1
|
Lostao A, Lim K, Pallarés MC, Ptak A, Marcuello C. Recent advances in sensing the inter-biomolecular interactions at the nanoscale - A comprehensive review of AFM-based force spectroscopy. Int J Biol Macromol 2023; 238:124089. [PMID: 36948336 DOI: 10.1016/j.ijbiomac.2023.124089] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/24/2023]
Abstract
Biomolecular interactions underpin most processes inside the cell. Hence, a precise and quantitative understanding of molecular association and dissociation events is crucial, not only from a fundamental perspective, but also for the rational design of biomolecular platforms for state-of-the-art biomedical and industrial applications. In this context, atomic force microscopy (AFM) appears as an invaluable experimental technique, allowing the measurement of the mechanical strength of biomolecular complexes to provide a quantitative characterization of their interaction properties from a single molecule perspective. In the present review, the most recent methodological advances in this field are presented with special focus on bioconjugation, immobilization and AFM tip functionalization, dynamic force spectroscopy measurements, molecular recognition imaging and theoretical modeling. We expect this work to significantly aid in grasping the principles of AFM-based force spectroscopy (AFM-FS) technique and provide the necessary tools to acquaint the type of data that can be achieved from this type of experiments. Furthermore, a critical assessment is done with other nanotechnology techniques to better visualize the future prospects of AFM-FS.
Collapse
Affiliation(s)
- Anabel Lostao
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, Zaragoza 50018, Spain; Fundación ARAID, Aragón, Spain.
| | - KeeSiang Lim
- WPI-Nano Life Science Institute, Kanazawa University, Ishikawa 920-1192, Japan
| | - María Carmen Pallarés
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, Zaragoza 50018, Spain
| | - Arkadiusz Ptak
- Institute of Physics, Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Poznan 60-925, Poland
| | - Carlos Marcuello
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, Zaragoza 50018, Spain.
| |
Collapse
|
2
|
Molecular Recognition of Proteins through Quantitative Force Maps at Single Molecule Level. Biomolecules 2022; 12:biom12040594. [PMID: 35454182 PMCID: PMC9024611 DOI: 10.3390/biom12040594] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 12/24/2022] Open
Abstract
Intermittent jumping force is an operational atomic-force microscopy mode that produces simultaneous topography and tip-sample maximum-adhesion images based on force spectroscopy. In this work, the operation conditions have been implemented scanning in a repulsive regime and applying very low forces, thus avoiding unspecific tip-sample forces. Remarkably, adhesion images give only specific rupture events, becoming qualitative and quantitative molecular recognition maps obtained at reasonably fast rates, which is a great advantage compared to the force–volume modes. This procedure has been used to go further in discriminating between two similar protein molecules, avidin and streptavidin, in hybrid samples. The adhesion maps generated scanning with biotinylated probes showed features identified as avidin molecules, in the range of 40–80 pN; meanwhile, streptavidin molecules rendered 120–170 pN at the selected working conditions. The gathered results evidence that repulsive jumping force mode applying very small forces allows the identification of biomolecules through the specific rupture forces of the complexes and could serve to identify receptors on membranes or samples or be applied to design ultrasensitive detection technologies.
Collapse
|
3
|
Lostao A, Medina M. Atomic Force Microscopy: Single-Molecule Imaging and Force Spectroscopy in the Study of Flavoproteins Ligand Binding and Reaction Mechanisms. Methods Mol Biol 2021; 2280:157-178. [PMID: 33751434 DOI: 10.1007/978-1-0716-1286-6_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Atomic force microscopy (AFM) is one of the most versatile tools currently used in nanoscience. AFM allows for performing nondestructive imaging of almost any sample in either air or liquid, regardless whether the specimen is insulating, conductive, transparent, or opaque. It also allows for measuring interaction forces between a sharp probe and a sample surface, therefore allowing to probe nanomechanical properties of the specimen by either applying a controlled force or pulling the sample. It can provide topography, mechanical, magnetic, and conductive maps for very different type of samples. Transferred to the field of biology, today, AFM is the only microscopy technique able to produce images from biomolecules to bacteria and cells with nanometric resolution in aqueous media. Here, we will focus on the biological applications of AFM to flavoproteins. Despite references in the literature are scarce in this particular field, here it is described how imaging with AFM can contribute to describe catalysis mechanisms of some flavoenzymes, how oxidation states or binding of relevant ligands influence the association state of molecules, the dynamics of functional quaternary assemblies, and even visualize structural differences of individual protein molecules. Furthermore, we will show how force spectroscopy can be used to obtain the kinetic parameters, the dissociation landscape and the mechanical forces that maintain flavoprotein complexes, including the possibility to specifically detect particular flavoproteins on a sample.
