1
|
Wu M, Shi R, Qi R, Li Y, Du J, Gao P. Four-dimensional electron energy-loss spectroscopy. Ultramicroscopy 2023; 253:113818. [PMID: 37544270 DOI: 10.1016/j.ultramic.2023.113818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/20/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023]
Abstract
Recent advances in scanning transmission electron microscopy have enabled atomic-scale focused, coherent, and monochromatic electron probes, achieving nanoscale spatial resolution, meV energy resolution, sufficient momentum resolution, and a wide energy detection range in electron energy-loss spectroscopy (EELS). A four-dimensional EELS (4D-EELS) dataset can be recorded with a slot aperture selecting the specific momentum direction in the diffraction plane and the beam scanning in two spatial dimensions. In this paper, the basic principle of the 4D-EELS technique and a few examples of its application are presented. In addition to parallelly acquired dispersion with energy down to a lattice vibration scale, it can map the real space variation of any EELS spectrum features with a specific momentum transfer and energy loss to study various locally inhomogeneous scattering processes. Furthermore, simple mathematical combinations associating the spectra at different momenta are feasible from the 4D dataset, e.g., the efficient acquisition of a reliable electron magnetic circular dichroism (EMCD) signal is demonstrated. This 4D-EELS technique provides new opportunities to probe the local dispersion and related physical properties at the nanoscale.
Collapse
Affiliation(s)
- Mei Wu
- International Center for Quantum Materials, Peking University, Beijing 100871, China; Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China
| | - Ruochen Shi
- International Center for Quantum Materials, Peking University, Beijing 100871, China; Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China
| | - Ruishi Qi
- Department of Physics, University of California at Berkeley, Berkeley 94720, United States
| | - Yuehui Li
- International Center for Quantum Materials, Peking University, Beijing 100871, China; Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China
| | - Jinlong Du
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China
| | - Peng Gao
- International Center for Quantum Materials, Peking University, Beijing 100871, China; Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China; Collaborative Innovation Center of Quantum Matter, Beijing 100871, China; Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing 100871, China.
| |
Collapse
|
2
|
Li C, Guan M, Hong H, Chen K, Wang X, Ma H, Wang A, Li Z, Hu H, Xiao J, Dai J, Wan X, Liu K, Meng S, Dai Q. Coherent ultrafast photoemission from a single quantized state of a one-dimensional emitter. SCIENCE ADVANCES 2023; 9:eadf4170. [PMID: 37824625 PMCID: PMC10569710 DOI: 10.1126/sciadv.adf4170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 09/08/2023] [Indexed: 10/14/2023]
Abstract
Femtosecond laser-driven photoemission source provides an unprecedented femtosecond-resolved electron probe not only for atomic-scale ultrafast characterization but also for free-electron radiation sources. However, for conventional metallic electron source, intense lasers may induce a considerable broadening of emitting energy level, which results in large energy spread (>600 milli-electron volts) and thus limits the spatiotemporal resolution of electron probe. Here, we demonstrate the coherent ultrafast photoemission from a single quantized energy level of a carbon nanotube. Its one-dimensional body can provide a sharp quantized electronic excited state, while its zero-dimensional tip can provide a quantized energy level act as a narrow photoemission channel. Coherent resonant tunneling electron emission is evidenced by a negative differential resistance effect and a field-driven Stark splitting effect. The estimated energy spread is ~57 milli-electron volts, which suggests that the proposed carbon nanotube electron source may promote electron probe simultaneously with subangstrom spatial resolution and femtosecond temporal resolution.
