1
|
van der Wal LI, Turner SJ, Zečević J. Developments and advances in in situ transmission electron microscopy for catalysis research. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00258a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Recent developments and advances in in situ TEM have raised the possibility to study every step during the catalysts' lifecycle. This review discusses the current state, opportunities and challenges of in situ TEM in the realm of catalysis.
Collapse
Affiliation(s)
- Lars I. van der Wal
- Materials Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- Utrecht
- The Netherlands
| | - Savannah J. Turner
- Materials Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- Utrecht
- The Netherlands
| | - Jovana Zečević
- Materials Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- Utrecht
- The Netherlands
| |
Collapse
|
2
|
Investigation of gas-electron interactions with electron holography. Ultramicroscopy 2020; 221:113178. [PMID: 33302046 DOI: 10.1016/j.ultramic.2020.113178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 11/20/2022]
Abstract
Using the combination of off-axis electron holography and environmental Transmission Electron Microscopy (TEM), an experimental setup termed 'gas electron holography', we investigate how the presence of gas in the microscope affects the spatial and phase resolution of electron holograms. The gas is introduced either by using an Environmental TEM (ETEM) or a closed-cell holder. The ETEM data on gas electron holography shows that the number of electrons reaching the detector decreases exponentially as a function of gas pressure. From this evidence, we construct a phenomenological model that describes how coherency changes as a function of gas pressure. By linking the model with the concept of inelastic scattering cross section we find that the change in the coherency of the electron beam due to the presence of gas is related to the number of gas molecules present, their atomic weight and the average energy lost due to inelastic scattering. Regarding gas electron holography with a closed cell holder, we conclude that the membranes surrounding the gas are the primary factor in determining the quality of the electron hologram, while the gas pressure inside the cell has a small impact on the spatial and phase resolution of the electron holograms.
Collapse
|
3
|
Shimada Y, Yoshida K, Inoue K, Shiraishi T, Kiguchi T, Nagai Y, Konno TJ. Evaluation of spatial and temporal resolution on in situ annealing aberration-corrected transmission electron microscopy with proportional-integral-differential controller. Microscopy (Oxf) 2019; 68:271-278. [PMID: 30843044 DOI: 10.1093/jmicro/dfz010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 01/26/2019] [Accepted: 02/09/2019] [Indexed: 11/14/2022] Open
Abstract
The in situ annealing observation in transmission electron microscope (TEM) is one of the effective methods for imaging thermally induced microstructural changes. For applying this dynamical characterization to bulk samples fabricated by ion-milling, electro-polishing or focused ion beam (FIB) mill, it is generally needed to use a heating-pot type system. We here report an initial trial to improve the spatial and temporal resolution during the in-situ annealing observation of bulk samples using a spherical aberration corrected (AC) TEM with a new thermal control unit. The information limit of 1.5 Å and the point resolution of 2.0 Å are achieved under isothermal annealing at 350°C, which is the same resolution at room temperature, and it is affected strongly of sample drift by the temperature variation. The sample is heated at a heating rate of +1.0°C/s, the drift distance observed by a TV readout speed CCD camera is less than 2.0 Å/s.
Collapse
Affiliation(s)
- Yusuke Shimada
- Institute for Materials Research, Tohoku University, Katahira, Aoba-ku, Sendai, Miyagi, Japan
| | - Kenta Yoshida
- International Research Center for Nuclear Materials Science, Institute for Materials Research, Tohoku University, Oarai, Ibaraki, Japan
| | - Koji Inoue
- International Research Center for Nuclear Materials Science, Institute for Materials Research, Tohoku University, Oarai, Ibaraki, Japan
| | - Takahisa Shiraishi
- Institute for Materials Research, Tohoku University, Katahira, Aoba-ku, Sendai, Miyagi, Japan
| | - Takanori Kiguchi
- Institute for Materials Research, Tohoku University, Katahira, Aoba-ku, Sendai, Miyagi, Japan
| | - Yasuyoshi Nagai
- International Research Center for Nuclear Materials Science, Institute for Materials Research, Tohoku University, Oarai, Ibaraki, Japan
| | - Toyohiko J Konno
- Institute for Materials Research, Tohoku University, Katahira, Aoba-ku, Sendai, Miyagi, Japan
| |
Collapse
|
4
|
Cassidy C, Yamashita M, Cheung M, Kalale C, Adaniya H, Kuwahara R, Shintake T. Water without windows: Evaluating the performance of open cell transmission electron microscopy under saturated water vapor conditions, and assessing its potential for microscopy of hydrated biological specimens. PLoS One 2017; 12:e0186899. [PMID: 29099843 PMCID: PMC5669482 DOI: 10.1371/journal.pone.0186899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 09/14/2017] [Indexed: 02/05/2023] Open
Abstract
We have performed open cell transmission electron microscopy experiments through pure water vapor in the saturation pressure regime (>0.6 kPa), in a modern microscope capable of sub-Å resolution. We have systematically studied achievable pressure levels, stability and gas purity, effective thickness of the water vapor column and associated electron scattering processes, and the effect of gas pressure on electron optical resolution and image contrast. For example, for 1.3 kPa pure water vapor and 300kV electrons, we report pressure stability of ± 20 Pa over tens of minutes, effective thickness of 0.57 inelastic mean free paths, lattice resolution of 0.14 nm on a reference Au specimen, and no significant degradation in contrast or stability of a biological specimen (M13 virus, with 6 nm body diameter). We have also done some brief experiments to confirm feasibility of loading specimens into an in situ water vapor ambient without exposure to intermediate desiccating conditions. Finally, we have also checked if water experiments had any discernible impact on the microscope performance, and report pertinent vacuum and electron optical data, for reference purposes.
