1
|
Micheletti C, Shah FA. Bone hierarchical organization through the lens of materials science: Present opportunities and future challenges. Bone Rep 2024; 22:101783. [PMID: 39100913 PMCID: PMC11295937 DOI: 10.1016/j.bonr.2024.101783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 08/06/2024] Open
Abstract
Multiscale characterization is essential to better understand the hierarchical architecture of bone and an array of analytical methods contributes to exploring the various structural and compositional aspects. Incorporating X-ray tomography, X-ray scattering, vibrational spectroscopy, and atom probe tomography alongside electron microscopy provides a comprehensive approach, offering insights into the diverse levels of organization within bone. X-ray scattering techniques reveal information about collagen-mineral spatial relationships, while X-ray tomography captures 3D structural details, especially at the microscale. Electron microscopy, such as scanning and transmission electron microscopy, extends resolution to the nanoscale, showcasing intricate features such as collagen fibril organization. Additionally, atom probe tomography achieves sub-nanoscale resolution and high chemical sensitivity, enabling detailed examination of bone composition. Despite various technical challenges, a correlative approach allows for a comprehensive understanding of bone material properties. Real-time investigations through in situ and in operando approaches shed light on the dynamic processes in bone. Recently developed techniques such as liquid, in situ transmission electron microscopy provide insights into calcium phosphate formation and collagen mineralization. Mechanical models developed in the effort to link structure, composition, and function currently remain oversimplified but can be improved. In conclusion, correlative analytical platforms provide a holistic perspective of bone extracellular matrix and are essential for unraveling the intricate interplay between structure and composition within bone.
Collapse
Affiliation(s)
- Chiara Micheletti
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Furqan A. Shah
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
2
|
Saran R, Ginjupalli K, George SD, Chidangil S, V K U. LASER as a tool for surface modification of dental biomaterials: A review. Heliyon 2023; 9:e17457. [PMID: 37408894 PMCID: PMC10319194 DOI: 10.1016/j.heliyon.2023.e17457] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 06/09/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023] Open
Abstract
In recent years, the application of lasers for modifying the surface topography of dental biomaterials has received increased attention. This review paper aims to provide an overview of the current status on the utilization of lasers as a potential tool for surface modification of dental biomaterials such as implants, ceramics, and other materials used for restorative purposes. A literature search was done for articles related to the use of lasers for surface modification of dental biomaterials in English language published between October 2000 and March 2023 in Scopus, Pubmed and web of science, and relevant articles were reviewed. Lasers have been mainly used for surface modification of implant materials (71%), especially titanium and its alloys, to promote osseointegration. In recent years, laser texturing has also emerged as a promising technique to reduce bacterial adhesion on titanium implant surfaces. Currently, lasers are being widely used for surface modifications to improve osseointegration and reduce peri-implant inflammation of ceramic implants and to enhance the retention of ceramic restorations to the tooth. The studies considered in this review seem to suggest laser texturing to be more proficient than the conventional methods of surface modification. Lasers can alter the surface characteristics of dental biomaterials by creating innovative surface patterns without significantly affecting their bulk properties. With advances in laser technology and availability of newer wavelengths and modes, laser as a tool for surface modification of dental biomaterials is a promising field, with excellent potential for future research.
Collapse
Affiliation(s)
- Runki Saran
- Department of Dental Materials, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Kishore Ginjupalli
- Department of Dental Materials, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Sajan D. George
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, 576104, India
- Centre for Applied Nanosciences, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Santhosh Chidangil
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, 576104, India
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Unnikrishnan V K
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, 576104, India
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, 576104, India
| |
Collapse
|
3
|
Ribet SM, Murthy AA, Roth EW, Dos Reis R, Dravid VP. Making the Most of your Electrons: Challenges and Opportunities in Characterizing Hybrid Interfaces with STEM. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2021; 50:100-115. [PMID: 35241968 PMCID: PMC8887695 DOI: 10.1016/j.mattod.2021.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Inspired by the unique architectures composed of hard and soft materials in natural and biological systems, synthetic hybrid structures and associated soft-hard interfaces have recently evoked significant interest. Soft matter is typically dominated by fluctuations even at room temperature, while hard matter (which often serves as the substrate or anchor for the soft component) is governed by rigid mechanical behavior. This dichotomy offers considerable opportunities to leverage the disparate properties offered by these components across a wide spectrum spanning from basic science to engineering insights with significant technological overtones. Such hybrid structures, which include polymer nanocomposites, DNA functionalized nanoparticle superlattices and metal organic frameworks to name a few, have delivered promising insights into the areas of catalysis, environmental remediation, optoelectronics, medicine, and beyond. The interfacial structure between these hard and soft phases exists across a variety of length scales and often strongly influence the functionality of hybrid systems. While scanning/transmission electron microscopy (S/TEM) has proven to be a valuable tool for acquiring intricate molecular and nanoscale details of these interfaces, the unusual nature of hybrid composites presents a suite of challenges that make assessing or establishing the classical structure-property relationships especially difficult. These include challenges associated with preparing electron-transparent samples and obtaining sufficient contrast to resolve the interface between dissimilar materials given the dose sensitivity of soft materials. We discuss each of these challenges and supplement a review of recent developments in the field with additional experimental investigations and simulations to present solutions for attaining a nano or atomic-level understanding of these interfaces. These solutions present a host of opportunities for investigating and understanding the role interfaces play in this unique class of functional materials.