Collapse
Affiliation(s)
- Chi Li
- CAS Key Laboratory of Nanophotonic Materials and Devices, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Mengxue Guan
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Science, Beijing 100190, China
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Hao Hong
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Centre for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Ke Chen
- CAS Key Laboratory of Nanophotonic Materials and Devices, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Xiaowei Wang
- Department of Physics, Hunan Key Laboratory of Extreme Matter and Applications, National University of Defense Technology, Changsha 410073, China
| | - He Ma
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Centre for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Aiwei Wang
- CAS Key Laboratory of Nanophotonic Materials and Devices, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Zhenjun Li
- CAS Key Laboratory of Nanophotonic Materials and Devices, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Hai Hu
- CAS Key Laboratory of Nanophotonic Materials and Devices, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Jianfeng Xiao
- CAS Key Laboratory of Nanophotonic Materials and Devices, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Jiayu Dai
- Department of Physics, Hunan Key Laboratory of Extreme Matter and Applications, National University of Defense Technology, Changsha 410073, China
| | - Xiangang Wan
- National Laboratory of Solid State Microstructures and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Kaihui Liu
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Centre for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Sheng Meng
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Science, Beijing 100190, China
| | - Qing Dai
- CAS Key Laboratory of Nanophotonic Materials and Devices, National Center for Nanoscience and Technology, Beijing 100190, China
| |
Collapse
|
3
|
Li G, Zhang H, Han Y. Applications of Transmission Electron Microscopy in Phase Engineering of Nanomaterials. Chem Rev 2023; 123:10728-10749. [PMID: 37642645 DOI: 10.1021/acs.chemrev.3c00364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Phase engineering of nanomaterials (PEN) is an emerging field that aims to tailor the physicochemical properties of nanomaterials by precisely manipulating their crystal phases. To advance PEN effectively, it is vital to possess the capability of characterizing the structures and compositions of nanomaterials with precision. Transmission electron microscopy (TEM) is a versatile tool that combines reciprocal-space diffraction, real-space imaging, and spectroscopic techniques, allowing for comprehensive characterization with exceptional resolution in the domains of time, space, momentum, and, increasingly, even energy. In this Review, we first introduce the fundamental mechanisms behind various TEM-related techniques, along with their respective application scopes and limitations. Subsequently, we review notable applications of TEM in PEN research, including applications in fields such as metallic nanostructures, carbon allotropes, low-dimensional materials, and nanoporous materials. Specifically, we underscore its efficacy in phase identification, composition and chemical state analysis, in situ observations of phase evolution, as well as the challenges encountered when dealing with beam-sensitive materials. Furthermore, we discuss the potential generation of artifacts during TEM imaging, particularly in scanning modes, and propose methods to minimize their occurrence. Finally, we offer our insights into the present state and future trends of this field, discussing emerging technologies including four-dimensional scanning TEM, three-dimensional atomic-resolution imaging, and electron microscopy automation while highlighting the significance and feasibility of these advancements.
Collapse
Affiliation(s)
- Guanxing Li
- Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Hui Zhang
- Electron Microscopy Center, South China University of Technology, Guangzhou 510640, China
- School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Yu Han
- Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Electron Microscopy Center, South China University of Technology, Guangzhou 510640, China
- School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
4
|
Reidy K, Mortelmans W, Jo SS, Penn AN, Foucher AC, Liu Z, Cai T, Wang B, Ross FM, Jaramillo R. Atomic-Scale Mechanisms of MoS 2 Oxidation for Kinetic Control of MoS 2/MoO 3 Interfaces. NANO LETTERS 2023. [PMID: 37368991 DOI: 10.1021/acs.nanolett.3c00303] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Oxidation of transition metal dichalcogenides (TMDs) occurs readily under a variety of conditions. Therefore, understanding the oxidation processes is necessary for successful TMD handling and device fabrication. Here, we investigate atomic-scale oxidation mechanisms of the most widely studied TMD, MoS2. We find that thermal oxidation results in α-phase crystalline MoO3 with sharp interfaces, voids, and crystallographic alignment with the underlying MoS2. Experiments with remote substrates prove that thermal oxidation proceeds via vapor-phase mass transport and redeposition, a challenge to forming thin, conformal films. Oxygen plasma accelerates the kinetics of oxidation relative to the kinetics of mass transport, forming smooth and conformal oxides. The resulting amorphous MoO3 can be grown with subnanometer to several-nanometer thickness, and we calibrate the oxidation rate for different instruments and process parameters. Our results provide quantitative guidance for managing both the atomic scale structure and thin-film morphology of oxides in the design and processing of TMD devices.
Collapse
Affiliation(s)
- Kate Reidy
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Wouter Mortelmans
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Seong Soon Jo
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Aubrey N Penn
- MIT.nano, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alexandre C Foucher
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Zhenjing Liu
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong, China
| | - Tao Cai
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Baoming Wang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Frances M Ross
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - R Jaramillo
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
5
|
Rosi P, Clausen A, Weber D, Tavabi AH, Frabboni S, Tiemeijer P, Dunin-Borkowski RE, Rotunno E, Grillo V. Automatic Alignment of an Orbital Angular Momentum Sorter in a Transmission Electron Microscope Using a Convolutional Neural Network. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 29:1-9. [PMID: 36082682 DOI: 10.1017/s143192762201248x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We report on the automatic alignment of a transmission electron microscope equipped with an orbital angular momentum sorter using a convolutional neural network. The neural network is able to control all relevant parameters of both the electron-optical setup of the microscope and the external voltage source of the sorter without input from the user. It can compensate for mechanical and optical misalignments of the sorter, in order to optimize its spectral resolution. The alignment is completed over a few frames and can be kept stable by making use of the fast fitting time of the neural network.
