1
|
Lee HS, Park JH, Lee SJ. Artificial intelligence-based speckle featurization and localization for ultrasound speckle tracking velocimetry. ULTRASONICS 2024; 138:107241. [PMID: 38232448 DOI: 10.1016/j.ultras.2024.107241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/25/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024]
Abstract
Deep learning-based super-resolution ultrasound (DL-SRU) framework has been successful in improving spatial resolution and measuring the velocity field information of a blood flows by localizing and tracking speckle signals of red blood cells (RBCs) without using any contrast agents. However, DL-SRU can localize only a small part of the speckle signals of blood flow owing to ambiguity problems encountered in the classification of blood flow signals from ultrasound B-mode images and the building up of suitable datasets required for training artificial neural networks, as well as the structural limitations of the neural network itself. An artificial intelligence-based speckle featurization and localization (AI-SFL) framework is proposed in this study. It includes a machine learning-based algorithm for classifying blood flow signals from ultrasound B-mode images, dimensionality reduction for featurizing speckle patterns of the classified blood flow signals by approximating them with quantitative values. A novel and robust neural network (ResSU-net) is trained using the online data generation (ODG) method and the extracted speckle features. The super-resolution performance of the proposed AI-SFL and ODG method is evaluated and compared with the results of previous U-net and conventional data augmentation methods under in silico conditions. The predicted locations of RBCs by the AI-SFL and DL-SRU for speckle patterns of blood flow are applied to a PTV algorithm to measure quantitative velocity fields of the flow. Finally, the feasibility of the proposed AI-SFL framework for measuring real blood flows is verified under in vivo conditions.
Collapse
Affiliation(s)
- Hyo Seung Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, South Korea.
| | - Jun Hong Park
- Department of Radiology, Stanford University 450 Jane Stanford Way Stanford, CA 94305-2004, United States.
| | - Sang Joon Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, South Korea.
| |
Collapse
|
2
|
Park DC, Park DW. Ultrasound Speckle Decorrelation-Based Blood Flow Measurements. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1491-1498. [PMID: 37012098 DOI: 10.1016/j.ultrasmedbio.2023.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/20/2023] [Accepted: 03/03/2023] [Indexed: 05/17/2023]
Abstract
Ultrasound imaging is the preferred noninvasive technique to measure blood flow to diagnose cardiovascular disease such as heart failure, carotid stenosis, and renal failure. Conventional ultrasound techniques such as Doppler ultrasound, ultrasound imaging velocimetry, vector Doppler and transverse oscillation beamforming have been used for blood flow velocity profile measurement. However, these techniques were limited to measuring blood flow velocities within the 2-D lateral (across the ultrasound beam) plane of a vessel, and the blood flow velocity profile was derived by assuming that blood vessels have a circular cross-section with axis symmetry. This assumption is incorrect because most vessels have complex geometries, such as tortuosity and branches, and an asymmetric flow profile in the presence of vascular plaque. Consequently, ultrasound speckle decorrelation has been proposed to measure blood flow from transverse views of blood vessels wherein the ultrasound beam is perpendicular to the vessel axis. In this review, we present a summary of recent progress in ultrasound speckle decorrelation-based blood flow measurement techniques.
Collapse
Affiliation(s)
- Dong Chan Park
- Division of Convergence Technology, Research Institute and Hospital, National Cancer Center, Goyang, South Korea
| | - Dae Woo Park
- Division of Convergence Technology, Research Institute and Hospital, National Cancer Center, Goyang, South Korea.