Collapse
Affiliation(s)
- Anabel Lostao
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, Spain. .,Laboratorio de Microscopias Avanzadas, Universidad de Zaragoza, Zaragoza, Spain. .,Fundación ARAID, Zaragoza, Spain.
| | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain.,Institute of Biocomputation and Physics of Complex Systems (BIFI), Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
4
|
Molecular basis for the integration of environmental signals by FurB from Anabaena sp. PCC 7120. Biochem J 2018; 475:151-168. [DOI: 10.1042/bcj20170692] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/22/2017] [Accepted: 12/04/2017] [Indexed: 12/29/2022]
Abstract
FUR (Ferric uptake regulator) proteins are among the most important families of transcriptional regulators in prokaryotes, often behaving as global regulators. In the cyanobacterium Anabaena PCC 7120, FurB (Zur, Zinc uptake regulator) controls zinc and redox homeostasis through the repression of target genes in a zinc-dependent manner. In vitro, non-specific binding of FurB to DNA elicits protection against oxidative damage and avoids cleavage by deoxyribonuclease I. The present study provides, for the first time, evidence of the influence of redox environment in the interaction of FurB with regulatory zinc and its consequences in FurB–DNA-binding affinity. Calorimetry studies showed that, in addition to one structural Zn(II), FurB is able to bind two additional Zn(II) per monomer and demonstrated the implication of cysteine C93 in regulatory Zn(II) coordination. The interaction of FurB with the second regulatory zinc occurred only under reducing conditions. While non-specific FurB–DNA interaction is Zn(II)-independent, the optimal binding of FurB to target promoters required loading of two regulatory zinc ions. Those results combined with site-directed mutagenesis and gel-shift assays evidenced that the redox state of cysteine C93 conditions the binding of the second regulatory Zn(II) and, in turn, modulates the affinity for a specific DNA target. Furthermore, differential spectroscopy studies showed that cysteine C93 could also be involved in heme coordination by FurB, either as a direct ligand or being located near the binding site. The results indicate that besides controlling zinc homeostasis, FurB could work as a redox-sensing protein probably modifying its zinc and DNA-binding abilities depending upon environmental conditions.
Collapse
|
5
|
Ceballos-Laita L, Marcuello C, Lostao A, Calvo-Begueria L, Velazquez-Campoy A, Bes MT, Fillat MF, Peleato ML. Microcystin-LR Binds Iron, and Iron Promotes Self-Assembly. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:4841-4850. [PMID: 28368104 DOI: 10.1021/acs.est.6b05939] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The microcystin-producing Microcystis aeruginosa PCC 7806 and its close strain, the nonproducing Microcystis aeruginosa PCC 7005, grow similarly in the presence of 17 μM iron. Under severe iron deficient conditions (0.05 μM), the toxigenic strain grows slightly less than in iron-replete conditions, while the nonproducing microcystin strain is not able to grow. Isothermal titration calorimetry performed at cyanobacterial cytosol or meaningful environmental pHs values shows a microcystin-LR dissociaton constant for Fe2+ and Fe3+ of 2.4 μM. Using atomic force microscopy, 40% of microcystin-LR dimers were observed, and the presence of iron promoted its oligomerization up to six units. Microcystin-LR binds also Mo6+, Cu2+, and Mn2+. Polymeric microcystin binding iron may be related with a toxic cell colony advantage, providing enhanced iron bioavailability and perhaps affecting the structure of the gelatinous sheath. Inside cells, with microcystin implicated in the fitness of the photosynthetic machinery under stress conditions, the toxin would be involved in avoiding metal-dependent Fenton reactions when photooxidation causes disassembly of the iron-rich photosystems. Additionally, it could be hypothesized that polymerization-depolymerization dynamics may be an additional signal that could trigger changes (for example, in the binding of microcystin to proteins).