Collapse
Affiliation(s)
- Stephanie M Ribet
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL
| | - Akshay A Murthy
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL
- International Institute of Nanotechnology, Northwestern University, Evanston, IL
| | - Eric W Roth
- The NUANCE Center, Northwestern University, Evanston, IL
| | - Roberto Dos Reis
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL
- The NUANCE Center, Northwestern University, Evanston, IL
| | - Vinayak P Dravid
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL
- International Institute of Nanotechnology, Northwestern University, Evanston, IL
- The NUANCE Center, Northwestern University, Evanston, IL
| |
Collapse
|
4
|
Micheletti C, Gomes-Ferreira PHS, Casagrande T, Lisboa-Filho PN, Okamoto R, Grandfield K. From tissue retrieval to electron tomography: nanoscale characterization of the interface between bone and bioactive glass. J R Soc Interface 2021; 18:20210181. [PMID: 34493088 PMCID: PMC8424340 DOI: 10.1098/rsif.2021.0181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/16/2021] [Indexed: 11/12/2022] Open
Abstract
The success of biomaterials for bone regeneration relies on many factors, among which osseointegration plays a key role. Biogran (BG) is a bioactive glass commonly employed as a bone graft in dental procedures. Despite its use in clinical practice, the capability of BG to promote osseointegration has never been resolved at the nanoscale. In this paper, we present the workflow for characterizing the interface between newly formed bone and BG in a preclinical rat model. Areas of bone-BG contact were first identified by backscattered electron imaging in a scanning electron microscope. A focused ion beam in situ lift-out protocol was employed to prepare ultrathin samples for transmission electron microscopy analysis. The bone-BG gradual interface, i.e. the biointerphase, was visualized at the nanoscale with unprecedented resolution thanks to scanning transmission electron microscopy. Finally, we present a method to view the bone-BG interface in three dimensions using electron tomography.
Collapse
Affiliation(s)
- Chiara Micheletti
- Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario, Canada
| | | | - Travis Casagrande
- Canadian Centre for Electron Microscopy, McMaster University, Hamilton, Ontario, Canada
| | | | - Roberta Okamoto
- Department of Basic Sciences, São Paulo State University, Araçatuba Dental School, Araçatuba, São Paulo, Brazil
- Research Productivity Scholarship (Process: 309408/2020-2), Araçatuba, São Paulo, Brazil
| | - Kathryn Grandfield
- Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
5
|
The Role of Epigenetic Functionalization of Implants and Biomaterials in Osseointegration and Bone Regeneration-A Review. Molecules 2020; 25:molecules25245879. [PMID: 33322654 PMCID: PMC7763898 DOI: 10.3390/molecules25245879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
The contribution of epigenetic mechanisms as a potential treatment model has been observed in cancer and autoimmune/inflammatory diseases. This review aims to put forward the epigenetic mechanisms as a promising strategy in implant surface functionalization and modification of biomaterials, to promote better osseointegration and bone regeneration, and could be applicable for alveolar bone regeneration and osseointegration in the future. Materials and Methods: Electronic and manual searches of the literature in PubMed, MEDLINE, and EMBASE were conducted, using a specific search strategy limited to publications in the last 5 years to identify preclinical studies in order to address the following focused questions: (i) Which, if any, are the epigenetic mechanisms used to functionalize implant surfaces to achieve better osseointegration? (ii) Which, if any, are the epigenetic mechanisms used to functionalize biomaterials to achieve better tissue regeneration? Findings from several studies have emphasized the role of miRNAs in functionalizing implants surfaces and biomaterials to promote osseointegration and bone regeneration, respectively. However, there are scarce data on the role of DNA methylation and histone modifications for these specific applications, despite being commonly applied in cancer research. Studies over the past few years have demonstrated that biomaterials are immunomodulatory rather than inert materials. In this context, epigenetics can act as next generation of advanced treatment tools for future regenerative techniques. Yet, there is a need to evaluate the efficacy/cost effectiveness of these techniques in comparison to current standards of care.