Collapse
Affiliation(s)
- Cathal Cassidy
- Quantum Wave Microscopy, OIST Graduate University, 1919-1 Tancha, Okinawa 904-0495, Japan
- * E-mail:
| | - Masao Yamashita
- Quantum Wave Microscopy, OIST Graduate University, 1919-1 Tancha, Okinawa 904-0495, Japan
| | - Martin Cheung
- Quantum Wave Microscopy, OIST Graduate University, 1919-1 Tancha, Okinawa 904-0495, Japan
| | - Chola Kalale
- Quantum Wave Microscopy, OIST Graduate University, 1919-1 Tancha, Okinawa 904-0495, Japan
| | - Hidehito Adaniya
- Quantum Wave Microscopy, OIST Graduate University, 1919-1 Tancha, Okinawa 904-0495, Japan
| | - Ryusuke Kuwahara
- Quantum Wave Microscopy, OIST Graduate University, 1919-1 Tancha, Okinawa 904-0495, Japan
| | - Tsumoru Shintake
- Quantum Wave Microscopy, OIST Graduate University, 1919-1 Tancha, Okinawa 904-0495, Japan
| |
Collapse
|
5
|
Zhu Y, Browning ND. The Role of Gas in Determining Image Quality and Resolution During In Situ Scanning Transmission Electron Microscopy Experiments. ChemCatChem 2017. [DOI: 10.1002/cctc.201700474] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yuanyuan Zhu
- Physical & Computational Science Directorate Pacific Northwest National Laboratory Richland WA 99352 USA
| | - Nigel D. Browning
- Physical & Computational Science Directorate Pacific Northwest National Laboratory Richland WA 99352 USA
- Department of Materials Science and Engineering University of Washington Seattle WA 98195 USA
| |
Collapse
|
6
|
Koh AL, Sinclair R. Assessing and ameliorating the influence of the electron beam on carbon nanotube oxidation in environmental transmission electron microscopy. Ultramicroscopy 2016; 176:132-138. [PMID: 27979618 DOI: 10.1016/j.ultramic.2016.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/23/2016] [Accepted: 12/06/2016] [Indexed: 12/25/2022]
Abstract
In this work, we examine how the imaging electron beam can induce damage in carbon nanotubes (CNTs) at varying oxygen gas pressures and electron dose rates using environmental transmission electron microscopy (ETEM). Our studies show that there is a threshold cumulative electron dose which brings about damage in CNTs in oxygen - through removal of their graphitic walls - which is dependent on O2 pressure, with a 4-5 fold decrease in total electron dose per decade increase at a lower pressure range (10-6 to 10-5mbar) and approximately 1.3 -fold decrease per decade increase at a higher pressure range (10-3 to 100mbar). However, at a given pressure, damage in CNTs was found to occur even at the lowest dose rate utilized, suggesting the absence of a lower limit for the latter parameter. This study provides guidelines on the cumulative dose required to damage nanotubes in the 10-7mbar to 100mbar pressure regimes, and discusses the role of electron dose rate and total electron dose on beam-induced CNT degradation experiments.