Collapse
Affiliation(s)
- Laura Ceballos-Laita
- Institute for Biocomputation and Physics of Complex Systems (BIFI)-Joint Unit BIFI-IQFR (CSIC) , Aragón 50018, Spain
| | | | | | - Laura Calvo-Begueria
- Institute for Biocomputation and Physics of Complex Systems (BIFI)-Joint Unit BIFI-IQFR (CSIC) , Aragón 50018, Spain
| | - Adrián Velazquez-Campoy
- Institute for Biocomputation and Physics of Complex Systems (BIFI)-Joint Unit BIFI-IQFR (CSIC) , Aragón 50018, Spain
| | - María Teresa Bes
- Institute for Biocomputation and Physics of Complex Systems (BIFI)-Joint Unit BIFI-IQFR (CSIC) , Aragón 50018, Spain
| | - María F Fillat
- Institute for Biocomputation and Physics of Complex Systems (BIFI)-Joint Unit BIFI-IQFR (CSIC) , Aragón 50018, Spain
| | - María-Luisa Peleato
- Institute for Biocomputation and Physics of Complex Systems (BIFI)-Joint Unit BIFI-IQFR (CSIC) , Aragón 50018, Spain
| |
Collapse
|
6
|
Marcuello C, de Miguel R, Martínez-Júlvez M, Gómez-Moreno C, Lostao A. Mechanostability of the Single-Electron-Transfer Complexes of Anabaena Ferredoxin-NADP(+) Reductase. Chemphyschem 2015; 16:3161-9. [PMID: 26248023 DOI: 10.1002/cphc.201500534] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Indexed: 01/24/2023]
Abstract
The complexes formed between the flavoenzyme ferredoxin-NADP(+) reductase (FNR; NADP(+) =nicotinamide adenine dinucleotide phosphate) and its redox protein partners, ferredoxin (Fd) and flavodoxin (Fld), have been analysed by using dynamic force spectroscopy through AFM. A strategy is developed to immobilise proteins on a substrate and AFM tip to optimise the recognition ability. The differences in the recognition efficiency regarding a random attachment procedure, together with nanomechanical results, show two binding models for these systems. The interaction of the reductase with the natural electron donor, Fd, is threefold stronger and its lifetime is longer and more specific than that with the substitute under iron-deficient conditions, Fld. The higher bond probability and two possible dissociation pathways in Fld binding to FNR are probably due to the nature of this complex, which is closer to a dynamic ensemble model. This is in contrast with the one-step dissociation kinetics that has been observed and a specific interaction described for the FNR:Fd complex.
Collapse
Affiliation(s)
- Carlos Marcuello
- Laboratorio de Microscopías Avanzadas, Instituto de Nanociencia de Aragón, Universidad de Zaragoza, C/Mariano Esquillor, s/n. Ed. I+D+i, 50018, Zaragoza, Spain
| | - Rocío de Miguel
- Laboratorio de Microscopías Avanzadas, Instituto de Nanociencia de Aragón, Universidad de Zaragoza, C/Mariano Esquillor, s/n. Ed. I+D+i, 50018, Zaragoza, Spain
| | - Marta Martínez-Júlvez
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Facultad de Ciencias, C/Pedro Cerbuna, 12, 50009, Zaragoza, Spain
| | - Carlos Gómez-Moreno
- Laboratorio de Microscopías Avanzadas, Instituto de Nanociencia de Aragón, Universidad de Zaragoza, C/Mariano Esquillor, s/n. Ed. I+D+i, 50018, Zaragoza, Spain.,Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Facultad de Ciencias, C/Pedro Cerbuna, 12, 50009, Zaragoza, Spain
| | - Anabel Lostao
- Laboratorio de Microscopías Avanzadas, Instituto de Nanociencia de Aragón, Universidad de Zaragoza, C/Mariano Esquillor, s/n. Ed. I+D+i, 50018, Zaragoza, Spain. .,Fundación ARAID, C/María de Luna, 11. Ed. CEEI Aragón, 50018, Zaragoza, Spain.
