1
|
Materna Mikmeková E, Materna J, Konvalina I, Mikmeková Š, Müllerová I, Asefa T. A soft touch with electron beams: Digging out structural information of nanomaterials with advanced scanning low energy electron microscopy coupled with deep learning. Ultramicroscopy 2024; 262:113965. [PMID: 38640578 DOI: 10.1016/j.ultramic.2024.113965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/04/2024] [Accepted: 04/09/2024] [Indexed: 04/21/2024]
Abstract
Nanostructured materials continue to find applications in various electronic and sensing devices, chromatography, separations, drug delivery, renewable energy, and catalysis. While major advancements on the synthesis and characterization of these materials have already been made, getting information about their structures at sub-nanometer resolution remains challenging. It is also unfortunate to find that many emerging or already available powerful analytical methods take time to be fully adopted for characterization of various nanomaterials. The scanning low energy electron microscopy (SLEEM) is a good example to this. In this report, we show how clearer structural and surface information at nanoscale can be obtained by SLEEM, coupled with deep learning. The method is demonstrated using Au nanoparticles-loaded mesoporous silica as a model system. Moreover, unlike conventional scanning electron microscopy (SEM), SLEEM does not require the samples to be coated with conductive films for analysis; thus, not only it is convenient to use but it also does not give artifacts. The results further reveal that SLEEM and deep learning can serve as great tools to analyze materials at nanoscale well. The biggest advantage of the presented method is its availability, as most modern SEMs are able to operate at low energies and deep learning methods are already being widely used in many fields.
Collapse
Affiliation(s)
- Eliška Materna Mikmeková
- Institute of Scientific Instruments of the Czech Academy of Sciences, Královopolská 147, 612 64 Brno, Czech Republic
| | - Jiří Materna
- Machine Learning College, s.r.o., Chrlická 787/56, 620 00 Brno, Czech Republic
| | - Ivo Konvalina
- Institute of Scientific Instruments of the Czech Academy of Sciences, Královopolská 147, 612 64 Brno, Czech Republic.
| | - Šárka Mikmeková
- Institute of Scientific Instruments of the Czech Academy of Sciences, Královopolská 147, 612 64 Brno, Czech Republic
| | - Ilona Müllerová
- Institute of Scientific Instruments of the Czech Academy of Sciences, Královopolská 147, 612 64 Brno, Czech Republic
| | - Tewodros Asefa
- Department of Chemistry & Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, USA; Department of Chemical & Biochemical Engineering, Rutgers, The State University of New, Jersey 98 Brett Road, Piscataway, New Jersey 08854, USA
| |
Collapse
|
2
|
Xie X, Albrecht W, van Huis MA, van Blaaderen A. Unexpectedly high thermal stability of Au nanotriangle@mSiO 2 yolk-shell nanoparticles. NANOSCALE 2024; 16:4787-4795. [PMID: 38305037 DOI: 10.1039/d3nr05916b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
The shape of Au nanoparticles (NPs) plays a crucial role for applications in, amongst others, catalysis, electronic devices, biomedicine, and sensing. Typically, the deformation of the morphology of Au NPs is the most significant cause of loss of functionality. Here, we systematically investigate the thermal stability of Au nanotriangles (NTs) coated with (mesoporous) silica shells with different morphologies (core-shell (CS): Au NT@mSiO2/yolk-shell (YS): Au NT@mSiO2) and compare these to 'bare' nanoparticles (Au NTs), by a combination of in situ and/or ex situ TEM techniques and spectroscopy methods. Au NTs with a mesoporous silica (mSiO2) coating were found to show much higher thermal stability than those without a mSiO2 coating, as the mSiO2 shell restricts the (self-)diffusion of surface atoms. For the Au NT@mSiO2 CS and YS NPs, a thicker mSiO2 shell provides better protection than uncoated Au NTs. Surprisingly, the Au NT@mSiO2 YS NPs were found to be as stable as Au NT@mSiO2 CS NPs with a core-shell morphology. We hypothesize that the only explanation for this unexpected finding was the thicker and higher density SiO2 shell of YS NPs that prevents diffusion of Au surface atoms to more thermodynamically favorable positions.
Collapse
Affiliation(s)
- Xiaobin Xie
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands.
| | - Wiebke Albrecht
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands.
| | - Marijn A van Huis
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands.
| | - Alfons van Blaaderen
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands.
| |
Collapse
|
3
|
Welling TA, Schoemaker SE, de Jong KP, de Jongh PE. Carbon Nanofiber Growth Rates on NiCu Catalysts: Quantitative Coupling of Macroscopic and Nanoscale In Situ Studies. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:15766-15774. [PMID: 37609377 PMCID: PMC10440819 DOI: 10.1021/acs.jpcc.3c02657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/18/2023] [Indexed: 08/24/2023]
Abstract
Since recently, gas-cell transmission electron microscopy allows for direct, nanoscale imaging of catalysts during reaction. However, often systems are too perturbed by the imaging conditions to be relevant for real-life catalyzed conversions. We followed carbon nanofiber growth from NiCu-catalyzed methane decomposition under working conditions (550 °C, 1 bar of 5% H2, 45% CH4, and 50% Ar), directly comparing the time-resolved overall carbon growth rates in a reactor (measured gravimetrically) and nanometer-scale carbon growth observations (by electron microscopy). Good quantitative agreement in time-dependent growth rates allowed for validation of the electron microscopy measurements and detailed insight into the contribution of individual catalyst nanoparticles in these inherently heterogeneous catalysts to the overall carbon growth. The smallest particles did not contribute significantly to carbon growth, while larger particles (8-16 nm) exhibited high carbon growth rates but deactivated quickly. Even larger particles grew carbon slowly without significant deactivation. This methodology paves the way to understanding macroscopic rates of catalyzed reactions based on nanoscale in situ observations.