Collapse
Affiliation(s)
- Paolo Rosi
- Istituto Nanoscienze - CNR, via G. Campi 213/A, Modena 41125, Italy
- FIM Department, University of Modena and Reggio Emilia, via G. Campi 213/A, Modena 41125, Italy
| | - Alexander Clausen
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich, Jülich 52425, Germany
| | - Dieter Weber
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich, Jülich 52425, Germany
| | - Amir H Tavabi
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich, Jülich 52425, Germany
| | - Stefano Frabboni
- Istituto Nanoscienze - CNR, via G. Campi 213/A, Modena 41125, Italy
- FIM Department, University of Modena and Reggio Emilia, via G. Campi 213/A, Modena 41125, Italy
| | - Peter Tiemeijer
- Thermo Fisher Scientific, PO Box 80066, 5600 KA Eindhoven, The Netherlands
| | - Rafal E Dunin-Borkowski
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich, Jülich 52425, Germany
| | - Enzo Rotunno
- Istituto Nanoscienze - CNR, via G. Campi 213/A, Modena 41125, Italy
| | - Vincenzo Grillo
- Istituto Nanoscienze - CNR, via G. Campi 213/A, Modena 41125, Italy
| |
Collapse
|
6
|
|
7
|
Alignment of electron optical beam shaping elements using a convolutional neural network. Ultramicroscopy 2021; 228:113338. [PMID: 34218137 DOI: 10.1016/j.ultramic.2021.113338] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/28/2021] [Accepted: 06/09/2021] [Indexed: 11/23/2022]
Abstract
A convolutional neural network is used to align an orbital angular momentum sorter in a transmission electron microscope. The method is demonstrated using simulations and experiments. As a result of its accuracy and speed, it offers the possibility of real-time tuning of other electron optical devices and electron beam shaping configurations.
Collapse
|
8
|
Tavabi AH, Rosi P, Rotunno E, Roncaglia A, Belsito L, Frabboni S, Pozzi G, Gazzadi GC, Lu PH, Nijland R, Ghosh M, Tiemeijer P, Karimi E, Dunin-Borkowski RE, Grillo V. Experimental Demonstration of an Electrostatic Orbital Angular Momentum Sorter for Electron Beams. PHYSICAL REVIEW LETTERS 2021; 126:094802. [PMID: 33750150 DOI: 10.1103/physrevlett.126.094802] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/06/2020] [Accepted: 01/12/2021] [Indexed: 05/21/2023]
Abstract
The component of orbital angular momentum (OAM) in the propagation direction is one of the fundamental quantities of an electron wave function that describes its rotational symmetry and spatial chirality. Here, we demonstrate experimentally an electrostatic sorter that can be used to analyze the OAM states of electron beams in a transmission electron microscope. The device achieves postselection or sorting of OAM states after electron-material interactions, thereby allowing the study of new material properties such as the magnetic states of atoms. The required electron-optical configuration is achieved by using microelectromechanical systems technology and focused ion beam milling to control the electron phase electrostatically with a lateral resolution of 50 nm. An OAM resolution of 1.5ℏ is realized in tests on controlled electron vortex beams, with the perspective of reaching an optimal OAM resolution of 1ℏ in the near future.
Collapse
Affiliation(s)
- Amir H Tavabi
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Paolo Rosi
- Dipartimento FIM, Universitá di Modena e Reggio Emilia, 41125 Modena, Italy
| | - Enzo Rotunno
- Centro S3, Istituto di Nanoscienze-CNR, 41125 Modena, Italy
| | - Alberto Roncaglia
- Istituto per la Microelettronica e i Microsistemi-CNR, 40129 Bologna, Italy
| | - Luca Belsito
- Istituto per la Microelettronica e i Microsistemi-CNR, 40129 Bologna, Italy
| | - Stefano Frabboni
- Dipartimento FIM, Universitá di Modena e Reggio Emilia, 41125 Modena, Italy
- Centro S3, Istituto di Nanoscienze-CNR, 41125 Modena, Italy
| | - Giulio Pozzi
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, 52425 Jülich, Germany
- Department of Physics and Astronomy, University of Bologna, 40127 Bologna, Italy
| | | | - Peng-Han Lu
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, 52425 Jülich, Germany
- RWTH Aachen University, 52074 Aachen, Germany
| | - Robert Nijland
- Thermo Fisher Scientific, PO Box 80066, 5600 KA Eindhoven, Netherlands
| | - Moumita Ghosh