| |
Collapse
|
3
|
Seo H, Kwon D, Lee S, Yeom E. Experimental and numerical investigation of the effects of the jet diameter and arrangement of effusion holes on the concave surface of an impingement/effusion cooling system. J Vis (Tokyo) 2022. [DOI: 10.1007/s12650-022-00869-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
4
|
He B, Zhang Y, Zhang K, Chen J, Zhang J, Liang H. Optimum Speckle Tracking Based on Ultrafast Ultrasound for Improving Blood Flow Velocimetry. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:494-509. [PMID: 32746230 DOI: 10.1109/tuffc.2020.3012344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Speckle tracking using optimum comparison frames (STO) is proposed to improve the blood flow velocity profile (BFVP) estimation based on ultrafast ultrasound with coherent plane-wave compounding. The optimum comparison frames are as far as possible from the reference frame image while possessing a speckle correlation above a given threshold. The correlation thresholds for different kernel sizes are determined via an experiment based on a vascular-mimicking phantom. In in vitro experiments with different peak velocities of the flow ranging from 0.38 to 1.18 m/s, the proposed STO method with three kernel sizes ( 0.46 × 0.46 , 0.31 × 0.69 , and 0.92 × 0.92 mm2) is used for the BFVP estimations. The normalized root mean square errors (NRMSEs) between the estimated and theoretical BFVPs are calculated and compared with the results based on the speckle tracking using adjacent-frame images. For the three kernel sizes, the mean relative decrements in the STO-based NRMSEs are 46.6%, 44.7%, and 52.9%, and the standard deviations are 36.8%, 37.6%, and 35.9%, respectively. The STO method is also validated by in vivo experiments using rabbit iliac arteries with contrast agents. With parabolic curves fitting to the mean velocity estimates, the average relative increments for the STO-based R2 (coefficients of determination) are 7.22% and 6.25% for kernel sizes of 0.46 × 0.46 and 0.31 × 0.69 mm2, respectively. In conclusion, the STO method improves the BFVP measurement accuracy, whereby accurate diagnosis information can be acquired for clinical applications.
Collapse
|
5
|
Kupsch C, Weik D, Feierabend L, Nauber R, Buttner L, Czarske J. Vector Flow Imaging of a Highly Laden Suspension in a Zinc-Air Flow Battery Model. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:761-771. [PMID: 30629499 DOI: 10.1109/tuffc.2019.2891514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Flow batteries using suspension electrodes, e.g., zinc-air flow batteries (ZABs), have recently gained renewed interest as potential candidates for grid energy storage or mobile applications. The performance of ZABs depends on the local flow conditions of the suspension in the electrochemical cell, which acts as an electrode. Hence, it is crucial to measure and understand the complex flow characteristics of such solid-liquid suspensions. The investigated suspension electrode is an opaque slurry that consists of microscopic zinc particles and an aqueous potassium hydroxide electrolyte. Commonly, ultrasound Doppler velocimetry is used for flow imaging in opaque fluids. However, due to the high particle concentration in the suspension electrode, strong scattering and wavefront distortions of the ultrasound are introduced. In this paper, we show that this results in an increased measurement uncertainty for Doppler-based velocity estimation. Instead, ultrasound image velocimetry is applied to measure the 2-D and two-component flow field in the zinc-electrolyte suspension. This is possible by adapting the measurement system to the suspension with a calibration setup. The total measurement uncertainties of 4.1% and 2.5% for the axial and lateral flow components are derived from the calibration measurements. For the first time, the flow field of such a suspension could be measured in a scaled fluidic model of a ZAB. The comparison of the estimated flow rates from the velocity profiles showed good agreement to a gravimetric reference. A significant difference in the flow characteristics of a macroscopically homogeneous electrolyte and the same electrolyte loaded with 8 vol.-% zinc particles, i.e., the suspension electrode, was found. Along with the demonstration of the measurement technique for opaque, concentrated suspensions, the measurement data will be used to calibrate and validate numerical models for comparable multiphase fluids.