Collapse
|
6
|
Shah FA, Ruscsák K, Palmquist A. 50 years of scanning electron microscopy of bone-a comprehensive overview of the important discoveries made and insights gained into bone material properties in health, disease, and taphonomy. Bone Res 2019; 7:15. [PMID: 31123620 PMCID: PMC6531483 DOI: 10.1038/s41413-019-0053-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 02/06/2023] Open
Abstract
Bone is an architecturally complex system that constantly undergoes structural and functional optimisation through renewal and repair. The scanning electron microscope (SEM) is among the most frequently used instruments for examining bone. It offers the key advantage of very high spatial resolution coupled with a large depth of field and wide field of view. Interactions between incident electrons and atoms on the sample surface generate backscattered electrons, secondary electrons, and various other signals including X-rays that relay compositional and topographical information. Through selective removal or preservation of specific tissue components (organic, inorganic, cellular, vascular), their individual contribution(s) to the overall functional competence can be elucidated. With few restrictions on sample geometry and a variety of applicable sample-processing routes, a given sample may be conveniently adapted for multiple analytical methods. While a conventional SEM operates at high vacuum conditions that demand clean, dry, and electrically conductive samples, non-conductive materials (e.g., bone) can be imaged without significant modification from the natural state using an environmental scanning electron microscope. This review highlights important insights gained into bone microstructure and pathophysiology, bone response to implanted biomaterials, elemental analysis, SEM in paleoarchaeology, 3D imaging using focused ion beam techniques, correlative microscopy and in situ experiments. The capacity to image seamlessly across multiple length scales within the meso-micro-nano-continuum, the SEM lends itself to many unique and diverse applications, which attest to the versatility and user-friendly nature of this instrument for studying bone. Significant technological developments are anticipated for analysing bone using the SEM.
Collapse
Affiliation(s)
- Furqan A. Shah
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Krisztina Ruscsák
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders Palmquist
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
7
|
Palmquist A. A multiscale analytical approach to evaluate osseointegration. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:60. [PMID: 29736606 PMCID: PMC5938308 DOI: 10.1007/s10856-018-6068-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/18/2018] [Indexed: 06/08/2023]
Abstract
Osseointegrated implants are frequently used in reconstructive surgery, both in the dental and orthopedic field, restoring physical function and improving the quality of life for the patients. The bone anchorage is typically evaluated at micrometer resolution, while bone tissue is a dynamic composite material composed of nanoscale collagen fibrils and apatite crystals, with defined hierarchical levels at different length scales. In order to understand the bone formation and the ultrastructure of the interfacial tissue, analytical strategies needs to be implemented enabling multiscale and multimodal analyses of the intact interface. This paper describes a sample preparation route for successive analyses allowing assessment of the different hierarchical levels of interest, going from macro to nano scale and could be implemented on single samples. Examples of resulting analyses of different techniques on one type of implant surface is given, with emphasis on correlating the length scale between the different techniques. The bone-implant interface shows an intimate contact between mineralized collagen bundles and the outermost surface of the oxide layer, while bone mineral is found in the nanoscale surface features creating a functionally graded interface. Osteocytes exhibit a direct contact with the implant surface via canaliculi that house their dendritic processes. Blood vessels are frequently found in close proximity to the implant surface either within the mineralized bone matrix or at regions of remodeling.
Collapse
Affiliation(s)
- Anders Palmquist
- Department of Biomaterials, Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden.
| |
Collapse
|
8
|
Binkley DM, Grandfield K. Advances in Multiscale Characterization Techniques of Bone and Biomaterials Interfaces. ACS Biomater Sci Eng 2017; 4:3678-3690. [PMID: 33429593 DOI: 10.1021/acsbiomaterials.7b00420] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The success of osseointegrated biomaterials often depends on the functional interface between the implant and mineralized bone tissue. Several parallels between natural and synthetic interfaces exist on various length scales from the microscale toward the cellular and the atomic scale structure. Interest lies in the development of more sophisticated methods to probe these hierarchical levels in tissues at both biomaterials interfaces and natural tissue interphases. This review will highlight new and emerging perspectives toward understanding mineralized tissues, particularly bone tissue, and interfaces between bone and engineered biomaterials at multilength scales and with multidimensionality. Emphasis will be placed on highlighting novel and correlative X-ray, ion, and electron beam imaging approaches, such as electron tomography, atom probe tomography, and in situ microscopies, as well as spectroscopic and mechanical characterizations. These less conventional approaches to imaging biomaterials are contributing to the evolution of the understanding of the structure and organization in bone and bone integrating materials.