- Thermo Fisher Scientific, PO Box 80066, 5600 KA Eindhoven, Netherlands
| | - Peter Tiemeijer
- Thermo Fisher Scientific, PO Box 80066, 5600 KA Eindhoven, Netherlands
| | - Ebrahim Karimi
- Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Rafal E Dunin-Borkowski
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, 52425 Jülich, Germany
| | | |
Collapse
|
9
|
Lopatin S, Aljarb A, Roddatis V, Meyer T, Wan Y, Fu JH, Hedhili M, Han Y, Li LJ, Tung V. Aberration-corrected STEM imaging of 2D materials: Artifacts and practical applications of threefold astigmatism. SCIENCE ADVANCES 2020; 6:eabb8431. [PMID: 32917685 PMCID: PMC11206469 DOI: 10.1126/sciadv.abb8431] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
High-resolution scanning transmission electron microscopy (HR-STEM) with spherical aberration correction enables researchers to peer into two-dimensional (2D) materials and correlate the material properties with those of single atoms. The maximum intensity of corrected electron beam is confined in the area having sub-angstrom size. Meanwhile, the residual threefold astigmatism of the electron probe implies a triangular shape distribution of the intensity, whereas its tails overlap and thus interact with several atomic species simultaneously. The result is the resonant modulation of contrast that interferes the determination of phase transition of 2D materials. Here, we theoretically reveal and experimentally determine the origin of resonant modulation of contrast and its unintended impact on violating the power-law dependence of contrast on coordination modes between transition metal and chalcogenide atoms. The finding illuminates the correlation between atomic contrast, spatially inequivalent chalcogenide orientation, and residual threefold astigmatism on determining the atomic structure of emerging 2D materials.
Collapse
Affiliation(s)
- Sergei Lopatin
- King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal 23955-6900, Saudi Arabia.
| | - Areej Aljarb
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal 23955-6900, Saudi Arabia
- Department of Physics, King Abdulaziz University, Jeddah 23955-6900, Saudi Arabia
| | - Vladimir Roddatis
- Institute of Materials Physics, University of Goettingen, Goettingen, Germany
| | - Tobias Meyer
- 4th Institute of Physics - Solids and Nanostructures, University of Goettingen, Goettingen, Germany
| | - Yi Wan
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Jui-Han Fu
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal 23955-6900, Saudi Arabia
| | - Mohamed Hedhili
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Yimo Han
- Department of Molecular Biology, Princeton University, NJ 08544-1044, USA
| | - Lain-Jong Li
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Vincent Tung
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
10
|
Almalawi D, Lopatin S, Mitra S, Flemban T, Siladie AM, Gayral B, Daudin B, Roqan IS. Enhanced UV Emission of GaN Nanowires Functionalized by Wider Band Gap Solution-Processed p-MnO Quantum Dots. ACS APPLIED MATERIALS & INTERFACES 2020; 12:34058-34064. [PMID: 32623885 PMCID: PMC7497627 DOI: 10.1021/acsami.0c07029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
GaN-based UV light-emitting devices suffer from low efficiency. To mitigate this issue, we hybridized GaN nanowires (NWs) grown on Si substrates by plasma-assisted molecular beam epitaxy with solution-processed p-type MnO quantum dots (QDs) characterized by a wider band gap (∼5 eV) than that of GaN. Further investigations reveal that the photoluminescence intensity of the GaN NWs increases up to ∼3.9-fold (∼290%) after functionalizing them with p-MnO QDs, while the internal quantum efficiency is improved by ∼1.7-fold. Electron energy loss spectroscopy (EELS) incorporated into transmission electron microscopy reveals an increase in the density of states in QD-decorated NWs compared to the bare ones. The advanced optical and EELS analyses indicate that the energy transfer from the wider band gap p-MnO QDs to n-GaN NW can lead to substantial emission enhancement and greater radiative recombination contribution because of the good band alignment between MnO QDs and GaN NWs. This work provides valuable insights into an environmentally friendly strategy for improving UV device performance.