Collapse
|
6
|
|
7
|
Lee SJ, Park JH, Kim JJ, Yeom E. Quantitative Analysis of Helical Flow with Accuracy Using Ultrasound Speckle Image Velocimetry: In Vitro and in Vivo Feasibility Studies. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:657-669. [PMID: 29288000 DOI: 10.1016/j.ultrasmedbio.2017.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/10/2017] [Accepted: 11/20/2017] [Indexed: 06/07/2023]
Abstract
Venous valve dysfunction and induced secondary abnormal flows are closely associated with venous diseases. Thus, detailed analysis of venous valvular flow is invaluable from biological and medical perspectives. However, most of the previous studies on venous perivalvular flows were based on qualitative analysis. On the contrary, quantitative analysis of perivalvular flows has not been fully understood. In this study, we used the ultrasound speckle image velocimetry (SIV) technique, which utilizes the speckle patterns of red blood cells (RBCs) created by ultrasound waves to measure 3-D valvular flows quantitatively. The flow structures obtained with the proposed SIV technique for an in vitro model were compared with those obtained by numerical simulation and the color Doppler method to validate the measurement accuracy of the ultrasound SIV technique. Blood flow in the human great saphenous vein was then measured at various distances from the valve with and without exercise. 3-D valvular flow was analyzed in accordance with the dimensionless index, helical intensity. The results obtained by the proposed method matched well with those obtained by numerical simulation and the color Doppler method. The hemodynamic characteristics of 3-D valvular helical flow which were analyzed experimentally using the SIV method would be used for quantitative diagnosis of venous valvular diseases.
Collapse
Affiliation(s)
- Sang Joon Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
| | - Jun Hong Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Jeong Ju Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Eunseop Yeom
- School of Mechanical Engineering, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
8
|
Izadifar M, Kelly ME, Peeling L. Synchrotron speckle-based x-ray phase-contrast imaging for mapping intra-aneurysmal blood flow without contrast agent. Biomed Phys Eng Express 2017. [DOI: 10.1088/2057-1976/aa8e0d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
9
|
Yeom E. Different adhesion behaviors of platelets depending on shear stress around stenotic channels. J Vis (Tokyo) 2017. [DOI: 10.1007/s12650-017-0446-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Jung SY, Yeom E. Microfluidic measurement for blood flow and platelet adhesion around a stenotic channel: Effects of tile size on the detection of platelet adhesion in a correlation map. BIOMICROFLUIDICS 2017; 11:024119. [PMID: 28798854 PMCID: PMC5533492 DOI: 10.1063/1.4982605] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 04/14/2017] [Indexed: 06/07/2023]
Abstract
Platelet aggregation affects the surrounding blood flow and usually occurs where a blood vessel is narrowed as a result of atherosclerosis. The relationship between blood flow and platelet aggregation is not yet fully understood. This study proposes a microfluidic method to measure the velocity and platelet aggregation simultaneously by combining the micro-particle image velocimetry technique and a correlation mapping method. The blood flow and platelet adhesion procedure in a stenotic micro-channel with 90% severity were observed for a relatively long period of 4 min. In order to investigate the effect of tile size on the detection of platelet adhesion, 2D correlation coefficients were evaluated with binary images obtained by manual labeling and the correlation mapping method with different sizes of the square tile ranging from 3 to 50 pixels. The maximum 2D correlation coefficient occurred with the optimum tile size of 5 × 5 pixels. Since the blood flow and platelet aggregation are mutually influenced by each other, blood flow and platelet adhesion were continuously varied. When there was no platelet adhesion (t = 0 min), typical blood flow is observed. The blood flow passes through the whole channel smoothly, and jet-like flow occurs in the post-stenosis region. However, the flow pattern changes when platelet adhesion starts at the stenosis apex and after the stenosis. These adhesions induce narrow high velocity regions to become wider over a range of area from upstream to downstream of the stenosis. Separated jet-like flows with two high velocity regions are also created. The changes in flow patterns may alter the patterns of platelet adhesion. As the area of the plate adhesion increases, the platelets plug the micro-channel and there is only a small amount of blood flow, finally. The microfluidic method could provide new insights for better understanding of the interactions between platelet aggregation and blood flow in various physiological conditions.