Collapse
Affiliation(s)
| | | | - Krijn P. de Jong
- Materials Chemistry &
Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Petra E. de Jongh
- Materials Chemistry &
Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
4
|
Mainali BP, Pattadar DK, Sharma JN, Zamborini FP. Electrochemical Analysis of the Thermal Stability of 0.9-4.1 nm Diameter Gold Nanoclusters. Anal Chem 2023. [PMID: 37506045 DOI: 10.1021/acs.analchem.3c01404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Here we report the thermal properties of weakly stabilized 0.9, 1.6, and 4.1 nm Au nanoparticles (NPs)/nanoclusters (NCs) attached to indium-tin-oxide- or fluorine-doped-tin-oxide-coated glass electrodes (glass/ITO or glass/FTO). The peak oxidation potential (Ep) for Au measured by anodic stripping voltammetry (ASV) is indicative of the NP/NC size. Heating leads to a positive shift in Ep due to an increase in NP/NC size from thermal ripening. The size transition temperature (Tt) decreases with decreasing NP/NC size following the order of 4.1 nm (509 °C) > 1.6 nm (132 °C) > 0.9 nm (90 °C/109 °C, two transitions) as compared to the bulk melting point (Tm,b) for Au of 1064 °C. The Tt generally agrees with models describing the size-dependent melting point of Au NPs (Tm,NP) for 4.1 and 1.6 nm diameter Au NPs but is higher than the models for 0.9 nm Au NCs. Scanning electron microscopy (SEM) and UV-vis size analysis confirm the electrochemical results. The thermal stability of electrode-supported metal NPs/NCs is important for their effective use in catalysis, sensing, nanoelectronics, photovoltaics, and other applications.
Collapse
Affiliation(s)
- Badri P Mainali
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Dhruba K Pattadar
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Jay N Sharma
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Francis P Zamborini
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| |
Collapse
|
5
|
Googasian JS, Skrabalak SE. Practical Considerations for Simulating the Plasmonic Properties of Metal Nanoparticles. ACS PHYSICAL CHEMISTRY AU 2023; 3:252-262. [PMID: 37249938 PMCID: PMC10214510 DOI: 10.1021/acsphyschemau.2c00064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 05/31/2023]
Abstract
Simulating the plasmonic properties of colloidally derived metal nanoparticles with accuracy to their experimentally observed measurements is challenging due to the many structural and compositional parameters that influence their scattering and absorption properties. Correlation between single nanoparticle scattering measurements and simulated spectra emphasize these strong structural and compositional relationships, providing insight into the design of plasmonic nanoparticles. This Perspective builds from this history to highlight how the structural features of models used in simulation methods such as those based on the Finite-Difference Time-Domain (FDTD) method and Discrete Dipole Approximation (DDA) are of critical consideration for correlation with experiment and ultimately prediction of new nanoparticle properties. High-level characterizations such as electron tomography are discussed as ways to advance the accuracy of models used in such simulations, allowing the plasmonic properties of structurally complex nanoparticles to be better understood. However, we also note that the field is far from bringing experiment and simulation into agreement for plasmonic nanoparticles with complex compositions, reflecting analytical challenges that inhibit accurate model generation. Potential directions for addressing these challenges are also presented.
Collapse
Affiliation(s)
- Jack S. Googasian
- Department of Chemistry, Indiana
University—Bloomington, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Sara E. Skrabalak
- Department of Chemistry, Indiana
University—Bloomington, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
6
|
Nguyen QN, Wang C, Shang Y, Janssen A, Xia Y. Colloidal Synthesis of Metal Nanocrystals: From Asymmetrical Growth to Symmetry Breaking. Chem Rev 2022; 123:3693-3760. [PMID: 36547384 DOI: 10.1021/acs.chemrev.2c00468] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nanocrystals offer a unique platform for tailoring the physicochemical properties of solid materials to enhance their performances in various applications. While most work on controlling their shapes revolves around symmetrical growth, the introduction of asymmetrical growth and thus symmetry breaking has also emerged as a powerful route to enrich metal nanocrystals with new shapes and complex morphologies as well as unprecedented properties and functionalities. The success of this route critically relies on our ability to lift the confinement on symmetry by the underlying unit cell of the crystal structure and/or the initial seed in a systematic manner. This Review aims to provide an account of recent progress in understanding and controlling asymmetrical growth and symmetry breaking in a colloidal synthesis of noble-metal nanocrystals. With a touch on both the nucleation and growth steps, we discuss a number of methods capable of generating seeds with diverse symmetry while achieving asymmetrical growth for mono-, bi-, and multimetallic systems. We then showcase a variety of symmetry-broken nanocrystals that have been reported, together with insights into their growth mechanisms. We also highlight their properties and applications and conclude with perspectives on future directions in developing this class of nanomaterials. It is hoped that the concepts and existing challenges outlined in this Review will drive further research into understanding and controlling the symmetry breaking process.