| |
Collapse
|
7
|
Villanueva R, Ferreira P, Marcuello C, Usón A, Miramar MD, Peleato ML, Lostao A, Susin SA, Medina M. Key Residues Regulating the Reductase Activity of the Human Mitochondrial Apoptosis Inducing Factor. Biochemistry 2015; 54:5175-84. [PMID: 26237213 DOI: 10.1021/acs.biochem.5b00696] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The human Apoptosis Inducing Factor (hAIF) is a bifunctional NAD(P)H-dependent flavoreductase involved in both mitochondrial energy metabolism and caspase-independent cell death. Even though several studies indicate that both functions are redox controlled by NADH binding, the exact role of hAIF as a reductase in healthy mitochondria remains unknown. Upon reduction by NADH, hAIF dimerizes and produces very stable flavin/nicotinamide charge transfer complexes (CTC), by stacking of the oxidized nicotinamide moiety of the NAD(+) coenzyme against the re-face of the reduced flavin ring of its FAD cofactor. Such complexes are critical to restrict the hAIF efficiency as a reductase. The molecular basis of the hAIF reductase activity is here investigated by analyzing the role played by residues contributing to the interaction of the FAD isoalloxazine ring and of the nicotinamide moiety of NADH at the active site. Mutations at K177 and E314 produced drastic effects on the hAIF ability to retain the FAD cofactor, indicating that these residues are important to set up the holo-enzyme active site conformation. Characterization of P173G hAIF indicates that the stacking of P173 against the isoalloxazine ring is relevant to determine the flavin environment and to modulate the enzyme affinity for NADH. Finally, the properties of the F310G and H454S hAIF mutants indicate that these two positions contribute to form a compact active site essential for NADH binding, CTC stabilization, and NAD(+) affinity for the reduced state of hAIF. These features are key determinants of the particular behavior of hAIF as a NADH-dependent oxidoreductase.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Santos A Susin
- INSERM U1138, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Centre de Recherche des Cordeliers , F-75006, Paris, France.,Université Pierre et Marie Curie-Sorbonne Universités , F-75006, Paris, France.,Université Paris Descartes-Sorbonne Paris Cité , F-75006, Paris, France
| | | |
Collapse
|
8
|
Ferreira P, Villanueva R, Martínez-Júlvez M, Herguedas B, Marcuello C, Fernandez-Silva P, Cabon L, Hermoso JA, Lostao A, Susin SA, Medina M. Structural insights into the coenzyme mediated monomer-dimer transition of the pro-apoptotic apoptosis inducing factor. Biochemistry 2014; 53:4204-15. [PMID: 24914854 DOI: 10.1021/bi500343r] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The apoptosis-inducing factor (AIF) is a mitochondrial-flavoprotein that, after cell death induction, is distributed to the nucleus to mediate chromatinolysis. In mitochondria, AIF is present in a monomer-dimer equilibrium that after reduction by NADH gets displaced toward the dimer. The crystal structure of the human AIF (hAIF):NAD(H)-bound dimer revealed one FAD and, unexpectedly, two NAD(H) molecules per protomer. A 1:2 hAIF:NAD(H) binding stoichiometry was additionally confirmed in solution by using surface plasmon resonance. The here newly discovered NAD(H)-binding site includes residues mutated in human disorders, and accommodation of the coenzyme in it requires restructuring of a hAIF portion within the 509-560 apoptogenic segment. Disruption of interactions at the dimerization surface by production of the hAIF E413A/R422A/R430A mutant resulted in a nondimerizable variant considerably less efficiently stabilizing charge-transfer complexes upon coenzyme reduction than WT hAIF. These data reveal that the coenzyme-mediated monomer-dimer transition of hAIF modulates the conformation of its C-terminal proapoptotic domain, as well as its mechanism as reductase. These observations suggest that both the mitochondrial and apoptotic functions of hAIF are interconnected and coenzyme controlled: a key information in the understanding of the physiological role of AIF in the cellular life and death cycle.
