highest for the kre5Δ/Δ mutant, decreased for the cho1Δ/Δ mutant, and rare for the wild type. These data show that nanoscale changes in surface topology are correlated with increased Dectin-1 adhesion and decreased cell wall elasticity. AFM, using tips functionalized with immunologically relevant molecules, can map epitopes of the cell wall and increase our understanding of pathogen recognition by the immune system.
Collapse
Affiliation(s)
- Sahar Hasim
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - David P Allison
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Scott T Retterer
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Alex Hopke
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, USA
| | - Robert T Wheeler
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, USA
| | - Mitchel J Doktycz
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Todd B Reynolds
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
8
|
Microrheology of growing Escherichia coli biofilms investigated by using magnetic force modulation atomic force microscopy. Biointerphases 2016; 11:041005. [PMID: 27907987 DOI: 10.1116/1.4968809] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Microrheology of growing biofilms provides insightful information about its structural evolution and properties. In this study, the authors have investigated the microrheology of Escherichia coli (strain HCB1) biofilms at different indentation depth (δ) by using magnetic force modulation atomic force microscopy as a function of disturbing frequency (f). As δ increases, the dynamic stiffness (ks) for the biofilms in the early stage significantly increases. However, it levels off when the biofilms are matured. The facts indicate that the biofilms change from inhomogeneous to homogeneous in structure. Moreover, ks is scaled to f, which coincides with the rheology of soft glasses. The exponent increases with the incubation time, indicating the fluidization of biofilms. In contrast, the upper layer of the matured biofilms is solidlike in that the storage modulus is always larger than the loss modulus, and its viscoelasticity is slightly influenced by the shear stress.
Collapse
|
9
|
Atomic force microscopy for the investigation of molecular and cellular behavior. Micron 2016; 89:60-76. [DOI: 10.1016/j.micron.2016.07.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/27/2016] [Indexed: 12/19/2022]
|
10
|
Huang Q, Wu H, Cai P, Fein JB, Chen W. Atomic force microscopy measurements of bacterial adhesion and biofilm formation onto clay-sized particles. Sci Rep 2015; 5:16857. [PMID: 26585552 PMCID: PMC4653644 DOI: 10.1038/srep16857] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/21/2015] [Indexed: 11/09/2022] Open
Abstract
Bacterial adhesion onto mineral surfaces and subsequent biofilm formation play key roles in aggregate stability, mineral weathering, and the fate of contaminants in soils. However, the mechanisms of bacteria-mineral interactions are not fully understood. Atomic force microscopy (AFM) was used to determine the adhesion forces between bacteria and goethite in water and to gain insight into the nanoscale surface morphology of the bacteria-mineral aggregates and biofilms formed on clay-sized minerals. This study yields direct evidence of a range of different association mechanisms between bacteria and minerals. All strains studied adhered predominantly to the edge surfaces of kaolinite rather than to the basal surfaces. Bacteria rarely formed aggregates with montmorillonite, but were more tightly adsorbed onto goethite surfaces. This study reports the first measured interaction force between bacteria and a clay surface, and the approach curves exhibited jump-in events with attractive forces of 97 ± 34 pN between E. coli and goethite. Bond strengthening between them occurred within 4 s to the maximum adhesion forces and energies of -3.0 ± 0.4 nN and -330 ± 43 aJ (10(-18) J), respectively. Under the conditions studied, bacteria tended to form more extensive biofilms on minerals under low rather than high nutrient conditions.