Collapse
Affiliation(s)
- Quynh N. Nguyen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| | - Chenxiao Wang
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| | - Yuxin Shang
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| | - Annemieke Janssen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| | - Younan Xia
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia30332, United States
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia30332, United States
| |
Collapse
|
7
|
Zhou R, Zhang M, Xi J, Li J, Ma R, Ren L, Bai Z, Qi K, Li X. Gold Nanorods-Based Photothermal Therapy: Interactions Between Biostructure, Nanomaterial, and Near-Infrared Irradiation. NANOSCALE RESEARCH LETTERS 2022; 17:68. [PMID: 35882718 PMCID: PMC9325935 DOI: 10.1186/s11671-022-03706-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/21/2022] [Indexed: 05/28/2023]
Abstract
Gold nanorods (AuNRs) are ideal inorganic nanophotothermal agents with unique characteristics, including local surface plasmon resonance effects, easy scale preparation and functional modification, and good biocompatibility. This review summarizes several recent advances in AuNRs-based photothermal therapy (PTT) research. Functionalized AuNRs photothermal agents have optimized biocompatibility and targeting properties. The multifunctional AuNRs nanoplatform composite structure meets the requirements for synergistic effects of PTT, photoacoustic imaging, and other therapeutic methods. Photothermal therapy with AuNRs (AuNRs-PTT) is widely used to treat tumors and inflammatory diseases; its tumor-targeting, tumor metastasis inhibition, and photothermal tumor ablation abilities have remarkable curative effects. An in-depth study of AuNRs in living systems and the interactions between biological structure, nanomaterial, and near-infrared irradiation could lay the foundation for further clinical research and the broad application of AuNRs in PTT.
Collapse
Affiliation(s)
- Ruili Zhou
- The First School of Clinical Medicine, Lanzhou University, No. 1 Donggang West Road, Lanzhou, 730000, Gansu Province, China
| | - Meigui Zhang
- The First School of Clinical Medicine, Lanzhou University, No. 1 Donggang West Road, Lanzhou, 730000, Gansu Province, China
| | - Jiahui Xi
- The First School of Clinical Medicine, Lanzhou University, No. 1 Donggang West Road, Lanzhou, 730000, Gansu Province, China
| | - Jing Li
- The First School of Clinical Medicine, Lanzhou University, No. 1 Donggang West Road, Lanzhou, 730000, Gansu Province, China
| | - Ruixia Ma
- The First School of Clinical Medicine, Lanzhou University, No. 1 Donggang West Road, Lanzhou, 730000, Gansu Province, China
| | - Longfei Ren
- The First School of Clinical Medicine, Lanzhou University, No. 1 Donggang West Road, Lanzhou, 730000, Gansu Province, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Zhongtian Bai
- The First School of Clinical Medicine, Lanzhou University, No. 1 Donggang West Road, Lanzhou, 730000, Gansu Province, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, China
| | - Kuo Qi
- The First School of Clinical Medicine, Lanzhou University, No. 1 Donggang West Road, Lanzhou, 730000, Gansu Province, China.
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, China.
| | - Xun Li
- The First School of Clinical Medicine, Lanzhou University, No. 1 Donggang West Road, Lanzhou, 730000, Gansu Province, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, China
- Hepatopancreatobiliary Surgery Institute of Gansu Province, Medical College Cancer Center of Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
8
|
Dieperink M, Scalerandi F, Albrecht W. Correlating structure, morphology and properties of metal nanostructures by combining single-particle optical spectroscopy and electron microscopy. NANOSCALE 2022; 14:7460-7472. [PMID: 35481561 DOI: 10.1039/d1nr08130f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The nanoscale morphology of metal nanostructures directly defines their optical, catalytic and electronic properties and even small morphological changes can cause significant property variations. On the one hand, this dependence allows for precisely tuning and exploring properties by shape engineering; next to advanced synthesis protocols, post-synthesis modification through tailored laser modification has become an emerging tool to do so. On the other hand, with this interconnection also comes the quest for detailed structure-property correlation and understanding of laser-induced reshaping processes on the individual nanostructure level beyond ensemble averages. With the development of single-particle (ultrafast) optical spectroscopy techniques and advanced electron microscopy such understanding can in principle be gained at the femtosecond temporal and atomic spatial scale, respectively. However, accessing both on the same individual nanostructure is far from straightforward as it requires the combination of optical spectroscopy and electron microscopy. In this Minireview, we highlight key studies from recent years that performed such correlative measurements on the same individual metal nanostructure either in a consecutive ex situ manner or in situ inside the electron microscope. We demonstrate that such a detailed correlation is critical for revealing the full picture of the structure-property relationship and the physics behind light-induced nanostructure modifications. We put emphasis on the advantages and disadvantages of each methodology as well as on the unique information that one can gain only by correlative studies performed on the same individual nanostructure and end with an outlook on possible further development of this field in the near future.
Collapse
Affiliation(s)
- Mees Dieperink
- Department of Sustainable Energy Materials, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands.
| | - Francesca Scalerandi
- Department of Sustainable Energy Materials, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands.
| | - Wiebke Albrecht
- Department of Sustainable Energy Materials, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands.
| |
Collapse
|
9
|
He Y, Chen J, Liu R, Weng Y, Zhang C, Kuang Y, Wang X, Guo L, Ran X. Suppressed Blinking and Polarization-Dependent Emission Enhancement of Single ZnCdSe/ZnS Dot Coupled with Au Nanorods. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12901-12910. [PMID: 35245021 DOI: 10.1021/acsami.2c00207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fluorescent quantum dots (QDs) have attracted extensive attention because of their promising applications in many fields such as quantum optics, optoelectronics, solid-state lighting, and bioimaging. However, photo-blinking, low emission efficiency, and instability are the drawbacks of fluorescent QD-based devices, affecting their optical properties and practical applications. Here, we report suppressed blinking, enhanced radiative rate, and polarization-dependent emission properties of single ZnCdSe/ZnS QDs assembled on the surface of Au nanorods (NRs). We found that the local surface plasmon (LSP) of Au NRs significantly regulates the excitation and emission properties of the composite ZnCdSe/ZnS QD-Au NRs (QD-Au NRs). The average number of photons emitted per unit time from single QD-Au NRs has been significantly enhanced compared with that of single ZnCdSe/ZnS QDs on the coverslip, accompanied by a drastically shortened lifetime and suppressed blinking. According to the experimental and simulation analysis, the photogenerated LSP field of Au NRs remarkably increases the excitation transition and the radiative rates of QD-Au NRs. Although the emission efficiency is slightly increased, the synergetic enhancement of excitation and radiative rates sufficiently competes with the nonradiative process to compensate for the low emission efficiency of QDs and ultimately suppress the photo-blinking of QD-Au NRs. Moreover, the polarization-dependent emission enhancement has also been observed and theoretically analyzed, demonstrating good consistency and confirming the contribution of excitation enhancement. Our findings present a practical strategy to improve the optical properties and stability of single QD-Au NR composite and provide essential information for a deep understanding of the interaction between emitters and the LSP field of metal nanoparticles.