Collapse
Affiliation(s)
- Patricia Ferreira
- Departamento de Bioquímica y Biología Molecular y Celular, ‡Instituto de Biocomputación y Física de Sistemas Complejos (BIFI)-Joint Unit BIFI-IQFR (CSIC), and §Laboratorio de Microscopias Avanzadas, Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza , Zaragoza, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Pallarés MC, Marcuello C, Botello-Morte L, González A, Fillat MF, Lostao A. Sequential binding of FurA from Anabaena sp. PCC 7120 to iron boxes: exploring regulation at the nanoscale. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:623-31. [PMID: 24440406 DOI: 10.1016/j.bbapap.2014.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 01/06/2014] [Accepted: 01/08/2014] [Indexed: 11/18/2022]
Abstract
Fur (ferric uptake regulator) proteins are involved in the control of a variety of processes in most prokaryotes. Although it is assumed that this regulator binds its DNA targets as a dimer, the way in which this interaction occurs remains unknown. We have focused on FurA from the cyanobacterium Anabaena sp. PCC 7120. To assess the molecular mechanism by which FurA specifically binds to "iron boxes" in PfurA, we examined the topology arrangement of FurA-DNA complexes by atomic force microscopy. Interestingly, FurA-PfurA complexes exhibit several populations, in which one is the predominant and depends clearly on the regulator/promoter ratio on the environment. Those results together with EMSA and other techniques suggest that FurA binds PfurA using a sequential mechanism: (i) a monomer specifically binds to an "iron box" and bends PfurA; (ii) two situations may occur, that a second FurA monomer covers the free "iron box" or that joins to the previously used forming a dimer which would maintain the DNA kinked; (iii) trimerization in which the DNA is unbent; and (iv) finally undergoes a tetramerization; the next coming molecules cover the DNA strands unspecifically. In summary, the bending appears when an "iron box" is bound to one or two molecules and decreases when both "iron boxes" are covered. These results suggest that DNA bending contributes at the first steps of FurA repression promoting the recruitment of new molecules resulting in a fine regulation in the Fur-dependent cluster associated genes.
Collapse
Affiliation(s)
- María Carmen Pallarés
- Laboratorio de Microscopías Avanzadas (LMA), Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Carlos Marcuello
- Laboratorio de Microscopías Avanzadas (LMA), Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Laura Botello-Morte
- Department of Biochemistry and Molecular and Cell Biology and Institute for Biocomputation and Complex Systems Physics (BiFi), Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Andrés González
- Department of Biochemistry and Molecular and Cell Biology and Institute for Biocomputation and Complex Systems Physics (BiFi), Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - María Francisca Fillat
- Department of Biochemistry and Molecular and Cell Biology and Institute for Biocomputation and Complex Systems Physics (BiFi), Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Anabel Lostao
- Laboratorio de Microscopías Avanzadas (LMA), Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018 Zaragoza, Spain; Fundación ARAID, Spain.
| |
Collapse
|
10
|
Marcuello C, Arilla-Luna S, Medina M, Lostao A. Detection of a quaternary organization into dimer of trimers of Corynebacterium ammoniagenes FAD synthetase at the single-molecule level and at the in cell level. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:665-76. [PMID: 23291469 DOI: 10.1016/j.bbapap.2012.12.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 12/11/2012] [Accepted: 12/21/2012] [Indexed: 01/24/2023]
Abstract
Biochemical characterization of Corynebacterium ammoniagenes FADS (CaFADS) pointed to certain confusion about the stoichiometry of this bifunctional enzyme involved in the production of FMN and FAD in prokaryotes. Resolution of its crystal structure suggested that it might produce a hexameric ensemble formed by a dimer of trimers. We used atomic force microscopy (AFM) to direct imaging single CaFADS molecules bound to mica surfaces, while preserving their catalytic properties. AFM allowed solving individual CaFADS monomers, for which it was even possible to distinguish their sub-molecular individual N- and C-terminal modules in the elongated enzyme. Differences between monomers and higher stoichiometries were easily imaged, enabling us to detect formation of oligomeric species induced by ligand binding. The presence of ATP:Mg(2+) particularly induced the appearance of the hexameric assembly whose mean molecular volume resembles the crystallographic dimer of trimers. Finally, the AFM results are confirmed in cross-linking solution, and the presence of such oligomeric CaFADS species detected in cell extracts. All these results are consistent with the formation of a dimer of trimers during the enzyme catalytic cycle that might bear biological relevance.