Collapse
Affiliation(s)
- Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Huayong Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Peng Cai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jeremy B. Fein
- University of Notre Dame, Department of Civil and Environmental Engineering and Earth Sciences, Notre Dame, IN 46556, USA
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
11
|
Diao M, Nguyen TA, Taran E, Mahler SM, Nguyen AV. Effect of energy source, salt concentration and loading force on colloidal interactions between Acidithiobacillus ferrooxidans cells and mineral surfaces. Colloids Surf B Biointerfaces 2015; 132:271-80. [DOI: 10.1016/j.colsurfb.2015.05.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 05/11/2015] [Accepted: 05/14/2015] [Indexed: 11/28/2022]
|
12
|
Van Der Hofstadt M, Hüttener M, Juárez A, Gomila G. Nanoscale imaging of the growth and division of bacterial cells on planar substrates with the atomic force microscope. Ultramicroscopy 2015; 154:29-36. [PMID: 25791909 DOI: 10.1016/j.ultramic.2015.02.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 02/27/2015] [Accepted: 02/28/2015] [Indexed: 02/05/2023]
Abstract
With the use of the atomic force microscope (AFM), the Nanomicrobiology field has advanced drastically. Due to the complexity of imaging living bacterial processes in their natural growing environments, improvements have come to a standstill. Here we show the in situ nanoscale imaging of the growth and division of single bacterial cells on planar substrates with the atomic force microscope. To achieve this, we minimized the lateral shear forces responsible for the detachment of weakly adsorbed bacteria on planar substrates with the use of the so called dynamic jumping mode with very soft cantilever probes. With this approach, gentle imaging conditions can be maintained for long periods of time, enabling the continuous imaging of the bacterial cell growth and division, even on planar substrates. Present results offer the possibility to observe living processes of untrapped bacteria weakly attached to planar substrates.
Collapse
Affiliation(s)
- M Van Der Hofstadt
- Institut de Bioenginyeria de Catalunya (IBEC), C/ Baldiri i Reixac 11-15, 08028 Barcelona, Spain
| | - M Hüttener
- Institut de Bioenginyeria de Catalunya (IBEC), C/ Baldiri i Reixac 11-15, 08028 Barcelona, Spain; Departament de Microbiologia, Universitat de Barcelona, Avinguda Diagonal 645, 08028 Barcelona, Spain
| | - A Juárez
- Institut de Bioenginyeria de Catalunya (IBEC), C/ Baldiri i Reixac 11-15, 08028 Barcelona, Spain; Departament de Microbiologia, Universitat de Barcelona, Avinguda Diagonal 645, 08028 Barcelona, Spain
| | - G Gomila
- Institut de Bioenginyeria de Catalunya (IBEC), C/ Baldiri i Reixac 11-15, 08028 Barcelona, Spain; Departament d'Electronica, Universitat de Barcelona, C/ Marti i Franqués 1, 08028 Barcelona, Spain.
| |
Collapse
|
13
|
Aguayo S, Donos N, Spratt D, Bozec L. Single-bacterium nanomechanics in biomedicine: unravelling the dynamics of bacterial cells. NANOTECHNOLOGY 2015; 26:062001. [PMID: 25598514 DOI: 10.1088/0957-4484/26/6/062001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The use of the atomic force microscope (AFM) in microbiology has progressed significantly throughout the years since its first application as a high-resolution imaging instrument. Modern AFM setups are capable of characterizing the nanomechanical behaviour of bacterial cells at both the cellular and molecular levels, where elastic properties and adhesion forces of single bacterium cells can be examined under different experimental conditions. Considering that bacterial and biofilm-mediated infections continue to challenge the biomedical field, it is important to understand the biophysical events leading towards bacterial adhesion and colonization on both biological and non-biological substrates. The purpose of this review is to present the latest findings concerning the field of single-bacterium nanomechanics, and discuss future trends and applications of nanoindentation and single-cell force spectroscopy techniques in biomedicine.
Collapse
Affiliation(s)
- S Aguayo
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK
| | | | | | | |
Collapse
|
14
|
The interplay between cell wall mechanical properties and the cell cycle in Staphylococcus aureus. Biophys J 2014; 107:2538-45. [PMID: 25468333 DOI: 10.1016/j.bpj.2014.10.036] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 09/26/2014] [Accepted: 10/08/2014] [Indexed: 11/21/2022] Open
Abstract
The nanoscale mechanical properties of live Staphylococcus aureus cells during different phases of growth were studied by atomic force microscopy. Indentation to different depths provided access to both local cell wall mechanical properties and whole-cell properties, including a component related to cell turgor pressure. Local cell wall properties were found to change in a characteristic manner throughout the division cycle. Splitting of the cell into two daughter cells followed a local softening of the cell wall along the division circumference, with the cell wall on either side of the division circumference becoming stiffer. Once exposed, the newly formed septum was found to be stiffer than the surrounding, older cell wall. Deeper indentations, which were affected by cell turgor pressure, did not show a change in stiffness throughout the division cycle, implying that enzymatic cell wall remodeling and local variations in wall properties are responsible for the evolution of cell shape through division.