Collapse
|
9
|
Clinical, Morphological, and Molecular Evaluations of Bone Regeneration With an Additive Manufactured Osteosynthesis Plate. J Craniofac Surg 2017; 27:1899-1904. [PMID: 27513773 DOI: 10.1097/scs.0000000000002939] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
There is limited information on the biological status of bone regenerated with microvascular fibula flap combined with biomaterials. This paper describes the clinical, histological, ultrastructural, and molecular picture of bone regenerated with patient-customized plate, used for mandibular reconstruction in combination with microvascular osteomyocutaneous fibula flap. The plate was virtually planned and additively manufactured using electron beam melting. This plate was retrieved from the patient after 33 months. Microcomputed tomography, backscattered-scanning electron microscopy, histology, and quantitative-polymerase chain reaction were employed to evaluate the regenerated bone and the flap bone associated with the retrieved plate. At retrieval, the posterior two-thirds of the plate were in close adaptation with the underlying flap, whereas soft tissue was observed between the native mandible and the anterior one-third. The histological and structural analyses showed new bone regeneration, ingrowth, and osseointegration of the posterior two-thirds. The histological observations were supported by the gene expression analysis showing higher expression of bone formation and remodeling genes under the posterior two-thirds compared with the anterior one-third of the plate. The observation of osteocytes in the flap indicated its viability. The present data endorse the suitability of the customized, additively manufactured plate for the vascularized fibula mandibular reconstruction. Furthermore, the combination of the analytical techniques provides possibilities to deduce the structural and molecular characteristics of bone regenerated using this procedure.
Collapse
|
10
|
Sundell G, Dahlin C, Andersson M, Thuvander M. The bone-implant interface of dental implants in humans on the atomic scale. Acta Biomater 2017; 48:445-450. [PMID: 27872014 DOI: 10.1016/j.actbio.2016.11.044] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/27/2016] [Accepted: 11/17/2016] [Indexed: 10/20/2022]
Abstract
Osseointegration of dental implants occurs on a hierarchy of length scales down to the atomic level. A deeper understanding of the complex processes that take place at the surface of an implant on the smallest scale is of interest for the development of improved biomaterials. To date, transmission electron microscopy (TEM) has been utilized for examination of the bone-implant interface, providing details on the nanometer level. In this study we show that TEM imaging can be complemented with atom probe tomography (APT) to reveal the chemical composition of a Ti-based dental implant in a human jaw on the atomic level of resolution. As the atom probe technique has equal sensitivity for all elements, it allows for 3 dimensional characterizations of osseointegrated interfaces with unprecedented resolution. The APT reconstructions reveal a Ca-enriched zone in the immediate vicinity of the implant surface. A surface oxide of some 5nm thickness was measured on the titanium implant, with a sub-stoichiometric composition with respect to TiO2. Minor incorporation of Ca into the thin oxide film was also evident. We conclude that the APT technique is capable of revealing chemical information from the bone-implant interface in 3D with unprecedented resolution, thus providing important insights into the mechanisms behind osseointegration. STATEMENT OF SIGNIFICANCE Osseointegration of dental implants occurs on a hierarchy of length scales down to the atomic level. A deeper understanding of the complex processes that take place at the surface of an implant on the smallest scale is of interest for the development of improved biomaterials. To date, transmission electron microscopy (TEM) has been utilized for examination of the bone-implant interface, providing details on the nanometer level. In this study we show that TEM imaging can be complemented with atom probe tomography (APT) to reveal the chemical composition of a Ti-based dental implant in a human jaw on the atomic level of resolution. Correlative microscopy ensures the accuracy of APT reconstructions and helps provide both chemical and structural information of the bone-implant interface on the smallest of length scales.