Collapse
Affiliation(s)
- Ai Leen Koh
- Stanford Nano Shared Facilities, Stanford University, Stanford, CA 94305, USA.
| | - Robert Sinclair
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
7
|
Ek M, Jespersen SPF, Damsgaard CD, Helveg S. On the role of the gas environment, electron-dose-rate, and sample on the image resolution in transmission electron microscopy. ACTA ACUST UNITED AC 2016. [DOI: 10.1186/s40679-016-0018-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractThe introduction of gaseous atmospheres in transmission electron microscopy offers the possibility of studying materials in situ under chemically relevant environments. The presence of a gas environment can degrade the resolution. Surprisingly, this phenomenon has been shown to depend on the electron-dose-rate. In this article, we demonstrate that both the total and areal electron-dose-rates work as descriptors for the dose-rate-dependent resolution and are related through the illumination area. Furthermore, the resolution degradation was observed to occur gradually over time after initializing the illumination of the sample and gas by the electron beam. The resolution was also observed to be sensitive to the electrical conductivity of the sample. These observations can be explained by a charge buildup over the electron-illuminated sample area, caused by the beam–gas–sample interaction, and by a subsequent sample motion induced by electrical capacitance in the sample.
Collapse
|
8
|
Tao F(F, Crozier PA. Atomic-Scale Observations of Catalyst Structures under Reaction Conditions and during Catalysis. Chem Rev 2016; 116:3487-539. [DOI: 10.1021/cr5002657] [Citation(s) in RCA: 203] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Franklin (Feng) Tao
- Department
of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
- Department
of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Peter A. Crozier
- School
of Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
9
|
Su DS, Zhang B, Schlögl R. Electron microscopy of solid catalysts--transforming from a challenge to a toolbox. Chem Rev 2015; 115:2818-82. [PMID: 25826447 DOI: 10.1021/cr500084c] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Dang Sheng Su
- †Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China.,‡Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Bingsen Zhang
- †Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
| | - Robert Schlögl
- ‡Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|
10
|
Helveg S, Kisielowski C, Jinschek J, Specht P, Yuan G, Frei H. Observing gas-catalyst dynamics at atomic resolution and single-atom sensitivity. Micron 2015; 68:176-185. [DOI: 10.1016/j.micron.2014.07.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 07/24/2014] [Accepted: 07/25/2014] [Indexed: 12/20/2022]
|
11
|
Xiang X, Nie J, Sun K, Zhang L, Liu W, Schwank J, Wang S, Zhong M, Gao F, Zu X. Structural evolution of NiAu nanoparticles under ambient conditions directly revealed by atom-resolved imaging combined with DFT simulation. NANOSCALE 2014; 6:12898-12904. [PMID: 25230836 DOI: 10.1039/c4nr03559c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
From an economic point of view, the structural stability of noble-transition bimetallic catalysts is as significant as their well-studied catalytic efficiency. The structural evolution and corresponding dynamics of NiAu bimetallic nanoparticles under ambient conditions are investigated using in situ Cs-corrected STEM and DFT calculations. During oxidization, the Au component promotes dissociation of oxygen and initiates Ni oxidization, which simultaneously drives the migration of Au atoms, thus yielding multi-shell structures (denoted by Ni@Au@NiO). The subsequent hydrogen reduction induces surface reconstruction, forming fcc-NiAu clusters. After several cycles of catalyzing CO oxidization, both inverse Au segregation and Ni recrystallization occur, which are ascribed to exothermic excitation. The results of this study can help researchers understand the evolutionary behaviors of the bimetallic nanoparticles under ambient conditions as well as optimize the structural design of bimetallic catalysts.
Collapse
Affiliation(s)
- Xia Xiang
- School of Physical Electronics and Institute of Fundmental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Jinschek JR. Advances in the environmental transmission electron microscope (ETEM) for nanoscale in situ studies of gas–solid interactions. Chem Commun (Camb) 2014; 50:2696-706. [DOI: 10.1039/c3cc49092k] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This review highlights how ETEM technology advances have enabled new essential (structural) information that improve our understanding of nanomaterials' structure–property–function relationships.
Collapse
Affiliation(s)
- J. R. Jinschek
- FEI Company
- Materials Science BU
- Eindhoven, The Netherlands
| |
Collapse
|
13
|
Yoshida K, Tominaga T, Hanatani T, Tagami A, Sasaki Y, Yamasaki J, Saitoh K, Tanaka N. Key factors for the dynamic ETEM observation of single atoms. Microscopy (Oxf) 2013; 62:571-82. [DOI: 10.1093/jmicro/dft033] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
14
|
Suzuki M, Yaguchi T, Zhang XF. High-resolution environmental transmission electron microscopy: modeling and experimental verification. Microscopy (Oxf) 2013; 62:437-50. [DOI: 10.1093/jmicro/dft001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
15
|
Tanaka N, Usukura J, Kusunoki M, Saito Y, Sasaki K, Tanji T, Muto S, Arai S. Development of an environmental high-voltage electron microscope for reaction science. Microscopy (Oxf) 2013; 62:205-15. [DOI: 10.1093/jmicro/dfs095] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|