Collapse
|
15
|
Kuyukina MS, Korshunova IO, Rubtsova EV, Ivshina IB. Methods of microorganism immobilization for dynamic atomic-force studies (review). APPL BIOCHEM MICRO+ 2013. [DOI: 10.1134/s0003683814010086] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Dorobantu LS, Goss GG, Burrell RE. Atomic force microscopy: A nanoscopic view of microbial cell surfaces. Micron 2012; 43:1312-22. [DOI: 10.1016/j.micron.2012.05.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 04/26/2012] [Accepted: 05/11/2012] [Indexed: 11/28/2022]
|
17
|
Characterization and analysis of mycobacteria and Gram-negative bacteria and co-culture mixtures by Raman microspectroscopy, FTIR, and atomic force microscopy. Anal Bioanal Chem 2012. [DOI: 10.1007/s00216-012-6556-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Chang KC, Cheng SJ, Chen YC, Huang HR, Liou JW. Nanoscopic analysis on pH induced morphological changes of flagella in Escherichia coli. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2012; 46:405-12. [PMID: 23017690 DOI: 10.1016/j.jmii.2012.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 07/24/2012] [Accepted: 08/04/2012] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE Flagella contribute to the virulence of pathogenic bacteria through chemotaxis, motility, and adhesion. Understanding the various functions of flagella may provide insight into mechanisms of bacterial infection and transmission. The objectives of our study were to apply biophysical and biochemical methods to investigate the mechanisms of pH-dependent changes in flagella functions. METHODS Atomic force microscopy (AFM) was used to analyze the flagellum morphology of Escherichia coli cultured in various pH conditions. The swarming plate method was used to identify pH-dependent changes in bacterial motility. Western blot analysis and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) were also carried out to study pH-dependent expression and structural changes of flagellin C. RESULTS E coli cultured at pH 7 produced the flagella with the greatest average length and diameter. When the bacteria were grown at pH 6 or pH 8, shorter and thinner forms of flagella were produced. The morphology of the flagella was correlated to the bacterial motility. While western blot analysis showed only a slight change in the expression of the flagellin C protein in response to changes in the pH of the culture medium, ATR-FTIR showed significant pH-dependent changes in the secondary structure of the flagellin C assembled in sheared flagella. CONCLUSION Our results show that both acidification and alkalization of the culture medium restricted bacterial motility, and indicate that the reduced motility may be caused by incorrect assembly of the flagellum proteins.
Collapse
Affiliation(s)
- Kai-Chih Chang
- Graduate Institute of Medical Biotechnology, Tzu Chi University, Hualien 970, Taiwan
| | - Shun-Jia Cheng
- Graduate Institute of Medical Biotechnology, Tzu Chi University, Hualien 970, Taiwan
| | - Yi-Cheng Chen
- Department of Medicine, Mackay Medical College, New Taipei 252, Taiwan
| | - Hsin-Ru Huang
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Je-Wen Liou
- Graduate Institute of Medical Biotechnology, Tzu Chi University, Hualien 970, Taiwan; Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| |
Collapse
|
19
|
Gillis A, Dupres V, Delestrait G, Mahillon J, Dufrêne YF. Nanoscale imaging of Bacillus thuringiensis flagella using atomic force microscopy. NANOSCALE 2012; 4:1585-1591. [PMID: 22159046 DOI: 10.1039/c1nr11161b] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Because bacterial flagella play essential roles in various processes (motility, adhesion, host interactions, secretion), studying their expression in relation to function is an important challenge. Here, we use atomic force microscopy (AFM) to gain insight into the nanoscale surface properties of two wild-type and four mutant strains of Bacillus thuringiensis exhibiting various levels of flagellation. We show that, unlike AFM in liquid, AFM in air is a simple and reliable approach to observe the morphological details of the bacteria, and to quantify the density and dimensions of their flagella. We found that the amount of flagella expressed by the six strains, as observed at the nanoscale, correlates with their microscopic swarming motility. These observations provide novel information on flagella expression in gram-positive bacteria and demonstrate the power of AFM in genetic studies for the fast assessment of the phenotypic characteristics of bacterial strains altered in cell surface appendages.
