1
|
Xiong Y, Zheng Y, Long W, Wang Y, Wang Q, You Y, Zhou Y, Zhong J, Ge Y, Li Y, Huang Y, Zhou Z. Study on microwave ablation temperature prediction model based on grayscale ultrasound texture and machine learning. PLoS One 2024; 19:e0308968. [PMID: 39321182 PMCID: PMC11423965 DOI: 10.1371/journal.pone.0308968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 08/03/2024] [Indexed: 09/27/2024] Open
Abstract
BACKGROUND Temperature prediction is crucial in the clinical ablation treatment of liver cancer, as it can be used to estimate the coagulation zone of microwave ablation. METHODS Experiments were conducted on 83 fresh ex vivo porcine liver tissues at two ablation powers of 15 W and 20 W. Ultrasound grayscale images and temperature data from multiple sampling points were collected. The machine learning method of random forests was used to train the selected texture features, obtaining temperature prediction models for sampling points and the entire ultrasound imaging area. The accuracy of the algorithm was assessed by measuring the area of the hyperechoic area in the porcine liver tissue cross-section and ultrasound grayscale images. RESULTS The model exhibited a high degree of accuracy in temperature prediction and the identification of coagulation zone. Within the test sets for the 15 W and 20 W power groups, the average absolute error for temperature prediction was 1.14°C and 4.73°C, respectively. Notably, the model's accuracy in measuring the area of coagulation was higher than that of traditional ultrasonic grey-scale imaging, with error ratios of 0.402 and 0.182 for the respective power groups. Additionally, the model can filter out texture features with a high correlation to temperature, providing a certain degree of interpretability. CONCLUSION The temperature prediction model proposed in this study can be applied to temperature monitoring and coagulation zone range assessment in microwave ablation.
Collapse
Affiliation(s)
- Yan Xiong
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Yi Zheng
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, China
| | - Wei Long
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuxin Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, China
| | - Qin Wang
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Yi You
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuheng Zhou
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiang Zhong
- Department of Ultrasound, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Yunxi Ge
- Department of Ultrasound, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Youchen Li
- Department of Ultrasound, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Huang
- Department of Ultrasound, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhiyong Zhou
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, China
| |
Collapse
|
2
|
Han Y, Du Y, He L, Meng X, Li M, Cao F. Ultrasound Image Temperature Monitoring Based on a Temporal-Informed Neural Network. SENSORS (BASEL, SWITZERLAND) 2024; 24:4934. [PMID: 39123982 PMCID: PMC11314660 DOI: 10.3390/s24154934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024]
Abstract
Real-time and accurate temperature monitoring during microwave hyperthermia (MH) remains a critical challenge for ensuring treatment efficacy and patient safety. This study presents a novel approach to simulate real MH and precisely determine the temperature of the target region within biological tissues using a temporal-informed neural network. We conducted MH experiments on 30 sets of phantoms and 10 sets of ex vivo pork tissues. We proposed a novel perspective: the evolving tissue responses to continuous electromagnetic radiation stimulation are a joint evolution in temporal and spatial dimensions. Our model leverages TimesNet to extract periodic features and Cloblock to capture global information relevance in two-dimensional periodic vectors from ultrasound images. By assimilating more ultrasound temporal data, our model improves temperature-estimation accuracy. In the temperature range 25-65 °C, our neural network achieved temperature-estimation root mean squared errors of approximately 0.886 °C and 0.419 °C for fresh ex vivo pork tissue and phantoms, respectively. The proposed temporal-informed neural network has a modest parameter count, rendering it suitable for deployment on ultrasound mobile devices. Furthermore, it achieves temperature accuracy close to that prescribed by clinical standards, making it effective for non-destructive temperature monitoring during MH of biological tissues.