Collapse
Affiliation(s)
- Carlos Marcuello
- Laboratorio de Microscopías Avanzadas (LMA), Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, Spain
| | | | | | | |
Collapse
|
11
|
Menotta M, Crinelli R, Carloni E, Mussi V, Valbusa U, Magnani M. Binding force measurement of NF-κB-ODNs interaction: an AFM based decoy and drug testing tool. Biosens Bioelectron 2011; 28:158-65. [PMID: 21802937 DOI: 10.1016/j.bios.2011.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 07/05/2011] [Accepted: 07/08/2011] [Indexed: 01/22/2023]
Abstract
Interaction between transcription factors and DNA are essential for regulating gene transcription. The Nuclear factor-κB (NF-κB) is a ubiquitous transcription factor involved in cell signalling and its failure is a principal cause of several autoimmune and auto-inflammatory disorders. In this paper we have developed an atomic force microscopy (AFM) method to quantitatively characterise the interaction force between NF-κB and DNA or LNA (locked nucleic acid) double strand molecules containing the NF responsive elements (RE). This process allows the simple testing and selection of LNA based decoy molecules to be used in NF-κB modulation decoy strategies. Furthermore the proposed methodology is also suitable for testing drug efficacy on the modulation of NF-κB binding to its nucleic acid target sequence. A biological AFM based sensor is therefore considered appropriate for characterising transcription factors and selecting molecules to modulate their activity.
Collapse
Affiliation(s)
- Michele Menotta
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Saffi 2, 61029 Urbino (PU), Italy
| | | | | | | | | | | |
Collapse
|
12
|
Martínez-Pérez MJ, de Miguel R, Carbonera C, Martínez-Júlvez M, Lostao A, Piquer C, Gómez-Moreno C, Bartolomé J, Luis F. Size-dependent properties of magnetoferritin. NANOTECHNOLOGY 2010; 21:465707. [PMID: 20975213 DOI: 10.1088/0957-4484/21/46/465707] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We report a detailed experimental study of maghemite nanoparticles, with sizes ranging from 1.6 to 6 nm, synthesized inside a biological mould of apoferritin. The structural characterization of the inorganic cores, using TEM and x-ray diffraction, reveals a low degree of crystalline order, possibly arising from the nucleation and growth of multiple domains inside each molecule. We have also investigated the molecular structure by means of atomic force microscopy in liquid. We find that the synthesis of nanoparticles inside apoferritin leads to a small, but measurable, decrease in the external diameter of the protein, probably associated with conformational changes. The magnetic response of the maghemite cores has been studied by a combination of techniques, including ac susceptibility, dc magnetization and Mössbauer spectroscopy. From the equilibrium magnetic response, we have determined the distribution of magnetic moments per molecule. The results show highly reduced magnetic moments. This effect cannot be ascribed solely to the canting of spins located at the particle surface but, instead, it suggests that magnetoferritin cores have a highly disordered magnetic structure in which the contributions of different domains compensate each other. Finally, we have also determined, for each sample, the distribution of the activation energies required for the magnetization reversal and, from this, the size-dependent magnetic anisotropy constant K. We find that K is enormously enhanced with respect to the maghemite bulk value and that it increases with decreasing size. The Mössbauer spectra suggest that low-symmetry atomic sites, probably located at the particle surface and at the interfaces between different crystalline domains, are the likely source of the enhanced magnetic anisotropy.
Collapse
Affiliation(s)
- M J Martínez-Pérez
- Instituto de Ciencia de Materiales de Aragón, CSIC-Universidad de Zaragoza, Zaragoza, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Sotres J, Baró A. AFM imaging and analysis of electrostatic double layer forces on single DNA molecules. Biophys J 2010; 98:1995-2004. [PMID: 20441764 PMCID: PMC2862200 DOI: 10.1016/j.bpj.2009.12.4330] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 12/16/2009] [Accepted: 12/21/2009] [Indexed: 11/29/2022] Open
Abstract
Electrical double layer (EDL) forces develop between charged surfaces immersed in an electrolyte solution. Biological material surrounded by its physiological medium constitutes a case where these forces play a major role. Specifically, this work is focused on the study of the EDL force exerted by DNA molecules, a standard reference for the study of single biomolecules of nanometer size. The molecules deposited on plane substrates have been characterized by means of the atomic force microscope operated in the force spectroscopy imaging mode. Force spectroscopy imaging provides images of the topography of the DNA molecules, and of the EDL force spectrum. Due to the size of the molecule being much smaller than that of the tip, both the tip-substrate and tip-molecule interactions need to be considered in the analysis of the experimental results. We solve this problem by linearly superposing the two contributions. EDL force images are presented where DNA molecules are clearly resolved. The lateral resolution of the EDL force is discussed and compared with that of the topography. The method also allows the estimation of the DNA surface charge density, thereby obtaining reasonable values.