Collapse
Affiliation(s)
- Dhaifallah Almalawi
- Physical
Sciences and Engineering Division, King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Physics
Department, Faculty of Science, Taif University, P.O. Box 888, Taif 21974, Saudi Arabia
| | - Sergei Lopatin
- Imaging
and Characterization Laboratory, King Abdullah
University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Somak Mitra
- Physical
Sciences and Engineering Division, King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Tahani Flemban
- Department
of Physics, College of Science, Imam Abdulrahman
Bin Faisal University (IAU), Dammam 31441, Saudi Arabia
| | | | - Bruno Gayral
- University
of Grenoble-Alpes, CEA-IRIG, PHELIQS, 17 av. des Martyrs, Grenoble F-38000, France
| | - Bruno Daudin
- University
of Grenoble-Alpes, CEA-IRIG, PHELIQS, 17 av. des Martyrs, Grenoble F-38000, France
| | - Iman S. Roqan
- Physical
Sciences and Engineering Division, King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
11
|
Yoon A, Kim JH, Yoon J, Lee Y, Lee Z. van der Waals Epitaxial Formation of Atomic Layered α-MoO 3 on MoS 2 by Oxidation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:22029-22036. [PMID: 32298075 DOI: 10.1021/acsami.0c03032] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The electronic, catalytic, and optical properties of transition metal dichalcogenides (TMDs) are significantly affected by oxidation, and using oxidation to tune the properties of TMDs has been actively explored. In particular, because transition metal oxides (TMOs) are promising hole injection layers, a TMD-TMO heterostructure can be potentially applied as a p-type semiconductor. However, the oxidation of TMDs has not been clearly elucidated because of the structural instability and the extremely small quantity of oxides formed. Here, we reveal the phases and morphologies of oxides formed on two-dimensional molybdenum disulfide (MoS2) using transmission electron microscopy analysis. We find that MoS2 starts to oxidize around 400 °C to form orthorhombic-phase molybdenum trioxide (α-MoO3) nanosheets. The α-MoO3 nanosheets so formed are stacked layer-by-layer on the underlying MoS2 via van der Waals interaction and the nanosheets are aligned epitaxially with six possible orientations. Furthermore, the band gap of MoS2 is increased from 1.27 to 3.0 eV through oxidation. Our study can be extended to most TMDs to form TMO-TMD heterostructures, which are potentially interesting as p-type transistors, gas sensors, or photocatalysts.
Collapse
Affiliation(s)
- Aram Yoon
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jung Hwa Kim
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jongchan Yoon
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yeongdong Lee
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Zonghoon Lee
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
12
|
Zhu YP, El-Demellawi JK, Yin J, Lopatin S, Lei Y, Liu Z, Miao X, Mohammed OF, Alshareef HN. Unprecedented Surface Plasmon Modes in Monoclinic MoO 2 Nanostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1908392. [PMID: 32201985 DOI: 10.1002/adma.201908392] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/16/2020] [Accepted: 03/03/2020] [Indexed: 06/10/2023]
Abstract
Developing stable plasmonic materials featuring earth-abundant compositions with continuous band structures, similar to those of typical metals, has received special research interest. Owing to their metal-like behavior, monoclinic MoO2 nanostructures have been found to support stable and intense surface plasmon (SP) resonances. However, no progress has been made on their energy and spatial distributions over individual nanostructures, nor the origin of their possibly existing specific SP modes. Here, various MoO2 nanostructures are designed via polydopamine chemistry and managed to visualize multiple longitudinal and transversal SP modes supported by the monoclinic MoO2 , along with intrinsic interband transitions, using scanning transmission electron microscopy coupled with ultrahigh-resolution electron energy loss spectroscopy. The identified geometry-dependent SP energies are tuned by either controlling the shape and thickness of MoO2 nanostructures through their well-designed chemical synthesis, or by altering their length using a developed electron-beam patterning technique. Theoretical calculations reveal that the strong plasmonic behavior of the monoclinic MoO2 is associated with the abundant delocalized electrons in the Mo d orbitals. This work not only provides a significant improvement in imaging and tailoring SPs of nonconventional metallic nanostructures, but also highlights the potential of MoO2 nanostructures for micro-nano optical and optoelectronic applications.
Collapse
Affiliation(s)
- Yun-Pei Zhu
- Materials Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Jehad K El-Demellawi
- Materials Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Jun Yin
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Sergei Lopatin
- King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal, 23955-6900, Saudi Arabia
| | - Yongjiu Lei
- Materials Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Zhixiong Liu
- Materials Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Xiaohe Miao
- Westlake University, Xihu District, Hangzhou, Zhejiang, 310024, China
| | - Omar F Mohammed
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Husam N Alshareef
- Materials Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
13
|
Chen Q, Dwyer C, Sheng G, Zhu C, Li X, Zheng C, Zhu Y. Imaging Beam-Sensitive Materials by Electron Microscopy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907619. [PMID: 32108394 DOI: 10.1002/adma.201907619] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/20/2019] [Indexed: 05/15/2023]
Abstract
Electron microscopy allows the extraction of multidimensional spatiotemporally correlated structural information of diverse materials down to atomic resolution, which is essential for figuring out their structure-property relationships. Unfortunately, the high-energy electrons that carry this important information can cause damage by modulating the structures of the materials. This has become a significant problem concerning the recent boost in materials science applications of a wide range of beam-sensitive materials, including metal-organic frameworks, covalent-organic frameworks, organic-inorganic hybrid materials, 2D materials, and zeolites. To this end, developing electron microscopy techniques that minimize the electron beam damage for the extraction of intrinsic structural information turns out to be a compelling but challenging need. This article provides a comprehensive review on the revolutionary strategies toward the electron microscopic imaging of beam-sensitive materials and associated materials science discoveries, based on the principles of electron-matter interaction and mechanisms of electron beam damage. Finally, perspectives and future trends in this field are put forward.
