1
|
Casu A, Genovese A, Di Benedetto C, Lentijo Mozo S, Sogne E, Zuddas E, Falqui A. A facile method to compare EFTEM maps obtained from materials changing composition over time. Microsc Res Tech 2015; 78:1090-7. [PMID: 26518616 DOI: 10.1002/jemt.22589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/09/2015] [Accepted: 09/28/2015] [Indexed: 11/07/2022]
Abstract
Energy Filtered Transmission Electron Microscopy (EFTEM) is an analytical tool that has been successfully and widely employed in the last two decades for obtaining fast elemental maps in TEM mode. Several studies and efforts have been addressed to investigate limitations and advantages of such technique, as well as to improve the spatial resolution of compositional maps. Usually, EFTEM maps undergo post-acquisition treatments by changing brightness and contrast levels, either via dedicated software or via human elaboration, in order to maximize their signal-to-noise ratio and render them as visible as possible. However, elemental maps forming a single set of EFTEM images are usually subjected to independent map-by-map image treatment. This post-acquisition step becomes crucial when analyzing materials that change composition over time as a consequence of an external stimulus, because the map-by-map approach doesn't take into account how the chemical features of the imaged materials actually progress, in particular when the investigated elements exhibit very low signals. In this article, we present a facile procedure applicable to whole sets of EFTEM maps acquired on a sample that is evolving over time. The main aim is to find a common method to treat the images features, in order to make them as comparable as possible without affecting the information there contained.
Collapse
Affiliation(s)
- Alberto Casu
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Alessandro Genovese
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Cristiano Di Benedetto
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Sergio Lentijo Mozo
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Elisa Sogne
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Efisio Zuddas
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Andrea Falqui
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
2
|
Ramachandra R, Bouwer JC, Mackey MR, Bushong E, Peltier ST, Xuong NH, Ellisman MH. Improving signal to noise in labeled biological specimens using energy-filtered TEM of sections with a drift correction strategy and a direct detection device. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2014; 20:706-14. [PMID: 24641915 PMCID: PMC4178974 DOI: 10.1017/s1431927614000452] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Energy filtered transmission electron microscopy techniques are regularly used to build elemental maps of spatially distributed nanoparticles in materials and biological specimens. When working with thick biological sections, electron energy loss spectroscopy techniques involving core-loss electrons often require exposures exceeding several minutes to provide sufficient signal to noise. Image quality with these long exposures is often compromised by specimen drift, which results in blurring and reduced resolution. To mitigate drift artifacts, a series of short exposure images can be acquired, aligned, and merged to form a single image. For samples where the target elements have extremely low signal yields, the use of charge coupled device (CCD)-based detectors for this purpose can be problematic. At short acquisition times, the images produced by CCDs can be noisy and may contain fixed pattern artifacts that impact subsequent correlative alignment. Here we report on the use of direct electron detection devices (DDD's) to increase the signal to noise as compared with CCD's. A 3× improvement in signal is reported with a DDD versus a comparably formatted CCD, with equivalent dose on each detector. With the fast rolling-readout design of the DDD, the duty cycle provides a major benefit, as there is no dead time between successive frames.
Collapse
Affiliation(s)
- Ranjan Ramachandra
- Center for Research in Biological Systems, National Center for Microscopy and Imaging Research, University of California at San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - James C. Bouwer
- Center for Research in Biological Systems, National Center for Microscopy and Imaging Research, University of California at San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Mason R. Mackey
- Center for Research in Biological Systems, National Center for Microscopy and Imaging Research, University of California at San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Eric Bushong
- Center for Research in Biological Systems, National Center for Microscopy and Imaging Research, University of California at San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Steven T. Peltier
- Center for Research in Biological Systems, National Center for Microscopy and Imaging Research, University of California at San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Nguyen-Huu Xuong
- Center for Research in Biological Systems, National Center for Microscopy and Imaging Research, University of California at San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Mark H. Ellisman
- Center for Research in Biological Systems, National Center for Microscopy and Imaging Research, University of California at San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| |
Collapse
|