Collapse
Affiliation(s)
- Sung Yong Jung
- Department of Mechanical Engineering, Chosun University, Gwangju, South Korea
| | - Eunseop Yeom
- School of Mechanical Engineering, Pusan National University, Busan 46241, South Korea
| |
Collapse
|
11
|
Effect of diabetic duration on hemorheological properties and platelet aggregation in streptozotocin-induced diabetic rats. Sci Rep 2016; 6:21913. [PMID: 26898237 PMCID: PMC4762006 DOI: 10.1038/srep21913] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 02/02/2016] [Indexed: 12/22/2022] Open
Abstract
Diabetes mellitus with abnormal glucose concentration is associated with changes in hemorheological properties, endothelial function, and platelets hyperactivity. Disturbances may significantly be responsible for diabetes-related vascular complications. In this study, hemorheological and hemodynamic properties were measured according to diabetic duration after streptozotocin treatment in rats. For ex vivo measurements, an extracorporeal model was adopted. Flow rate and blood viscosity were measured using a microfluidic device. Erythrocyte aggregation and morphological parameters of erythrocytes were measured by modified erythrocyte sedimentation rate and the phase-contrast holography under in vitro conditions. The platelet aggregation and mean pressure in the femoral artery were estimated under ex vivo conditions. Hemorheological properties including blood viscosity, erythrocyte aggregation and shape parameters for the control group are significantly different with those for diabetic groups. The changes with respect to diabetic duration were relatively unnoticeable. However, the platelet aggregation is strongly dependent on the diabetic duration. Based on these results, hyperglycemia exposure may induce hemorheological variations in early stages of diabetes mellitus. High platelet aggregation may become more pronounced according to the diabetic duration caused by variations in hemorheological properties resulting in endothelial dysfunction. This study would be helpful in understanding the effects of diabetic duration on biophysical properties.
Collapse
|
12
|
Park H, Yeom E, Lee SJ. X-ray PIV measurement of blood flow in deep vessels of a rat: An in vivo feasibility study. Sci Rep 2016; 6:19194. [PMID: 26777719 PMCID: PMC4726095 DOI: 10.1038/srep19194] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 12/07/2015] [Indexed: 01/08/2023] Open
Abstract
X-ray PIV measurement is a noninvasive approach to measure opaque blood flows. However, it is not easy to measure real pulsatile blood flows in the blood vessels located at deep position of the body, because the surrounding tissues significantly attenuate the contrast of X-ray images. This study investigated the effect of surrounding tissues on X-ray beam attenuation by measuring the velocity fields of blood flows in deep vessels of a live rat. The decrease in image contrast was minimized by employing biocompatible CO2 microbubbles as tracer particles. The maximum measurable velocity of blood flows in the abdominal aorta of a rat model was found through comparative examination between the PIV measurement accuracy and the level of image contrast according to the input flow rate. Furthermore, the feasibility of using X-ray PIV to accurately measure in vivo blood flows was demonstrated by determining the velocity field of blood flows in the inferior vena cava of a rat. This study may serve as a reference in conducting in vivo X-ray PIV measurements of pulsatile blood flows in animal disease models and investigating hemodynamic characteristics and circulatory vascular diseases.
Collapse
Affiliation(s)
- Hanwook Park
- Center for Biofluid and Biomimic Research, Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, South Korea
| | - Eunseop Yeom
- Center for Biofluid and Biomimic Research, Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, South Korea
| | - Sang Joon Lee
- Center for Biofluid and Biomimic Research, Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, South Korea
| |
Collapse
|
13
|
Leow CH, Bazigou E, Eckersley RJ, Yu ACH, Weinberg PD, Tang MX. Flow Velocity Mapping Using Contrast Enhanced High-Frame-Rate Plane Wave Ultrasound and Image Tracking: Methods and Initial in Vitro and in Vivo Evaluation. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:2913-2925. [PMID: 26275971 DOI: 10.1016/j.ultrasmedbio.2015.06.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 04/22/2015] [Accepted: 06/16/2015] [Indexed: 06/04/2023]
Abstract
Ultrasound imaging is the most widely used method for visualising and quantifying blood flow in medical practice, but existing techniques have various limitations in terms of imaging sensitivity, field of view, flow angle dependence, and imaging depth. In this study, we developed an ultrasound imaging velocimetry approach capable of visualising and quantifying dynamic flow, by combining high-frame-rate plane wave ultrasound imaging, microbubble contrast agents, pulse inversion contrast imaging and speckle image tracking algorithms. The system was initially evaluated in vitro on both straight and carotid-mimicking vessels with steady and pulsatile flows and in vivo in the rabbit aorta. Colour and spectral Doppler measurements were also made. Initial flow mapping results were compared with theoretical prediction and reference Doppler measurements and indicate the potential of the new system as a highly sensitive, accurate, angle-independent and full field-of-view velocity mapping tool capable of tracking and quantifying fast and dynamic flows.