Collapse
Affiliation(s)
- Yuxiang Han
- School of Digital and Intelligence Industry, Inner Mongolia University of Science & Technology, Baotou 014000, China; (Y.H.)
| | - Yongxing Du
- School of Digital and Intelligence Industry, Inner Mongolia University of Science & Technology, Baotou 014000, China; (Y.H.)
| | - Limin He
- School of Science, Inner Mongolia University of Science & Technology, Baotou 014000, China
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Minchao Li
- School of Digital and Intelligence Industry, Inner Mongolia University of Science & Technology, Baotou 014000, China; (Y.H.)
| | - Fujun Cao
- School of Science, Inner Mongolia University of Science & Technology, Baotou 014000, China
| |
Collapse
|
3
|
Pinto MD, Silveira Pinto R, Nosaka K, Blazevich AJ. Do Intramuscular Temperature and Fascicle Angle Affect Ultrasound Echo Intensity Values? Med Sci Sports Exerc 2023; 55:740-750. [PMID: 36355345 DOI: 10.1249/mss.0000000000003082] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE Ultrasound-derived echo intensity (EI) has been used as a physiological marker for changes in skeletal muscle "quality" with physical training, disuse, aging, and neuromuscular disorders. However, the methodological and physiological factors influencing EI and its longitudinal change are still unclear. Here, we performed two separate experiments to investigate the effects of muscle temperature and fascicle angle, which are known to influence muscle tissue and sound wave properties and therefore affect EI. METHODS In experiment 1 ( n = 16, 28.0 ± 6.6 yr), vastus lateralis (VL) ultrasonographic images were acquired and intramuscular temperature continuously recorded for 15 min after 20 min of heating to 40.4°C ± 0.7°C using a microwave device. In experiment 2 ( n = 17, 30.2 ± 9.8 yr), VL sonographic images were obtained with the knee both fully extended (0°) and flexed to 90° and EI and fascicle angle measured post hoc . Fascicle movement was tracked during the passive knee flexion to ensure that sonographic images were obtained at the same muscle region. Knee flexion reduced muscle thickness, and we therefore reran analyses calculating EI using identical dimensions to minimize this effect. RESULTS EI decreased only immediately after the passive heating, and although a moderate, negative correlation was observed between EI and temperature ( rrm = -0.36), the effect of muscle temperature was small ( β = 0.97 (-1.89 to -0.06) per degree Celsius, P = 0.051). Nonetheless, EI increased as fascicle angle decreased, and a large, negative correlation ( rrm = -0.85) was observed; the effect of fascicle angle on EI was large ( β = 3.0 (-3.8 to -2.2) per degree, P < 0.01), and this was maintained when analyses were performed at a constant depth of the region of interest ( β = 3.5 (-4.4 to -2.7) per degree, P < 0.01). CONCLUSIONS These findings support the hypothesis that fascicle angle meaningfully affects VL EI but provides weak evidence of a temperature effect in vivo . Thus, acute fascicle angle alterations should be accounted for in studies using EI measurements, and longer-term studies should consider whether changes in EI might be partly explained by a change in fascicle angle.
Collapse
Affiliation(s)
- Matheus Daros Pinto
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Joondalup, AUSTRALIA
| | | | - Kazunori Nosaka
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Joondalup, AUSTRALIA
| | - Anthony John Blazevich
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Joondalup, AUSTRALIA
| |
Collapse
|
4
|
Li S, Zhou Z, Wu S, Wu W. A Review of Quantitative Ultrasound-Based Approaches to Thermometry and Ablation Zone Identification Over the Past Decade. ULTRASONIC IMAGING 2022; 44:213-228. [PMID: 35993226 DOI: 10.1177/01617346221120069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Percutaneous thermal therapy is an important clinical treatment method for some solid tumors. It is critical to use effective image visualization techniques to monitor the therapy process in real time because precise control of the therapeutic zone directly affects the prognosis of tumor treatment. Ultrasound is used in thermal therapy monitoring because of its real-time, non-invasive, non-ionizing radiation, and low-cost characteristics. This paper presents a review of nine quantitative ultrasound-based methods for thermal therapy monitoring and their advances over the last decade since 2011. These methods were analyzed and compared with respect to two applications: ultrasonic thermometry and ablation zone identification. The advantages and limitations of these methods were compared and discussed, and future developments were suggested.