Collapse
Affiliation(s)
- Yulu He
- Academy for Advanced Interdisciplinary Studies, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Jin Chen
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China
| | - Renming Liu
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China
| | - Yulong Weng
- Academy for Advanced Interdisciplinary Studies, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Cong Zhang
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China
| | - Yanmin Kuang
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China
| | - Xiaojuan Wang
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China
| | - Lijun Guo
- Academy for Advanced Interdisciplinary Studies, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Xia Ran
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China
| |
Collapse
|
10
|
Mychinko M, Skorikov A, Albrecht W, Sánchez-Iglesias A, Zhuo X, Kumar V, Liz-Marzán LM, Bals S. The Influence of Size, Shape, and Twin Boundaries on Heat-Induced Alloying in Individual Au@Ag Core-Shell Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102348. [PMID: 34259397 DOI: 10.1002/smll.202102348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/26/2021] [Indexed: 06/13/2023]
Abstract
Environmental conditions during real-world application of bimetallic core-shell nanoparticles (NPs) often include the use of elevated temperatures, which are known to cause elemental redistribution, in turn significantly altering the properties of these nanomaterials. Therefore, a thorough understanding of such processes is of great importance. The recently developed combination of fast electron tomography with in situ heating holders is a powerful approach to investigate heat-induced processes at the single NP level, with high spatial resolution in 3D. In combination with 3D finite-difference diffusion simulations, this method can be used to disclose the influence of various NP parameters on the diffusion dynamics in Au@Ag core-shell systems. A detailed study of the influence of heating on atomic diffusion and alloying for Au@Ag NPs with varying core morphology and crystallographic details is carried out. Whereas the core shape and aspect ratio of the NPs play a minor role, twin boundaries are found to have a strong influence on the elemental diffusion.
Collapse
Affiliation(s)
- Mikhail Mychinko
- EMAT, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
| | - Alexander Skorikov
- EMAT, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
| | - Wiebke Albrecht
- EMAT, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
| | - Ana Sánchez-Iglesias
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain
| | - Xiaolu Zhuo
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain
| | - Vished Kumar
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48013, Spain
- Department of Applied Chemistry, University of the Basque Country, Donostia-San Sebastián, 20018, Spain
| | - Sara Bals
- EMAT, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
| |
Collapse
|
11
|
Podor R, Trillaud V, Nkou Bouala GI, Dacheux N, Ricolleau C, Clavier N. A multiscale in situ high temperature high resolution transmission electron microscopy study of ThO 2 sintering. NANOSCALE 2021; 13:7362-7374. [PMID: 33889920 DOI: 10.1039/d1nr00956g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Two-grain model systems formed by ThO2 nanospheres have been used to experimentally study for the first time the initial stage of sintering from room temperature to 1050 °C using high temperature high resolution transmission electron microscopy. In each grain, oriented attachment drove the reorganization and growth of the crystallites up to 300 °C to form a pseudo single crystal. Crystallite size kept growing up to 950 °C. At this temperature, a fast transformation probably corresponding to the elimination of stacking faults or dislocation walls led to the formation of single-crystals. The contact formed at room temperature between the two grains was stabilized during heat treatment by a slight reorientation of the crystallographic planes (T≈ 400 °C), leading the neck to be formed by numerous boundaries between the crystallites. At higher temperatures, the neck evolved and stabilized in the form of a plane of crystallographic orientation mismatch between the grains, which corresponds to the usual definition of the grain boundary. The growth of the neck by the addition of atomic columns was further observed in real time and quantified. At T = 950 °C, the evolution of the microscopic sintering parameter λ was obtained from HT-HRTEM images and indicated that the neck formation mostly proceeded through volume diffusion.
Collapse
Affiliation(s)
- R Podor
- ICSM, Univ Montpellier, CNRS, CEA, ENSCM, Bagnols-sur-Cèze, France.