Collapse
Affiliation(s)
- Qiaoli Chen
- Center for Electron Microscopy, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Christian Dwyer
- Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA
| | - Guan Sheng
- Advanced Membranes and Porous Materials Center, Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Chongzhi Zhu
- Center for Electron Microscopy, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiaonian Li
- Center for Electron Microscopy, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Changlin Zheng
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, 200438, China
| | - Yihan Zhu
- Center for Electron Microscopy, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
14
|
Yankovich AB, Munkhbat B, Baranov DG, Cuadra J, Olsén E, Lourenço-Martins H, Tizei LHG, Kociak M, Olsson E, Shegai T. Visualizing Spatial Variations of Plasmon-Exciton Polaritons at the Nanoscale Using Electron Microscopy. NANO LETTERS 2019; 19:8171-8181. [PMID: 31639311 DOI: 10.1021/acs.nanolett.9b03534] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Polaritons are compositional light-matter quasiparticles that have enabled remarkable breakthroughs in quantum and nonlinear optics, as well as in material science. Recently, plasmon-exciton polaritons (plexcitons) have been realized in hybrid material systems composed of transition metal dichalcogenide (TMDC) materials and metal nanoparticles, expanding polaritonic concepts to room temperature and nanoscale systems that also benefit from the exotic properties of TMDC materials. Despite the enormous progress in understanding TMDC-based plexcitons using optical-based methods, experimental evidence of plexcitons formation has remained indirect and mapping their nanometer-scale characteristics has remained an open challenge. Here, we demonstrate that plexcitons generated by a hybrid system composed of an individual silver nanoparticle and a few-layer WS2 flake can be spectroscopically mapped with nanometer spatial resolution using electron energy loss spectroscopy in a scanning transmission electron microscope. Experimental anticrossing measurements using the absorption-dominated extinction signal provide the ultimate evidence for plexciton hybridization in the strong coupling regime. Spatially resolved EELS maps reveal the existence of unexpected nanoscale variations in the deep-subwavelength nature of plexcitons generated by this system. These findings pioneer new possibilities for in-depth studies of the local atomic structure dependence of polariton-related phenomena in TMDC hybrid material systems with nanometer spatial resolution.
Collapse
Affiliation(s)
- Andrew B Yankovich
- Department of Physics , Chalmers University of Technology , 412 96 , Gothenburg , Sweden
| | - Battulga Munkhbat
- Department of Physics , Chalmers University of Technology , 412 96 , Gothenburg , Sweden
| | - Denis G Baranov
- Department of Physics , Chalmers University of Technology , 412 96 , Gothenburg , Sweden
| | - Jorge Cuadra
- Department of Physics , Chalmers University of Technology , 412 96 , Gothenburg , Sweden
| | - Erik Olsén
- Department of Physics , Chalmers University of Technology , 412 96 , Gothenburg , Sweden
| | - Hugo Lourenço-Martins
- Laboratoire de Physique des Solides , Paris-Sud Université, CNRS UMR 8502 , Orsay , France
| | - Luiz H G Tizei
- Laboratoire de Physique des Solides , Paris-Sud Université, CNRS UMR 8502 , Orsay , France
| | - Mathieu Kociak
- Laboratoire de Physique des Solides , Paris-Sud Université, CNRS UMR 8502 , Orsay , France
| | - Eva Olsson
- Department of Physics , Chalmers University of Technology , 412 96 , Gothenburg , Sweden
| | - Timur Shegai
- Department of Physics , Chalmers University of Technology , 412 96 , Gothenburg , Sweden
| |
Collapse
|
15
|
Zachman MJ, Hachtel JA, Idrobo JC, Chi M. Emerging Electron Microscopy Techniques for Probing Functional Interfaces in Energy Materials. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Michael J. Zachman
- Center for Nanophase Materials Sciences Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Jordan A. Hachtel
- Center for Nanophase Materials Sciences Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Juan Carlos Idrobo
- Center for Nanophase Materials Sciences Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Miaofang Chi
- Center for Nanophase Materials Sciences Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| |
Collapse
|
16
|
Zachman MJ, Hachtel JA, Idrobo JC, Chi M. Emerging Electron Microscopy Techniques for Probing Functional Interfaces in Energy Materials. Angew Chem Int Ed Engl 2019; 59:1384-1396. [PMID: 31081976 DOI: 10.1002/anie.201902993] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/01/2019] [Indexed: 11/10/2022]
Abstract
Interfaces play a fundamental role in many areas of chemistry. However, their localized nature requires characterization techniques with high spatial resolution in order to fully understand their structure and properties. State-of-the-art atomic resolution or in situ scanning transmission electron microscopy and electron energy-loss spectroscopy are indispensable tools for characterizing the local structure and chemistry of materials with single-atom resolution, but they are not able to measure many properties that dictate function, such as vibrational modes or charge transfer, and are limited to room-temperature samples containing no liquids. Here, we outline emerging electron microscopy techniques that are allowing these limitations to be overcome and highlight several recent studies that were enabled by these techniques. We then provide a vision for how these techniques can be paired with each other and with in situ methods to deliver new insights into the static and dynamic behavior of functional interfaces.