Collapse
|
11
|
Wang X, Shah FA, Palmquist A, Grandfield K. 3D Characterization of Human Nano-osseointegration by On-Axis Electron Tomography without the Missing Wedge. ACS Biomater Sci Eng 2016; 3:49-55. [DOI: 10.1021/acsbiomaterials.6b00519] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaoyue Wang
- Department
of Materials Science and Engineering, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Furqan A. Shah
- Department
of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, SE-405 30 Göteborg, Sweden
- BIOMATCELL
VINN Excellence Center of Biomaterials and Cell Therapy, Göteborg, Sweden
| | - Anders Palmquist
- Department
of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, SE-405 30 Göteborg, Sweden
- BIOMATCELL
VINN Excellence Center of Biomaterials and Cell Therapy, Göteborg, Sweden
| | - Kathryn Grandfield
- Department
of Materials Science and Engineering, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
12
|
Shah FA, Trobos M, Thomsen P, Palmquist A. Commercially pure titanium (cp-Ti) versus titanium alloy (Ti6Al4V) materials as bone anchored implants - Is one truly better than the other? MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 62:960-6. [PMID: 26952502 DOI: 10.1016/j.msec.2016.01.032] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 12/10/2015] [Accepted: 01/14/2016] [Indexed: 01/17/2023]
Abstract
Commercially pure titanium (cp-Ti) and titanium alloys (typically Ti6Al4V) display excellent corrosion resistance and biocompatibility. Although the chemical composition and topography are considered important, the mechanical properties of the material and the loading conditions in the host have, conventionally, influenced material selection for different clinical applications: predominantly Ti6Al4V in orthopaedics while cp-Ti in dentistry. This paper attempts to address three important questions: (i) To what extent do the surface properties differ when cp-Ti and Ti6Al4V materials are manufactured with the same processing technique?, (ii) Does bone tissue respond differently to the two materials, and (iii) Do bacteria responsible for causing biomaterial-associated infections respond differently to the two materials? It is concluded that: (i) Machined cp-Ti and Ti6Al4V exhibit similar surface morphology, topography, phase composition and chemistry, (ii) Under experimental conditions, cp-Ti and Ti6Al4V demonstrate similar osseointegration and biomechanical anchorage, and (iii) Experiments in vitro fail to disclose differences between cp-Ti and Ti6Al4V to harbour Staphylococcus epidermidis growth. No clinical comparative studies exist which could determine if long-term, clinical differences exist between the two types of bulk materials. It is debatable whether cp-Ti or Ti6Al4V exhibit superiority over the other, and further comparative studies, particularly in a clinical setting, are required.
Collapse
Affiliation(s)
- Furqan A Shah
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden; BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Göteborg, Sweden.
| | - Margarita Trobos
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden; BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Göteborg, Sweden
| | - Peter Thomsen
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden; BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Göteborg, Sweden
| | - Anders Palmquist
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden; BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Göteborg, Sweden
| |
Collapse
|
13
|
|
14
|
Grandfield K, Gustafsson S, Palmquist A. Where bone meets implant: the characterization of nano-osseointegration. NANOSCALE 2013; 5:4302-4308. [PMID: 23552223 DOI: 10.1039/c3nr00826f] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The recent application of electron tomography to the study of biomaterial interfaces with bone has brought about an awareness of nano-osseointegration and, to a further extent, demanded increasingly advanced characterization methodologies. In this study, nanoscale osseointegration has been studied via laser-modified titanium implants. The micro- and nano-structured implants were placed in the proximal tibia of New Zealand white rabbits for six months. High-resolution transmission electron microscopy (HRTEM), analytical microscopy, including energy dispersive X-ray spectroscopy (EDXS) and energy-filtered TEM (EFTEM), as well as electron tomography studies were used to investigate the degree of nano-osseointegration in two- and three-dimensions. HRTEM indicated the laser-modified surface encouraged the formation of crystalline hydroxyapatite in the immediate vicinity of the implant. Analytical studies suggested the presence of a functionally graded interface at the implant surface, characterized by the gradual intermixing of bone with oxide layer. Yet, the most compelling of techniques, which enabled straightforward visualization of nano-osseointegration, proved to be segmentation of electron tomographic reconstructions, where thresholding techniques identified bone penetrating into the nanoscale roughened surface features of laser-modified titanium. Combining high-resolution, analytical and three-dimensional electron microscopy techniques has proven to encourage identification and understanding of nano-osseointegration.
Collapse
Affiliation(s)
- Kathryn Grandfield
- Department of Engineering Sciences, Uppsala University, Uppsala, Sweden.
| | | | | |
Collapse
|