Collapse
Affiliation(s)
| | - A.M. Baró
- Instituto de Ciencia de Materiales de Madrid (Consejo Superior de Investigaciones Científicas), Madrid, Spain
| |
Collapse
|
14
|
Lostao A, Peleato ML, Gómez-Moreno C, Fillat MF. Oligomerization properties of FurA from the cyanobacterium Anabaena sp. PCC 7120: direct visualization by in situ atomic force microscopy under different redox conditions. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:1723-9. [PMID: 20417733 DOI: 10.1016/j.bbapap.2010.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 04/06/2010] [Accepted: 04/08/2010] [Indexed: 11/16/2022]
Abstract
Fur proteins are global prokaryotic transcriptional regulators. Functional studies of FurA from the cyanobacterium Anabaena sp. PCC 7120 evidenced the influence of the redox environment in the activity of the regulator and its ability to aggregate through disulphide bridges. Atomic force microscopy allows single-molecule imaging and monitorization of the status of FurA under different redox conditions mimicking a physiological environment. The estimated FurA average diameter was of 4 nm. In the absence of reducing agents, the purified FurA is mainly associated as trimers, being 40 degrees the prevalent angle alpha conformed by protein monomers. Reducing conditions induces trimer rearrangement to protein monomers and a major fraction of FurA dimers. Disruption of the dimeric assemblies and appearance of higher order aggregates, namely trimers and tetramers are induced by oxidation with diamide or hydrogen peroxide. The homogeneity of the angles exhibited by the trimeric particles, as well as the occurrence of dimers in the presence of DTT, suggests the participation of relatively specific hydrophobic interactions maintaining the dimer. Direct visualization of the regulator under liquid phase at molecular resolution unravels the importance of non-polar interactions in FurA dynamics and shows that in Anabaena disulphide bridges are not essential for the dimerization of FurA.
Collapse
Affiliation(s)
- Anabel Lostao
- Instituto de Nanociencia de Aragón, Universidad de Zaragoza, 50018 Zaragoza, Spain
| | | | | | | |
Collapse
|
15
|
Sotres J, Lostao A, Wildling L, Ebner A, Gómez-Moreno C, Gruber HJ, Hinterdorfer P, Baró AM. Unbinding molecular recognition force maps of localized single receptor molecules by atomic force microscopy. Chemphyschem 2008; 9:590-9. [PMID: 18297676 DOI: 10.1002/cphc.200700597] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Atomic force microscopy is a technique capable to study biological recognition processes at the single-molecule level. In this work we operate the AFM in a force-scan based mode, the jumping mode, where simultaneous topographic and tip-sample adhesion maps are acquired. This approach obtains the unbinding force between a well-defined receptor molecule and a ligand attached to the AFM tip. The method is applied to the avidin-biotin system. In contrast with previous data, we obtain laterally resolved adhesion maps of avidin-biotin unbinding forces highly correlated with single avidin molecules in the corresponding topographic map. The scanning rate 250 pixel s(-1) (2 min for a 128 x 128 image) is limited by the hydrodynamic drag force. We are able to build a rupture-force distribution histogram that corresponds to a single defined molecule. Furthermore, we find that due to the motility of the polymer used as spacer to anchor the ligand to the tip, its direction at rupture does not generally coincide with the normal to the tip-sample, this introduces an appreciable error in the measured force.
Collapse
Affiliation(s)
- Javier Sotres
- Instituto de Ciencia de Materiales de Madrid, CSIC, Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|