| | | | | | | | | | | |
Collapse
|
12
|
Reduced cytotoxicity of CTAB-templated silica layer on gold nanorod using fluorescence dyes and its application in cancer theranostics. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.01.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Bagiński M, Pedrazo-Tardajos A, Altantzis T, Tupikowska M, Vetter A, Tomczyk E, Suryadharma RN, Pawlak M, Andruszkiewicz A, Górecka E, Pociecha D, Rockstuhl C, Bals S, Lewandowski W. Understanding and Controlling the Crystallization Process in Reconfigurable Plasmonic Superlattices. ACS NANO 2021; 15:4916-4926. [PMID: 33621046 PMCID: PMC8028333 DOI: 10.1021/acsnano.0c09746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The crystallization of nanomaterials is a primary source of solid-state, photonic structures. Thus, a detailed understanding of this process is of paramount importance for the successful application of photonic nanomaterials in emerging optoelectronic technologies. While colloidal crystallization has been thoroughly studied, for example, with advanced in situ electron microscopy methods, the noncolloidal crystallization (freezing) of nanoparticles (NPs) remains so far unexplored. To fill this gap, in this work, we present proof-of-principle experiments decoding a crystallization of reconfigurable assemblies of NPs at a solid state. The chosen material corresponds to an excellent testing bed, as it enables both in situ and ex situ investigation using X-ray diffraction (XRD), transmission electron microscopy (TEM), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), atomic force microscopy (AFM), and optical spectroscopy in visible and ultraviolet range (UV-vis) techniques. In particular, ensemble measurements with small-angle XRD highlighted the dependence of the correlation length in the NPs assemblies on the number of heating/cooling cycles and the rate of cooling. Ex situ TEM imaging further supported these results by revealing a dependence of domain size and structure on the sample preparation route and by showing we can control the domain size over 2 orders of magnitude. The application of HAADF-STEM tomography, combined with in situ thermal control, provided three-dimensional single-particle level information on the positional order evolution within assemblies. This combination of real and reciprocal space provides insightful information on the anisotropic, reversibly reconfigurable assemblies of NPs. TEM measurements also highlighted the importance of interfaces in the polydomain structure of nanoparticle solids, allowing us to understand experimentally observed differences in UV-vis extinction spectra of the differently prepared crystallites. Overall, the obtained results show that the combination of in situ heating HAADF-STEM tomography with XRD and ex situ TEM techniques is a powerful approach to study nanoparticle freezing processes and to reveal the crucial impact of disorder in the solid-state aggregates of NPs on their plasmonic properties.
Collapse
Affiliation(s)
- Maciej Bagiński
- Faculty
of Chemistry, University of Warsaw, 1 Pasteura St., 02-093 Warsaw, Poland
| | - Adrián Pedrazo-Tardajos
- Electron
Microscopy for Materials Research, University
of Antwerp, Groenenborgerlaan, 171, 2020 Antwerp, Belgium
| | - Thomas Altantzis
- Electron
Microscopy for Materials Research, University
of Antwerp, Groenenborgerlaan, 171, 2020 Antwerp, Belgium
| | - Martyna Tupikowska
- Faculty
of Chemistry, University of Warsaw, 1 Pasteura St., 02-093 Warsaw, Poland
| | - Andreas Vetter
- Institute
of Theoretical Solid State Physics, Karlsruhe
Institute of Technology, 76131 Karlsruhe, Germany
| | - Ewelina Tomczyk
- Faculty
of Chemistry, University of Warsaw, 1 Pasteura St., 02-093 Warsaw, Poland
| | - Radius N.S. Suryadharma
- Institute
of Theoretical Solid State Physics, Karlsruhe
Institute of Technology, 76131 Karlsruhe, Germany
| | - Mateusz Pawlak
- Faculty
of Chemistry, University of Warsaw, 1 Pasteura St., 02-093 Warsaw, Poland
| | - Aneta Andruszkiewicz
- Faculty
of Chemistry, University of Warsaw, 1 Pasteura St., 02-093 Warsaw, Poland
- Department
of Chemistry, Uppsala Universitet, Lägerhyddsvägen 1, 751 20 Uppsala, Sweden
| | - Ewa Górecka
- Faculty
of Chemistry, University of Warsaw, 1 Pasteura St., 02-093 Warsaw, Poland
| | - Damian Pociecha
- Faculty
of Chemistry, University of Warsaw, 1 Pasteura St., 02-093 Warsaw, Poland
| | - Carsten Rockstuhl
- Institute
of Theoretical Solid State Physics, Karlsruhe
Institute of Technology, 76131 Karlsruhe, Germany
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology, 76021 Karlsruhe, Germany
| | - Sara Bals
- Electron
Microscopy for Materials Research, University
of Antwerp, Groenenborgerlaan, 171, 2020 Antwerp, Belgium
- (S.B.)
| | - Wiktor Lewandowski
- Faculty
of Chemistry, University of Warsaw, 1 Pasteura St., 02-093 Warsaw, Poland
- (W.L.)
| |
Collapse
|
14
|
Albrecht W, Van Aert S, Bals S. Three-Dimensional Nanoparticle Transformations Captured by an Electron Microscope. Acc Chem Res 2021; 54:1189-1199. [PMID: 33566587 DOI: 10.1021/acs.accounts.0c00711] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
ConspectusThree-dimensional (3D) morphology and composition govern the properties of nanoparticles (NPs). However, due to their high surface-to-volume ratio, the morphology and composition of nanomaterials are not as static as those for their bulk counterparts. One major influence is the increase in relative contribution of surface diffusion, which underlines rapid reshaping of NPs in response to changes in their environment. If not accounted for, these effects might affect the robustness of prospective NPs in practically relevant conditions, such as elevated temperatures, intense light illumination, or changing chemical environments. In situ techniques are promising tools to study NP transformations under relevant conditions. Among those tools, in situ transmission electron microscopy (TEM) provides an elegant platform to directly visualize NP changes down to the atomic scale. By the use of specialized holders or microscopes, external stimuli, such as heat, or environments, such as gas and liquids, can be controllably introduced inside the TEM. In addition, TEM is also a valuable tool to determine NP transformations upon ex situ stimuli such as laser excitation. However, standard TEM yields two-dimensional (2D) projection images of 3D objects. With the growing complexity of NP shapes and compositions, the information that is obtained in this manner is often insufficient to understand intricate diffusion dynamics.In this Account, we describe recent progress on measuring NP transformations in 3D inside the electron microscope. First, we discuss existing possibilities to obtain 3D information using either tomographic methods or the so-called atom counting technique, which utilizes single projection images. Next, we show how these techniques can be combined with in situ holders to quantify diffusion processes on a single nanoparticle level. Specifically, we focus on anisotropic metal NPs at elevated temperatures and in varying gas environments. Anisotropic metal NPs are important for plasmonic applications, because sharp tips and edges result in strong electromagnetic field enhancements. By electron tomography, surface diffusion as well as elemental diffusion can be tracked in monometallic and bimetallic NPs, which can then be directly related to changes in plasmonic properties of these systems. By atom counting, it has furthermore become possible to monitor the evolution of crystalline facets of metal NPs under gas and heat treatments, a change that influences catalytic properties. Next to in situ processes, we also demonstrate the value of electron tomography to assess external laser-induced NP transformations, making it viable to detect structural changes with atomic resolution. The application of the proposed methodologies is by far not limited to metal nanoparticles. In the final section, we therefore outline future material research that can benefit from tracking NP transformations from 3D techniques.