Collapse
Affiliation(s)
- Chee Hau Leow
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Eleni Bazigou
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Robert J Eckersley
- Department of Biomedical Engineering, King's College London, London, United Kingdom
| | - Alfred C H Yu
- Medical Engineering Program, University of Hong Kong, Pokfulam, Hong Kong
| | - Peter D Weinberg
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Meng-Xing Tang
- Department of Bioengineering, Imperial College London, London, United Kingdom.
| |
Collapse
|
14
|
Hybrid System for Ex Vivo Hemorheological and Hemodynamic Analysis: A Feasibility Study. Sci Rep 2015; 5:11064. [PMID: 26090816 PMCID: PMC4473538 DOI: 10.1038/srep11064] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 05/11/2015] [Indexed: 01/31/2023] Open
Abstract
Precise measurement of biophysical properties is important to understand the relation between these properties and the outbreak of cardiovascular diseases (CVDs). However, a systematic measurement for these biophysical parameters under in vivo conditions is nearly impossible because of complex vessel shape and limited practicality. In vitro measurements can provide more biophysical information, but in vitro exposure changes hemorheological properties. In this study, a hybrid system composed of an ultrasound system and microfluidic device is proposed for monitoring hemorheological and hemodynamic properties under more reasonable experimental conditions. Biophysical properties including RBC aggregation, viscosity, velocity, and pressure of blood flows are simultaneously measured under various conditions to demonstrate the feasibility and performance of this measurement system. The proposed technique is applied to a rat extracorporeal loop which connects the aorta and jugular vein directly. As a result, the proposed system is found to measure biophysical parameters reasonably without blood collection from the rat and provided more detailed information. This hybrid system, combining ultrasound imaging and microfluidic techniques to ex vivo animal models, would be useful for monitoring the variations of biophysical properties induced by chemical agents. It can be used to understand the relation between biophysical parameters and CVDs.
Collapse
|
15
|
Park H, Yeom E, Seo SJ, Lim JH, Lee SJ. Measurement of real pulsatile blood flow using X-ray PIV technique with CO2 microbubbles. Sci Rep 2015; 5:8840. [PMID: 25744850 DOI: 10.1038/srep08840] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/06/2015] [Indexed: 11/09/2022] Open
Abstract
Synchrotron X-ray imaging technique has been used to investigate biofluid flows in a non-destructive manner. This study aims to investigate the feasibility of the X-ray PIV technique with CO2 microbubbles as flow tracer for measurement of pulsatile blood flows under in vivo conditions. The traceability of CO2 microbubbles in a pulsatile flow was demonstrated through in vitro experiment. A rat extracorporeal bypass loop was used by connecting a tube between the abdominal aorta and jugular vein of a rat to obtain hemodynamic information of actual pulsatile blood flows without changing the hemorheological properties. The decrease in image contrast of the surrounding tissue was also investigated for in vivo applications of the proposed technique. This technique could be used to accurately measure whole velocity field information of real pulsatile blood flows and has strong potential for hemodynamic diagnosis of cardiovascular diseases.