Collapse
Affiliation(s)
- Annika Gillis
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université catholique de Louvain, Croix du Sud 2, Box L7.05.12, B-1348, Louvain-la-Neuve, Belgium
| | | | | | | | | |
Collapse
|
20
|
Polyakov P, Soussen C, Duan J, Duval JFL, Brie D, Francius G. Automated force volume image processing for biological samples. PLoS One 2011; 6:e18887. [PMID: 21559483 PMCID: PMC3084721 DOI: 10.1371/journal.pone.0018887] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 03/24/2011] [Indexed: 01/09/2023] Open
Abstract
Atomic force microscopy (AFM) has now become a powerful technique for investigating on a molecular level, surface forces, nanomechanical properties of deformable particles, biomolecular interactions, kinetics, and dynamic processes. This paper specifically focuses on the analysis of AFM force curves collected on biological systems, in particular, bacteria. The goal is to provide fully automated tools to achieve theoretical interpretation of force curves on the basis of adequate, available physical models. In this respect, we propose two algorithms, one for the processing of approach force curves and another for the quantitative analysis of retraction force curves. In the former, electrostatic interactions prior to contact between AFM probe and bacterium are accounted for and mechanical interactions operating after contact are described in terms of Hertz-Hooke formalism. Retraction force curves are analyzed on the basis of the Freely Jointed Chain model. For both algorithms, the quantitative reconstruction of force curves is based on the robust detection of critical points (jumps, changes of slope or changes of curvature) which mark the transitions between the various relevant interactions taking place between the AFM tip and the studied sample during approach and retraction. Once the key regions of separation distance and indentation are detected, the physical parameters describing the relevant interactions operating in these regions are extracted making use of regression procedure for fitting experiments to theory. The flexibility, accuracy and strength of the algorithms are illustrated with the processing of two force-volume images, which collect a large set of approach and retraction curves measured on a single biological surface. For each force-volume image, several maps are generated, representing the spatial distribution of the searched physical parameters as estimated for each pixel of the force-volume image.
Collapse
Affiliation(s)
- Pavel Polyakov
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, LCPME, UMR 7564, Nancy-Université, CNRS, Vandoeuvre lès Nancy, France
| | - Charles Soussen
- Centre de Recherche en Automatique de Nancy, CRAN, UMR 7039, Nancy-Université, CNRS, Vandoeuvre lès Nancy, France
| | - Junbo Duan
- Centre de Recherche en Automatique de Nancy, CRAN, UMR 7039, Nancy-Université, CNRS, Vandoeuvre lès Nancy, France
| | - Jérôme F. L. Duval
- Laboratoire Environnement et Minéralurgie, LEM, UMR 7569, Nancy-Université, CNRS, Vandoeuvre lès Nancy, France
| | - David Brie
- Centre de Recherche en Automatique de Nancy, CRAN, UMR 7039, Nancy-Université, CNRS, Vandoeuvre lès Nancy, France
- * E-mail: (GF); (DB)
| | - Grégory Francius
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, LCPME, UMR 7564, Nancy-Université, CNRS, Vandoeuvre lès Nancy, France
- * E-mail: (GF); (DB)
| |
Collapse
|
21
|
Allison DP, Mortensen NP, Sullivan CJ, Doktycz MJ. Atomic force microscopy of biological samples. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2011; 2:618-34. [PMID: 20672388 DOI: 10.1002/wnan.104] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ability to evaluate structural-functional relationships in real time has allowed scanning probe microscopy (SPM) to assume a prominent role in post genomic biological research. In this mini-review, we highlight the development of imaging and ancillary techniques that have allowed SPM to permeate many key areas of contemporary research. We begin by examining the invention of the scanning tunneling microscope (STM) by Binnig and Rohrer in 1982 and discuss how it served to team biologists with physicists to integrate high-resolution microscopy into biological science. We point to the problems of imaging nonconductive biological samples with the STM and relate how this led to the evolution of the atomic force microscope (AFM) developed by Binnig, Quate, and Gerber, in 1986. Commercialization in the late 1980s established SPM as a powerful research tool in the biological research community. Contact mode AFM imaging was soon complemented by the development of non-contact imaging modes. These non-contact modes eventually became the primary focus for further new applications including the development of fast scanning methods. The extreme sensitivity of the AFM cantilever was recognized and has been developed into applications for measuring forces required for indenting biological surfaces and breaking bonds between biomolecules. Further functional augmentation to the cantilever tip allowed development of new and emerging techniques including scanning ion-conductance microscopy (SICM), scanning electrochemical microscope (SECM), Kelvin force microscopy (KFM) and scanning near field ultrasonic holography (SNFUH).