Collapse
Affiliation(s)
- Wiebke Albrecht
- EMAT and NANOlab Center of Excellence, University of Antwerp, B-2020 Antwerp, Belgium
| | - Sandra Van Aert
- EMAT and NANOlab Center of Excellence, University of Antwerp, B-2020 Antwerp, Belgium
| | - Sara Bals
- EMAT and NANOlab Center of Excellence, University of Antwerp, B-2020 Antwerp, Belgium
| |
Collapse
|
15
|
De Meyer R, Albrecht W, Bals S. Effectiveness of reducing the influence of CTAB at the surface of metal nanoparticles during in situ heating studies by TEM. Micron 2021; 144:103036. [PMID: 33640671 DOI: 10.1016/j.micron.2021.103036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/15/2021] [Accepted: 02/15/2021] [Indexed: 11/28/2022]
Abstract
In situ TEM is a valuable technique to offer novel insights in the behavior of nanomaterials under various conditions. However, interpretation of in situ experiments is not straightforward since the electron beam can impact the outcome of such measurements. For example, ligands surrounding metal nanoparticles transform into a protective carbon layer upon electron beam irradiation and may impact the apparent thermal stability during in situ heating experiments. In this work, we explore the effect of different treatments typically proposed to remove such ligands. We found that plasma treatment prior to heating experiments for Au nanorods and nanostars increased the apparent thermal stability of the nanoparticles, while an activated carbon treatment resulted in a decrease of the observed thermal stability. Treatment with HCl barely changed the experimental outcome. These results demonstrate the importance of carefully selecting pre-treatments procedures during in situ heating experiments.
Collapse
Affiliation(s)
- Robin De Meyer
- EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium; Nanolab Centre of Excellence, Groenenborgerlaan 171, B-2020, Antwerp, Belgium
| | - Wiebke Albrecht
- EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium; Nanolab Centre of Excellence, Groenenborgerlaan 171, B-2020, Antwerp, Belgium
| | - Sara Bals
- EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium; Nanolab Centre of Excellence, Groenenborgerlaan 171, B-2020, Antwerp, Belgium.
| |
Collapse
|
16
|
Heidari S, Balaghi SE, Sologubenko AS, Patzke GR. Economic Manganese-Oxide-Based Anodes for Efficient Water Oxidation: Rapid Synthesis and In Situ Transmission Electron Microscopy Monitoring. ACS Catal 2021. [DOI: 10.1021/acscatal.0c03388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Sima Heidari
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - S. Esmael Balaghi
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Alla S. Sologubenko
- Scientific Center for Optical and Electron Microscopy (ScopeM), ETH Zurich, Otto-Stern-Weg 3, CH-8093 Zurich, Switzerland
| | - Greta R. Patzke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
17
|
Milagres de Oliveira T, Albrecht W, González-Rubio G, Altantzis T, Lobato Hoyos IP, Béché A, Van Aert S, Guerrero-Martínez A, Liz-Marzán LM, Bals S. 3D Characterization and Plasmon Mapping of Gold Nanorods Welded by Femtosecond Laser Irradiation. ACS NANO 2020; 14:12558-12570. [PMID: 32790321 DOI: 10.1021/acsnano.0c02610] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Ultrafast laser irradiation can induce morphological and structural changes in plasmonic nanoparticles. Gold nanorods (Au NRs), in particular, can be welded together upon irradiation with femtosecond laser pulses, leading to dimers and trimers through the formation of necks between individual nanorods. We used electron tomography to determine the 3D (atomic) structure at such necks for representative welding geometries and to characterize the induced defects. The spatial distribution of localized surface plasmon modes for different welding configurations was assessed by electron energy loss spectroscopy. Additionally, we were able to directly compare the plasmon line width of single-crystalline and welded Au NRs with single defects at the same resonance energy, thus making a direct link between the structural and plasmonic properties. In this manner, we show that the occurrence of (single) defects results in significant plasmon broadening.