Collapse
Affiliation(s)
- Hanwook Park
- Center for Biofluid and Biomimic Research, Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, South Korea
| | - Eunseop Yeom
- Center for Biofluid and Biomimic Research, Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, South Korea
| | - Seung-Jun Seo
- Industrial Technology Convergence Center, Pohang Accelerator Laboratory, POSTECH, Pohang, 790-784, South Korea
| | - Jae-Hong Lim
- Industrial Technology Convergence Center, Pohang Accelerator Laboratory, POSTECH, Pohang, 790-784, South Korea
| | - Sang-Joon Lee
- Center for Biofluid and Biomimic Research, Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, South Korea
| |
Collapse
|
16
|
Yeom E, Lee SJ. Microfluidic-based speckle analysis for sensitive measurement of erythrocyte aggregation: A comparison of four methods for detection of elevated erythrocyte aggregation in diabetic rat blood. BIOMICROFLUIDICS 2015; 9:024110. [PMID: 25945136 PMCID: PMC4385097 DOI: 10.1063/1.4917023] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 03/26/2015] [Indexed: 05/15/2023]
Abstract
Biochemical alterations in the plasma and red blood cell (RBC) membrane of diabetic blood lead to excessive erythrocyte aggregation (EA). EA would significantly impede the blood flow and increase the vascular flow resistance contributing to peripheral vascular diseases. In this study, a simple microfluidic-based method is proposed to achieve sensitive detection of hyperaggregation. When a blood sample is delivered into the device, images of blood flows are obtained with a short exposure time for a relatively long measuring time. A micro-particle image velocimetry technique was employed to monitor variation of the flow rate of blood as a function of time. Given that EA formation in the channel creates clear speckle patterns, the EA extent can be estimated by calculating a speckle area (ASpeckle) through a normalized autocovariance function. The hematocrit effect is assessed by comparing optical images transmitted through blood samples. EA variations caused by dextran treatment are quantitatively evaluated using characteristic time (λSpeckle) obtained by fitting the variations of ASpeckle. Other indices including number of RBCs in an aggregate (NRBC), characteristic time of erythrocyte sedimentation rate (λESR), and aggregation index estimated from ultrasound signals (AIEcho) are determined under different EA conditions using conventional techniques. The four different methods are applied to diabetic blood samples to compare their indices under hyperaggregation conditions. It is found that the proposed method can detect variation of EA reasonably, compared with conventional measurement techniques. These experimental demonstrations support the notion that the proposed method is capable of effectively monitoring the biophysical properties of diabetic blood.
Collapse
Affiliation(s)
- Eunseop Yeom
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH) , Pohang, South Korea
| | - Sang Joon Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH) , Pohang, South Korea
| |
Collapse
|
17
|
Lee SJ, Park HW, Jung SY. Usage of CO2 microbubbles as flow-tracing contrast media in X-ray dynamic imaging of blood flows. JOURNAL OF SYNCHROTRON RADIATION 2014; 21:1160-1166. [PMID: 25178007 DOI: 10.1107/s1600577514013423] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 06/09/2014] [Indexed: 06/03/2023]
Abstract
X-ray imaging techniques have been employed to visualize various biofluid flow phenomena in a non-destructive manner. X-ray particle image velocimetry (PIV) was developed to measure velocity fields of blood flows to obtain hemodynamic information. A time-resolved X-ray PIV technique that is capable of measuring the velocity fields of blood flows under real physiological conditions was recently developed. However, technical limitations still remained in the measurement of blood flows with high image contrast and sufficient biocapability. In this study, CO2 microbubbles as flow-tracing contrast media for X-ray PIV measurements of biofluid flows was developed. Human serum albumin and CO2 gas were mechanically agitated to fabricate CO2 microbubbles. The optimal fabricating conditions of CO2 microbubbles were found by comparing the size and amount of microbubbles fabricated under various operating conditions. The average size and quantity of CO2 microbubbles were measured by using a synchrotron X-ray imaging technique with a high spatial resolution. The quantity and size of the fabricated microbubbles decrease with increasing speed and operation time of the mechanical agitation. The feasibility of CO2 microbubbles as a flow-tracing contrast media was checked for a 40% hematocrit blood flow. Particle images of the blood flow were consecutively captured by the time-resolved X-ray PIV system to obtain velocity field information of the flow. The experimental results were compared with a theoretically amassed velocity profile. Results show that the CO2 microbubbles can be used as effective flow-tracing contrast media in X-ray PIV experiments.