Collapse
Affiliation(s)
- David P Allison
- Biosciences Division, Oak Ridge National Laboratory, TN 37831-6445, USA
| | | | | | | |
Collapse
|
22
|
Immobilisation of living bacteria for AFM imaging under physiological conditions. Ultramicroscopy 2010; 110:1349-57. [DOI: 10.1016/j.ultramic.2010.06.010] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 05/18/2010] [Accepted: 06/23/2010] [Indexed: 11/30/2022]
|
23
|
Atomic force microscopy and surface plasmon resonance investigation of fibronectin interactions with group B streptococci. Biointerphases 2010; 2:64-72. [PMID: 20408638 DOI: 10.1116/1.2738854] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The interactions of fibronectin (Fn) with group B streptococci (GBS) were investigated using the atomic force microscope (AFM) and surface plasmon resonance (SPR) biosensing. Submonolayer amounts of Fn were immobilized onto the AFM tip by two different methods, using either a sulfosuccinimidyl-4-(N-maleimidomethyl) cycholhexane-1-carboxylate (SMCC) linker or a pyridyldithio poly(ethylene glycol) succinimidylpropionate (NHS-PEG-PDP) linker. Each step of both immobilization methods was characterized using x-ray photoelectron spectroscopy. Time-of-flight secondary ion mass spectrometry experiments indicated both methods produced Fn immobilized in a similar conformation. AFM force-distance curves from live GBS plated onto polystyrene exhibited several types of interactions between the Fn functionalized AFM tip and the surface of capsule-deficient GBS (no interactions, interactions with the cell wall, Fn unfolding, large specific unbinding events, and small specific unbinding events). From analysis of the force-distance curves that exhibited only a single specific unbinding event, the work of adhesion and rupture force for the SMCC immobilized Fn tips (11,131 pN nm and 213 pN) were larger than the corresponding values for the NHS-PEG-PDP immobilized Fn tips (8115 pN nm and 189 pN). The unbinding event occurred at distances approximately 100 nm further from the surface with the NHS-PEG-PDP immobilized Fn tip compared to SMCC immobilized Fn tip. The SPR experiments of soluble Fn with adsorbed serine protease C5a peptidase (Scp), the surface protein on GBS that binds Fn, showed that both low (millimolar) and high binding (nanomolar) affinity interactions were present. However, the low binding affinity interactions dominated the adsorption process and, with increasing Fn solution concentration, the amount of Scp bound to Fn via the high binding affinity interaction decreased. These data confirm that Scp binds only to adsorbed Fn at the Fn concentrations typically present in blood plasma.
Collapse
|
24
|
Dorobantu LS, Gray MR. Application of atomic force microscopy in bacterial research. SCANNING 2010; 32:74-96. [PMID: 20695026 DOI: 10.1002/sca.20177] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The atomic force microscope (AFM) has evolved from an imaging device into a multifunctional and powerful toolkit for probing the nanostructures and surface components on the exterior of bacterial cells. Currently, the area of application spans a broad range of interesting fields from materials sciences, in which AFM has been used to deposit patterns of thiol-functionalized molecules onto gold substrates, to biological sciences, in which AFM has been employed to study the undesirable bacterial adhesion to implants and catheters or the essential bacterial adhesion to contaminated soil or aquifers. The unique attribute of AFM is the ability to image bacterial surface features, to measure interaction forces of functionalized probes with these features, and to manipulate these features, for example, by measuring elongation forces under physiological conditions and at high lateral resolution (<1 A). The first imaging studies showed the morphology of various biomolecules followed by rapid progress in visualizing whole bacterial cells. The AFM technique gradually developed into a lab-on-a-tip allowing more quantitative analysis of bacterial samples in aqueous liquids and non-contact modes. Recently, force spectroscopy modes, such as chemical force microscopy, single-cell force spectroscopy, and single-molecule force spectroscopy, have been used to map the spatial arrangement of chemical groups and electrical charges on bacterial surfaces, to measure cell-cell interactions, and to stretch biomolecules. In this review, we present the fascinating options offered by the rapid advances in AFM with emphasizes on bacterial research and provide a background for the exciting research articles to follow.