Collapse
Affiliation(s)
- Thaís Milagres de Oliveira
- EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Wiebke Albrecht
- EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Guillermo González-Rubio
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain
- Departamento de Química Física, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040 Madrid, Spain
| | - Thomas Altantzis
- EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Ivan Pedro Lobato Hoyos
- EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Armand Béché
- EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Sandra Van Aert
- EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Andrés Guerrero-Martínez
- Departamento de Química Física, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040 Madrid, Spain
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain
- Ikerbasque (Basque Foundation for Science), 48013 Bilbao, Spain
| | - Sara Bals
- EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| |
Collapse
|
18
|
Boyadzhiev A, Trevithick-Sutton C, Wu D, Decan N, Bazin M, Shah GM, Halappanavar S. Enhanced Dark-Field Hyperspectral Imaging and Spectral Angle Mapping for Nanomaterial Detection in Consumer Care Products and in Skin Following Dermal Exposure. Chem Res Toxicol 2020; 33:1266-1278. [DOI: 10.1021/acs.chemrestox.0c00090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Andrey Boyadzhiev
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | | | - Dongmei Wu
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | | | - Marc Bazin
- Laboratory for Skin Cancer Research, CHU de Quebec Laval University (CHUL), Quebec City, Canada
| | - Girish M. Shah
- Laboratory for Skin Cancer Research, CHU de Quebec Laval University (CHUL), Quebec City, Canada
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| |
Collapse
|
19
|
Zhu B, Meng J, Yuan W, Zhang X, Yang H, Wang Y, Gao Y. Umformung von Metallnanopartikeln unter Reaktionsbedingungen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201906799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Beien Zhu
- Shanghai Advanced Research InstituteChinese Academy of Sciences 201210 Shanghai China
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201800 China
| | - Jun Meng
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Wentao Yuan
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Xun Zhang
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Hangsheng Yang
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Yong Wang
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Yi Gao
- Shanghai Advanced Research InstituteChinese Academy of Sciences 201210 Shanghai China
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201800 China
| |
Collapse
|
20
|
Zhu B, Meng J, Yuan W, Zhang X, Yang H, Wang Y, Gao Y. Reshaping of Metal Nanoparticles Under Reaction Conditions. Angew Chem Int Ed Engl 2020; 59:2171-2180. [DOI: 10.1002/anie.201906799] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/10/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Beien Zhu
- Shanghai Advanced Research InstituteChinese Academy of Sciences 201210 Shanghai China
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201800 China
| | - Jun Meng
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Wentao Yuan
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Xun Zhang
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Hangsheng Yang
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Yong Wang
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Yi Gao
- Shanghai Advanced Research InstituteChinese Academy of Sciences 201210 Shanghai China
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201800 China
| |
Collapse
|
21
|
Xing Y, Cai Z, Xu M, Ju W, Luo X, Hu Y, Liu X, Kang T, Wu P, Cai C, Zhu JJ. Raman observation of a molecular signaling pathway of apoptotic cells induced by photothermal therapy. Chem Sci 2019; 10:10900-10910. [PMID: 32190245 PMCID: PMC7066574 DOI: 10.1039/c9sc04389f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 10/15/2019] [Indexed: 12/14/2022] Open
Abstract
Plasmonic nanoparticle (NP)-mediated photothermal therapy (PPTT) has been explored as a minimally invasive approach to cancer therapy and has progressed from concept to the early stage of clinical trials. Better understanding of the cellular and molecular response to PPTT is crucial for improvement of therapy efficacy and advancement of clinical application. However, the molecular mechanism underlying PPTT-induced apoptosis is still unclear and under dispute. In this work, we used nuclear-targeting Au nanostars (Au NSs) as both a photothermal agent to specifically induce apoptosis in cancer cells and as a surface enhanced Raman spectroscopy (SERS) probe to monitor the time-dependent SERS spectra of MCF-7 cells which are undergoing apoptosis. Through SERS spectra and their synchronous and asynchronous SERS correlation maps, the occurrence and dynamics of a cascade of molecular events have been investigated, and a molecular signaling pathway of PPTT-induced apoptosis, including release of cytochrome c, protein degradation, and DNA fragmentation, was revealed, which was also demonstrated by metabolomics, agarose gel electrophoresis, and western blot analysis, respectively. These results indicated that PPTT-induced apoptosis undergoes an intrinsic mitochondria-mediated apoptosis pathway. Combined with western blot results, this intrinsic mitochondria-mediated apoptosis pathway was further demonstrated to be initiated by a BH3-only protein, BID. This work is beneficial for not only improving the fundamental understanding of the molecular mechanism of apoptosis induced by PPTT but also for guiding the modulation of PPTT to drive forward its clinical application.
Collapse
Affiliation(s)
- Yingfang Xing
- Jiangsu Key Laboratory of New Power Batteries , Jiangsu Collaborative Innovation Center of Biomedical Functional Materials , National and Local Joint Engineering Research Center of Biomedical Functional Materials , College of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210097 , P. R. China . ;
| | - Zhewei Cai
- Department of Chemical and Biomolecular Engineering , Clarkson University , Potsdam , NY 13699 , USA
| | - Meijuan Xu
- Key Laboratory of Department of Clinical Pharmacology , Affiliated Hospital of Nanjing University of Chinese Medicine , China
| | - Wenzheng Ju
- Key Laboratory of Department of Clinical Pharmacology , Affiliated Hospital of Nanjing University of Chinese Medicine , China
| | - Xiaojun Luo
- Jiangsu Key Laboratory of New Power Batteries , Jiangsu Collaborative Innovation Center of Biomedical Functional Materials , National and Local Joint Engineering Research Center of Biomedical Functional Materials , College of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210097 , P. R. China . ;
| | - Yaojuan Hu
- Jiangsu Key Laboratory of New Power Batteries , Jiangsu Collaborative Innovation Center of Biomedical Functional Materials , National and Local Joint Engineering Research Center of Biomedical Functional Materials , College of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210097 , P. R. China . ;
| | - Xiaoyan Liu
- Jiangsu Key Laboratory of New Power Batteries , Jiangsu Collaborative Innovation Center of Biomedical Functional Materials , National and Local Joint Engineering Research Center of Biomedical Functional Materials , College of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210097 , P. R. China . ;
| | - Tuli Kang
- Jiangsu Key Laboratory of New Power Batteries , Jiangsu Collaborative Innovation Center of Biomedical Functional Materials , National and Local Joint Engineering Research Center of Biomedical Functional Materials , College of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210097 , P. R. China . ;
| | - Ping Wu
- Jiangsu Key Laboratory of New Power Batteries , Jiangsu Collaborative Innovation Center of Biomedical Functional Materials , National and Local Joint Engineering Research Center of Biomedical Functional Materials , College of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210097 , P. R. China . ;
| | - Chenxin Cai
- Jiangsu Key Laboratory of New Power Batteries , Jiangsu Collaborative Innovation Center of Biomedical Functional Materials , National and Local Joint Engineering Research Center of Biomedical Functional Materials , College of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210097 , P. R. China . ;
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical for Life Science , School of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210093 , P. R. China .
