1
|
Yun H, Topsakal M, Prakash A, Jalan B, Jeong JS, Birol T, Mkhoyan KA. Metallic line defect in wide-bandgap transparent perovskite BaSnO 3. SCIENCE ADVANCES 2021; 7:7/3/eabd4449. [PMID: 33523903 PMCID: PMC7810381 DOI: 10.1126/sciadv.abd4449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
A line defect with metallic characteristics has been found in optically transparent BaSnO3 perovskite thin films. The distinct atomic structure of the defect core, composed of Sn and O atoms, was visualized by atomic-resolution scanning transmission electron microscopy (STEM). When doped with La, dopants that replace Ba atoms preferentially segregate to specific crystallographic sites adjacent to the line defect. The electronic structure of the line defect probed in STEM with electron energy-loss spectroscopy was supported by ab initio theory, which indicates the presence of Fermi level-crossing electronic bands that originate from defect core atoms. These metallic line defects also act as electron sinks attracting additional negative charges in these wide-bandgap BaSnO3 films.
Collapse
Affiliation(s)
- Hwanhui Yun
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mehmet Topsakal
- Nuclear Science and Technology Department, Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Abhinav Prakash
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Bharat Jalan
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jong Seok Jeong
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
- Analytical Sciences Center, LG Chem Ltd., Daejeon, Republic of Korea
| | - Turan Birol
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - K Andre Mkhoyan
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
2
|
Roth J, Paul A, Goldner N, Pogrebnyakov A, Agueda K, Birol T, Alem N, Engel-Herbert R. Sputtered Sr xNbO 3 as a UV-Transparent Conducting Film. ACS APPLIED MATERIALS & INTERFACES 2020; 12:30520-30529. [PMID: 32515187 DOI: 10.1021/acsami.0c04854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Expanding the application space of transparent electrodes toward the ultraviolet range has been found challenging when utilizing the conventional approach to degenerately dope semiconductors with band gaps larger than ZnO or In2O3. Here, it is shown that the correlated metal SrxNbO3 with x < 1 is ideally suited as a UV-transparent electrode material, enabling UV light-emitting diodes for a wide range of applications from water disinfection to polymer curing. It is demonstrated that SrxNbO3 thin films can be grown by radio frequency (RF) sputtering and that they remain in the perovskite phase despite a sizeable Sr deficiency. The electrical and optical properties are characterized and compared to those of commonly used indium tin oxide (ITO) and Sn-doped Ga2O3 transparent conductor standards. SrxNbO3 films were found to have sheet resistances as low as 30 Ω sq-1 with optical transmission at a wavelength of 280 nm up to 86%, marking a two-order-of-magnitude increase over the performance of traditional UV-transparent conductors. The compatibility of SrxNbO3 with a physical vapor deposition technique that is widely employed in the transparent conductor coating industry along with the robustness of the highly electrically conducting and optically transparent perovskite phase makes it an ideal transparent electrode for applications in the UV spectrum.
Collapse
Affiliation(s)
- Joseph Roth
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Arpita Paul
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Nathan Goldner
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Alexej Pogrebnyakov
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Kleyser Agueda
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Turan Birol
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Nasim Alem
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Roman Engel-Herbert
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
3
|
Song D, Wan D, Wu HH, Xue D, Ning S, Wu M, Venkatesan T, Pennycook SJ. Electronic and plasmonic phenomena at nonstoichiometric grain boundaries in metallic SrNbO 3. NANOSCALE 2020; 12:6844-6851. [PMID: 32186322 DOI: 10.1039/c9nr10221c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Grain boundaries could exhibit exceptional electronic structure and exotic properties, which are determined by a local atomic configuration and stoichiometry that differs from the bulk. However, optical and plasmonic properties at the grain boundaries in metallic oxides have rarely been discussed before. Here, we show that non-stoichiometric grain boundaries in the newly discovered metallic SrNbO3 photocatalyst show exotic electronic, optical and plasmonic phenomena in comparison to bulk. Aberration-corrected scanning transmission electron microscopy and first-principles calculations reveal that a Nb-rich grain boundary exhibits an increased carrier concentration with quasi-1D metallic conductivity, and newly induced electronic states contributing to the broad energy range of optical absorption. More importantly, dielectric function calculations reveal extended and enhanced plasmonic excitations compared with bulk SrNbO3. Our results show that non-stoichiometric grain boundaries might be utilized to control the electronic and plasmonic properties in oxide photocatalysis.
Collapse
Affiliation(s)
- Dongsheng Song
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575.
| | | | | | | | | | | | | | | |
Collapse
|