Collapse
Affiliation(s)
- Loredana S Dorobantu
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada.
| | | |
Collapse
|
25
|
Park BJ, Abu-Lail NI. Variations in the Nanomechanical Properties of Virulent and Avirulent Listeria monocytogenes. SOFT MATTER 2010; 6:3898-3909. [PMID: 20871743 PMCID: PMC2944262 DOI: 10.1039/b927260g] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Atomic force microscopy (AFM) was used to quantify both the nanomechanical properties of pathogenic (ATCC 51776 & EGDe) and non-pathogenic (ATCC 15313 & HCC25) Listeria monocytogenes strains and the conformational properties of their surface biopolymers. The nanomechanical properties of the various L. monocytogenes strains were quantified in terms of Young's moduli of cells. To estimate Young's moduli, the classic Hertz model of contact mechanics and a modified version of it that takes into account substrate effects were used to fit the AFM nanoindentation-force measurements collected while pushing onto the bacterial surface biopolymer brush. When compared, the classic Hertz model always predicted higher Young's moduli values of bacterial cell elasticity compared to the modified Hertz model. On average, the modified Hertz model showed that virulent strains are approximately twice as rigid (88.1 ± 14.5 KPa) as the avirulent strains (47.3 ± 7.6 kPa). To quantify the conformational properties of L. monocytogenes' strains surface biopolymers, two models were used. First, the entropic-based, statistical mechanical, random walk formulation, the wormlike chain (WLC) model was used to estimate the elastic properties of the bacterial surface molecules. The WLC model results indicated that the virulent strains are characterized by a more flexible surface biopolymers as indicated by shorter persistence lengths (L(p) = 0.21 ± 0.08 nm) compared to the avirulent strains (L(p) = 0.24 ± 0.14 nm). Second, a steric model developed to describe the repulsive forces measured between the AFM tip and bacterial surface biopolymers indicated that the virulent strains are characterized by crowded and longer biopolymer brushes compared to those of the avirulent strains. Finally, scaling relationships developed for grafted polyelectrolyte brushes indicated L. monocytogenes strains' biopolymer brushes are charged. Collectively, our data indicate that the conformational properties of the bacterial surface biopolymers and their surface densities play an important role in controlling the overall bacterial cell elasticity.
Collapse
Affiliation(s)
| | - Nehal I. Abu-Lail
- Corresponding Author: Nehal I. Abu-Lail, Ph.D., Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164-2710, United States, , 509-335-4961
| |
Collapse
|
26
|
50Hz magnetic field effect on the morphology of bacteria. Micron 2009; 40:918-22. [DOI: 10.1016/j.micron.2009.06.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 06/19/2009] [Accepted: 06/20/2009] [Indexed: 11/23/2022]
|
27
|
Fernandes JC, Eaton P, Gomes AM, Pintado ME, Xavier Malcata F. Study of the antibacterial effects of chitosans on Bacillus cereus (and its spores) by atomic force microscopy imaging and nanoindentation. Ultramicroscopy 2009; 109:854-60. [DOI: 10.1016/j.ultramic.2009.03.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Chang KT, Tsai MJ, Cheng YT, Chen JJ, Hsia RH, Lo YS, Ma YR, Weng CF. Comparative atomic force and scanning electron microscopy: an investigation of structural differentiation of hepatic stellate cells. J Struct Biol 2009; 167:200-8. [PMID: 19527786 DOI: 10.1016/j.jsb.2009.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 06/09/2009] [Accepted: 06/09/2009] [Indexed: 12/18/2022]
Abstract