Collapse
Affiliation(s)
- Michael J Zachman
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Jordan A Hachtel
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Juan Carlos Idrobo
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Miaofang Chi
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| |
Collapse
|
17
|
Sciammarella CA, Sciammarella FM, Lamberti L. Determination of Displacement Fields at the Sub-Nanometric Scale. MATERIALS (BASEL, SWITZERLAND) 2019; 12:ma12111804. [PMID: 31163682 PMCID: PMC6600795 DOI: 10.3390/ma12111804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/27/2019] [Accepted: 05/29/2019] [Indexed: 06/09/2023]
Abstract
Macroscopic behavior of materials depends on interactions of atoms and molecules at nanometer/sub-nanometer scale. Experimental mechanics (EM) can be used for assessing relationships between the macro world and the atomic realm. Theoretical models developed at nanometric and sub-nanometric scales may be verified using EM techniques with the final goal of deriving comprehensive but manageable models. Recently, the authors have carried out studies on EM determination of displacements and their derivatives at the macro and microscopic scales. Here, these techniques were applied to the analysis of high-resolution transmission electron microscopy patterns of a crystalline array containing dislocations. Utilizing atomic positions as carriers of information and comparing undeformed and deformed configurations of observed area, displacements and their derivatives, as well as stresses, have been obtained in the Eulerian description of deformed crystal. Two approaches are introduced. The first establishes an analogy between the basic crystalline structure and a 120° strain gage rosette. The other relies on the fact that, if displacement information along three directions is available, it is possible to reconstruct the displacement field; all necessary equations are provided in the paper. Remarkably, the validity of the Cauchy-Born conjecture is proven to be correct within the range of observed deformations.
Collapse
Affiliation(s)
- Cesar A Sciammarella
- Department of Mechanical, Materials and Aerospace Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA.
| | | | - Luciano Lamberti
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Bari 70126, Italy.
| |
Collapse
|
18
|
El-Demellawi JK, Lopatin S, Yin J, Mohammed OF, Alshareef HN. Tunable Multipolar Surface Plasmons in 2D Ti 3C 2 T x MXene Flakes. ACS NANO 2018; 12:8485-8493. [PMID: 30020767 DOI: 10.1021/acsnano.8b04029] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
2D Ti3C2 T x MXenes were recently shown to exhibit intense surface plasmon (SP) excitations; however, their spatial variation over individual Ti3C2 T x flakes remains undiscovered. Here, we use scanning transmission electron microscopy (STEM) combined with ultra-high-resolution electron energy loss spectroscopy (EELS) to investigate the spatial and energy distribution of SPs (both optically active and forbidden modes) in mono- and multilayered Ti3C2 T x flakes. With STEM-EELS mapping, the inherent interband transition in addition to a variety of transversal and longitudinal SP modes (ranging from visible down to 0.1 eV in MIR) are directly visualized and correlated with the shape, size, and thickness of Ti3C2 T x flakes. The independent polarizability of Ti3C2 T x monolayers is unambiguously demonstrated and attributed to their unusual weak interlayer coupling. This characteristic allows for engineering a class of nanoscale systems, where each monolayer in the multilayered structure of Ti3C2 T x has its own set of SPs with distinctive multipolar characters. Moreover, the tunability of the SP energies is highlighted by conducting in situ heating STEM to monitor the change of the surface functionalization of Ti3C2 T x through annealing at temperatures up to 900 °C. At temperatures above 500 °C, the observed fluorine (F) desorption multiplies the metal-like free electron density of Ti3C2 T x flakes, resulting in a monotonic blue-shift in the SP energy of all modes. These results underline the great potential for the development of Ti3C2 T x-based applications, spanning the visible-MIR spectrum, relying on the excitation and detection of single SPs.