| |
Collapse
|
22
|
Du J, Meng J, Li XY, Zhu B, Gao Y. Multiscale atomistic simulation of metal nanoparticles under working conditions. NANOSCALE ADVANCES 2019; 1:2478-2484. [PMID: 36132725 PMCID: PMC9419150 DOI: 10.1039/c9na00196d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/10/2019] [Indexed: 06/10/2023]
Abstract
With the fast development of in situ experimental methodologies, dramatic structure reconstructions of nanomaterials that only occur under reaction conditions have been discovered in recent years, which are critical for their application in catalysis, biomedicine, and biosensors. A big challenge for theoreticians is thus to establish reliable models to reproduce the experimental observations quantitatively, and further to make predictions beyond experimental conditions. Herein, we briefly summarize the recent theoretical advances involving the quantitative predictions of equilibrium shapes of metal nanoparticles under reaction conditions and the real-time simulations of nanocrystal transformations. The comparisons between the theoretical and experimental results are presented. This minireview not only helps researchers understand the in situ observations at the atomic level, but also is beneficial for prescreening and optimizing the NPs for practical use.
Collapse
Affiliation(s)
- Jifeng Du
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jun Meng
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiao-Yan Li
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Beien Zhu
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
- Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences Shanghai 201210 China
| | - Yi Gao
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
- Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences Shanghai 201210 China
| |
Collapse
|
23
|
Albrecht W, Bladt E, Vanrompay H, Smith JD, Skrabalak SE, Bals S. Thermal Stability of Gold/Palladium Octopods Studied in Situ in 3D: Understanding Design Rules for Thermally Stable Metal Nanoparticles. ACS NANO 2019; 13:6522-6530. [PMID: 31091074 DOI: 10.1021/acsnano.9b00108] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Multifunctional metal nanoparticles (NPs) such as anisotropic multimetallic NPs are crucial for boosting nanomaterial-based applications. Advanced synthetic protocols exist to make a large variety of such nanostructures. However, a major limiting factor for the usability of them in real life applications is their stability. Here, we show that Au/Pd octopods, eight-branched nanocrystals with O h symmetry, with only a low amount of Pd exhibited a high thermal stability and maintained strong plasmon resonances up to 600 °C. Furthermore, we study the influence of the composition, morphology, and environment on the thermal stability and define key parameters for the design of thermally stable multifunctional NPs.
Collapse
Affiliation(s)
- Wiebke Albrecht
- EMAT , University of Antwerp , Groenenborgerlaan 171 , B-2020 Antwerp , Belgium
| | - Eva Bladt
- EMAT , University of Antwerp , Groenenborgerlaan 171 , B-2020 Antwerp , Belgium
| | - Hans Vanrompay
- EMAT , University of Antwerp , Groenenborgerlaan 171 , B-2020 Antwerp , Belgium
| | - Joshua D Smith
- Department of Chemistry , Indiana University , 800 East Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| | - Sara E Skrabalak
- Department of Chemistry , Indiana University , 800 East Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| | - Sara Bals
- EMAT , University of Antwerp , Groenenborgerlaan 171 , B-2020 Antwerp , Belgium
| |
Collapse
|
24
|
Vanrompay H, Bladt E, Albrecht W, Béché A, Zakhozheva M, Sánchez-Iglesias A, Liz-Marzán LM, Bals S. 3D characterization of heat-induced morphological changes of Au nanostars by fast in situ electron tomography. NANOSCALE 2018; 10:22792-22801. [PMID: 30512028 DOI: 10.1039/c8nr08376b] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A thorough understanding of the thermal stability and potential reshaping of anisotropic gold nanostars is required for various potential applications. Combination of a tomographic heating holder with fast tilt series acquisition has been used to monitor temperature-induced morphological changes of Au nanostars. The outcome of our 3D investigations can be used as an input for boundary element method simulations, enabling us to investigate the influence of reshaping on the nanostars' plasmonic properties. Our work leads to a better understanding of the mechanism behind thermal reshaping. In addition, the approach presented here is generic and can hence be applied to a wide variety of nanoparticles made of different materials and with arbitrary morphology.
Collapse
Affiliation(s)
- Hans Vanrompay
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | - Eva Bladt
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | - Wiebke Albrecht
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | - Armand Béché
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | | | - Ana Sánchez-Iglesias
- Bionanoplasmonics Laboratory, CIC biomaGUNE, Paseo de Miramón 182, 20014 Donostia - San Sebastian, Spain
| | - Luis M Liz-Marzán
- Bionanoplasmonics Laboratory, CIC biomaGUNE, Paseo de Miramón 182, 20014 Donostia - San Sebastian, Spain and Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Spain
| | - Sara Bals
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| |
Collapse
|