The molecular mechanism leading to the transdifferentiation of hepatic stellate cells (HSC) into myofibroblast-like cells following liver injury is not well understood. The state of cultured rat HSCs was determined using primarily fluorescence microscopy (UV), immunofluorescence (IF) (Glial fibrillary acidic protein (GFAP), Desmin, alpha-smooth muscle actin (alpha-SMA), F-actin) and immunocytochemistry (ICC) (GFAP, Desmin, alpha-SMA, Fibulin-2). Additionally, tapping-mode atomic force microscopy (TM-AFM) and field-emission scanning electron microscopy (FE-SEM) with low-resistivity indium-tin-oxide (ITO) thin-film were performed to observe the micro-morphological character of cells during HSC differentiation. Quiescent HSCs changed to the activated state were identified via UV, IF, and ICC observations. Normal rat HSCs (NHSCs) and thioacetamide-induced rat HSCs (THSCs) were demonstrated to be UV(-), GFAP(+), Desmin(+), alpha-SMA(+) and Fibulin-2(-). After F-actin staining, lamellipodia and filopodia were found in both NHSCs and THSCs, but membrane ruffles were only seen in THSCs. The micro-structures of lamellipodia and filopodia in both NHSCs and THSCs were confirmed using FE-SEM and TM-AFM with ITO; in contrast, the micro-projection was not found. Moreover, "aerial root" structures were observed for the first time in the filopodia of THSCs using TM-AFM. These results reveal that HSC transdifferentiation to a myofibroblastic-like cell (activated HSC) from thioacetamide-induced rat HSC induces extensive changes in the cytoskeleton.
Collapse
Affiliation(s)
- Kai-Ting Chang
- Institute of Biotechnology, National Dong Hwa University, 974 Hualien, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Immobilizing live bacteria for AFM imaging of cellular processes. Ultramicroscopy 2009; 109:775-80. [DOI: 10.1016/j.ultramic.2009.01.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 01/21/2009] [Accepted: 01/28/2009] [Indexed: 11/22/2022]
|
30
|
Abstract
At the cross-roads of nanoscience and microbiology, the nanoscale analysis of microbial cells using atomic force microscopy (AFM) is an exciting, rapidly evolving research field. Over the past decade, there has been tremendous progress in our use of AFM to observe membrane proteins and live cells at high resolution. Remarkable advances have also been made in applying force spectroscopy to manipulate single membrane proteins, to map surface properties and receptor sites on cells and to measure cellular interactions at the single-cell and single-molecule levels. In addition, recent developments in cantilever nanosensors have opened up new avenues for the label-free detection of microorganisms and bioanalytes.
Collapse
Affiliation(s)
- Yves F Dufrêne
- Unité de chimie des interfaces, Université catholique de Louvain, Croix du Sud 2/18, B-1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
31
|
Effects of Contact Time, Pressure, Percent Relative Humidity (%RH), and Material Type on Listeria Biofilm Adhesive Strength at a Cellular Level Using Atomic Force Microscopy (AFM). FOOD BIOPHYS 2008. [DOI: 10.1007/s11483-008-9085-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Eaton P, Fernandes JC, Pereira E, Pintado ME, Xavier Malcata F. Atomic force microscopy study of the antibacterial effects of chitosans on Escherichia coli and Staphylococcus aureus. Ultramicroscopy 2008; 108:1128-34. [PMID: 18556125 DOI: 10.1016/j.ultramic.2008.04.015] [Citation(s) in RCA: 220] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Chitosan has been reported to be a non-toxic, biodegradable antibacterial agent. The aim of this work was to elucidate the relationship between the molecular weight of chitosan and its antimicrobial activity upon two model microorganisms, one Gram-positive (Staphylococcus aureus) and one Gram-negative (Escherichia coli). Atomic force microscopy (AFM) imaging was used to obtain high-resolution images of the effect of chitosans on the bacterial morphology. The AFM measurements were correlated with viable cell numbers, which show that the two species reacted differently to the high- and low-molecular-weight chitosan derivatives. The images obtained revealed not only the antibacterial effects, but also the response strategies used by the bacteria; cell wall collapse and morphological changes reflected cell death, whereas clustering of bacteria appeared to be associated with cell survival. In addition, nanoindentation experiments with the AFM revealed mechanical changes in the bacterial cell wall induced by the treatment. The nanoindentation results suggested that despite little modification observed in the Gram-positive bacteria in morphological studies, cell wall damage had indeed occurred, since cell wall stiffness was reduced after chitooligosaccharide treatment.