Collapse
Affiliation(s)
- Sang Joon Lee
- Center for Biofluid and Biomimic Research, Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
| | - Han Wook Park
- Center for Biofluid and Biomimic Research, Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
| | - Sung Yong Jung
- Hyundai Heavy Industries, Ulsan 682-792, Republic of Korea
| |
Collapse
|
18
|
Yeom E, Nam KH, Paeng DG, Lee SJ. Effects of red blood cell aggregates dissociation on the estimation of ultrasound speckle image velocimetry. ULTRASONICS 2014; 54:1480-7. [PMID: 24794508 DOI: 10.1016/j.ultras.2014.04.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 02/24/2014] [Accepted: 04/13/2014] [Indexed: 05/11/2023]
Abstract
Ultrasound speckle image of blood is mainly attributed by red blood cells (RBCs) which tend to form RBC aggregates. RBC aggregates are separated into individual cells when the shear force is over a certain value. The dissociation of RBC aggregates has an influence on the performance of ultrasound speckle image velocimetry (SIV) technique in which a cross-correlation algorithm is applied to the speckle images to get the velocity field information. The present study aims to investigate the effect of the dissociation of RBC aggregates on the estimation quality of SIV technique. Ultrasound B-mode images were captured from the porcine blood circulating in a mock-up flow loop with varying flow rate. To verify the measurement performance of SIV technique, the centerline velocity measured by the SIV technique was compared with that measured by Doppler spectrograms. The dissociation of RBC aggregates was estimated by using decorrelation of speckle patterns in which the subsequent window was shifted as much as the speckle displacement to compensate decorrelation caused by in-plane loss of speckle patterns. The decorrelation of speckles is considerably increased according to shear rate. Its variations are different along the radial direction. Because the dissociation of RBC aggregates changes ultrasound speckles, the estimation quality of SIV technique is significantly correlated with the decorrelation of speckles. This degradation of measurement quality may be improved by increasing the data acquisition rate. This study would be useful for simultaneous measurement of hemodynamic and hemorheological information of blood flows using only speckle images.
Collapse
Affiliation(s)
- Eunseop Yeom
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, South Korea
| | - Kweon-Ho Nam
- Department of Ocean System Engineering, Interdisciplinary Postgraduate Program in Biomedical Engineering, Jeju National University, Jeju, South Korea
| | - Dong-Guk Paeng
- Department of Ocean System Engineering, Interdisciplinary Postgraduate Program in Biomedical Engineering, Jeju National University, Jeju, South Korea.
| | - Sang-Joon Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, South Korea.
| |
Collapse
|
19
|
Yeom E, Kang YJ, Lee SJ. Changes in velocity profile according to blood viscosity in a microchannel. BIOMICROFLUIDICS 2014; 8:034110. [PMID: 25377092 PMCID: PMC4162413 DOI: 10.1063/1.4883275] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 06/03/2014] [Indexed: 05/14/2023]
Abstract
Red blood cells (RBCs) are important to dictate hemorheological properties of blood. The shear-thinning effect of blood is mainly attributed to the characteristics of the RBCs. Variations in hemorheological properties alter flow resistance and wall shear stress in blood vessels. Therefore, detailed understanding of the relationship between the hemorheological and hemodynamic properties is of great importance. In this study, blood viscosity and blood flow were simultaneously measured in the same microfluidic device by monitoring the flow-switching phenomenon. To investigate blood flows according to hemorheological variations, the flow rate of blood samples (RBCs suspended in autologous plasma, dextran-treated plasma, and in phosphate buffered saline solution) was precisely controlled with a syringe pump. Velocity profiles of blood flows were measured by using a micro-particle imagevelocimetry technique. The shape of velocity profiles was quantified by using a curve-fitting equation. It is found that the shape of the velocity profiles is highly correlated with blood viscosity. To demonstrate the relationship under ex vivo conditions, biophysical properties and velocity profiles were measured in an extracorporeal rat bypass loop. Experimental results show that increased blood viscosity seems to induce blunt velocity profile with high velocity component at the wall of the microchannel. Simultaneous measurement of blood viscosity and velocity profile would be useful for understanding the effects of hemorheological features on the hemodynamic characteristics in capillary blood vessels.
Collapse
Affiliation(s)
- Eunseop Yeom
- Department of Mechanical Engineering, Pohang University of Science and Technology , Pohang, South Korea
| | - Yang Jun Kang
- Department of Mechanical Engineering, Chosun University , Gwangju, South Korea
| | - Sang-Joon Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology , Pohang, South Korea
| |
Collapse
|