Collapse
Affiliation(s)
- Jehad K El-Demellawi
- Physical Sciences and Engineering Division , King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Kingdom of Saudi Arabia
- KAUST Solar Center (KSC) , King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Kingdom of Saudi Arabia
| | - Sergei Lopatin
- Core Laboratories , King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Kingdom of Saudi Arabia
| | - Jun Yin
- KAUST Solar Center (KSC) , King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Kingdom of Saudi Arabia
| | - Omar F Mohammed
- KAUST Solar Center (KSC) , King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Kingdom of Saudi Arabia
| | - Husam N Alshareef
- Physical Sciences and Engineering Division , King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Kingdom of Saudi Arabia
| |
Collapse
|
19
|
Konečná A, Neuman T, Aizpurua J, Hillenbrand R. Surface-Enhanced Molecular Electron Energy Loss Spectroscopy. ACS NANO 2018; 12:4775-4786. [PMID: 29641179 DOI: 10.1021/acsnano.8b01481] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Electron energy loss spectroscopy (EELS) in a scanning transmission electron microscope (STEM) is becoming an important technique in spatially resolved spectral characterization of optical and vibrational properties of matter at the nanoscale. EELS has played a significant role in understanding localized polaritonic excitations in nanoantennas and also allows for studying molecular excitations in nanoconfined samples. Here we theoretically describe the interaction of a localized electron beam with molecule-covered polaritonic nanoantennas, and propose the concept of surface-enhanced molecular EELS exploiting the electromagnetic coupling between the nanoantenna and the molecular sample. Particularly, we study plasmonic and infrared phononic antennas covered by molecular layers, exhibiting either an excitonic or vibrational response. We demonstrate that EEL spectra of these molecule-antenna coupled systems exhibit Fano-like or strong coupling features, similar to the ones observed in far-field optical and infrared spectroscopy. EELS offers the advantage to acquire spectral information with nanoscale spatial resolution, and importantly, to control the antenna-molecule coupling on demand. Considering ongoing instrumental developments, EELS in STEM shows the potential to become a powerful tool for fundamental studies of molecules that are naturally or intentionally located on nanostructures supporting localized plasmon or phonon polaritons. Surface-enhanced EELS might also enable STEM-EELS applications such as remote- and thus damage-free-sensing of the excitonic and vibrational response of molecules, quantum dots, or 2D materials.
Collapse
Affiliation(s)
- Andrea Konečná
- Materials Physics Center, CSIC-UPV/EHU , Donostia-San Sebastián , 20018 , Spain
| | - Tomáš Neuman
- Materials Physics Center, CSIC-UPV/EHU , Donostia-San Sebastián , 20018 , Spain
| | - Javier Aizpurua
- Materials Physics Center, CSIC-UPV/EHU , Donostia-San Sebastián , 20018 , Spain
- Donostia International Physics Center DIPC , Donostia-San Sebastián , 20018 , Spain
| | - Rainer Hillenbrand
- IKERBASQUE, Basque Foundation for Science , Bilbao , 48013 , Spain
- CIC NanoGUNE and UPV/EHU , Donostia-San Sebastián , 20018 , Spain
| |
Collapse
|
20
|
Neophytou M, Bryant D, Lopatin S, Chen H, Hallani RK, Cater L, McCulloch I, Yue W. Alternative Thieno[3,2-b][1]benzothiophene Isoindigo Polymers for Solar Cell Applications. Macromol Rapid Commun 2018; 39:e1700820. [PMID: 29504170 DOI: 10.1002/marc.201700820] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/04/2018] [Indexed: 11/11/2022]
Abstract
This work reports the synthesis, characterization, photophysical, and photovoltaic properties of five new thieno[3,2-b][1]benzothiophene isoindigo (TBTI)-containing low bandgap donor-acceptor conjugated polymers with a series of comonomers and different side chains. When TBTI is combined with different electron-rich moieties, even small structural variations can have significant impact on thin film morphology of the polymer:phenyl C70 butyric acid methyl ester (PCBM) blends. More importantly, high-resolution electron energy loss spectroscopy is used to investigate the phase-separated bulk heterojunction domains, which can be accurately and precisely resolved, enabling an enhanced correlation between polymer chemical structure, photovoltaic device performance, and morphology.
Collapse
Affiliation(s)
- Marios Neophytou
- KSC, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Daniel Bryant
- KSC, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Sergei Lopatin
- Imaging and Characterization Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Hu Chen
- KSC, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Rawad K Hallani
- KSC, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Lewis Cater
- KSC, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Iain McCulloch
- KSC, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.,Department of Chemistry and Centre for Plastic Electronics, Imperial College London, SW7 2AZ, United Kingdom
| | - Wan Yue
- Department of Chemistry and Centre for Plastic Electronics, Imperial College London, SW7 2AZ, United Kingdom.,Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|