Collapse
Affiliation(s)
- Peter Eaton
- REQUIMTE, Departamento de Química, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| | | | | | | | | |
Collapse
|
33
|
Rodriguez A, Autio WR, McLandsborough LA. Effect of surface roughness and stainless steel finish on Listeria monocytogenes attachment and biofilm formation. J Food Prot 2008; 71:170-5. [PMID: 18236679 DOI: 10.4315/0362-028x-71.1.170] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The purpose of this study was to evaluate the effect of surface roughness (Ra) and finish of mechanically polished stainless steel (Ra = 0.26 +/- 0.05, 0.49 +/- 0.10, and 0.69 +/- 0.05 microm) and electropolished stainless steel (Ra = 0.16 +/- 0.06, 0.40 +/- 0.003, and 0.67 +/- 0.02 microm) on Listeria adhesion and biofilm formation. A four-strain cocktail of Listeria monocytogenes was used. Each strain (0.1%) was added to 200 ml of tryptic soy broth (TSB), and coupons were inserted to the mixture for 5 min. For biofilm formation, coupons with adhesive cells were incubated in 1:20 diluted TSB at 32 degrees C for 48 h. The experiment was performed by a randomized block design. Our results show that the level of Listeria present after 48 h of incubation (mean = 7 log CFU/cm2) was significantly higher than after 5 min (mean = 6.0 log CFU/cm2) (P < 0.01). No differences in initial adhesion were seen in mechanically finished (mean = 6.7 log CFU/cm2) when compared with electropolished stainless steel (mean = 6.7 log CFU/cm2) (P > 0.05). Listeria initial adhesion (values ranged from 5.9 to 6.1 log CFU/cm2) or biofilm formation (values ranged from 6.9 to 7.2 log CFU/cm2) was not significantly correlated with Ra values (P > 0.05). Image analysis with an atomic force microscope showed that bacteria did not colonize the complete surface after 48 h but were individual cells or grouped in microcolonies that ranged from 5 to 10 microm in diameter and one to three cell layers in thickness. Exopolymeric substances were observed to be associated with the colonies. According to our results, electropolishing stainless steel does not pose a significant advantage for food sanitation over mechanically finished stainless steel.
Collapse
Affiliation(s)
- Andres Rodriguez
- Department of Food Science, University of Massachusetts, 100 Holdsworth Way, Chenoweth Laboratory, Amherst, Massachusetts 01003, USA
| | | | | |
Collapse
|
34
|
Sullivan CJ, Venkataraman S, Retterer ST, Allison DP, Doktycz MJ. Comparison of the indentation and elasticity of E. coli and its spheroplasts by AFM. Ultramicroscopy 2007; 107:934-42. [PMID: 17574761 DOI: 10.1016/j.ultramic.2007.04.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Atomic force microscopy (AFM) provides a unique opportunity to study live individual bacteria at the nanometer scale. In addition to providing accurate morphological information, AFM can be exploited to investigate membrane protein localization and molecular interactions on the surface of living cells. A prerequisite for these studies is the development of robust procedures for sample preparation. While such procedures are established for intact bacteria, they are only beginning to emerge for bacterial spheroplasts. Spheroplasts are useful research models for studying mechanosensitive ion channels, membrane transport, lipopolysaccharide translocation, solute uptake, and the effects of antimicrobial agents on membranes. Furthermore, given the similarities between spheroplasts and cell wall-deficient (CWD) forms of pathogenic bacteria, spheroplast research could be relevant in biomedical research. In this paper, a new technique for immobilizing spheroplasts on mica pretreated with aminopropyltriethoxysilane (APTES) and glutaraldehyde is described. Using this mounting technique, the indentation and cell elasticity of glutaraldehyde-fixed and untreated spheroplasts of E. coli in liquid were measured. These values are compared to those of intact E. coli. Untreated spheroplasts were found to be much softer than the intact cells and the silicon nitride cantilevers used in this study.
Collapse
Affiliation(s)
- C J Sullivan
- Genome Science and Technology, The University of Tennessee, Knoxville, TN 37932, USA
| | | | | | | | | |
Collapse
|