Collapse
Affiliation(s)
- Sinan Li
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Zhuhuang Zhou
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Shuicai Wu
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Weiwei Wu
- College of Biomedical Engineering, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Ziegle J, Illanes A, Boese A, Friebe M. Frequency and average gray-level information for thermal ablation status in ultrasound B-Mode sequences. CURRENT DIRECTIONS IN BIOMEDICAL ENGINEERING 2020. [DOI: 10.1515/cdbme-2020-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
During thermal ablation in a target tissue the information about temperature is crucial for decision making of successful therapy. An observable temporal and spatial temperature propagation would give a visual feedback of irreversible cell damage of the target tissue. Potential temperature features in ultrasound (US) B-Mode image sequences during radiofrequency (RF) ablation in ex-vivo porcine liver were found and analysed. These features could help to detect the transition between reversible and irreversible damage of the ablated target tissue. Experimental RF ablations of ex-vivo porcine liver were imaged with US B-Mode imaging and image sequences were recorded. Temperature was simultaneously measured within the liver tissue around a bipolar RF needle electrode. In the B-Mode images, regions of interest (ROIs) around the centre of the measurement spots were analysed in post-processing using average gray-level (AVGL) compared against temperature. The pole of maximum energy level in the time-frequency domain of the AVGL changes was investigated in relation to the measured temperatures. Frequency shifts of the pole were observed which could be related to transitions between the states of tissue damage.
Collapse
Affiliation(s)
- Jens Ziegle
- Otto-von-Guericke-University, Medical Faculty , Magdeburg , Germany
| | - Alfredo Illanes
- Otto-von-Guericke-University, Medical Faculty , Magdeburg , Germany
| | - Axel Boese
- Otto-von-Guericke-University, Medical Faculty , Magdeburg , Germany
| | - Michael Friebe
- Otto-von-Guericke-University, Medical Faculty , Magdeburg , Germany
| |
Collapse
|
6
|
Alvarenga AV, Teixeira CAD, von Krüger MA, Pereira WCA. Method for estimating average grey-level's measurement uncertainty from ultrasound images for non-invasive estimation of temperature in different tissue types. ULTRASONICS 2020; 106:106139. [PMID: 32298848 DOI: 10.1016/j.ultras.2020.106139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 06/11/2023]
Abstract
The objective of this work is to assess, on metrological basis, the average grey-levels (AVGL) calculated from B-Mode images for estimating temperature variations non-invasively in different kinds of tissues. Thermal medicine includes several thermal therapies, being hyperthermia the most noted and well known. Recently, efforts have been made to understand the benefits of ultrasound hyperthermia at mild temperature levels, i.e., between 39 °C and 41 °C. Moreover, the best practices on ultrasound bio-effects research have been encouraged by recommending that temperature rise in the region of interest should be measured even when a thermal mechanism is not being tested. In this work, the average grey-levels (AVGL) calculated from B-Mode images were assessed for non-invasive temperature estimation in a porcine tissue sample containing two different tissue types, fat and muscle, with temperature varying from 35 °C to 41 °C. The sample was continuously imaged with an ultrasound scanner, and simultaneously the temperature was measured. The achieved results were assessed under the light of the measurement uncertainty in order to allow comparability among different ultrasound thermometry methods. The highest expanded uncertainty of estimating temperature variation using AVGL was determined as 0.68 °C.
Collapse
Affiliation(s)
- André V Alvarenga
- Laboratory of Ultrasound, National Institute of Metrology, Quality and Technology (Inmetro), Brazil.
| | - César A D Teixeira
- Univ Coimbra, CISUC-Centre for Informatics and Systems of the University of Coimbra, Department of Informatics Engineering, 3030-290 Coimbra, Portugal
| | - Marco A von Krüger
- Biomedical Engineering Program - COPPE, Federal University of Rio de Janeiro (UFRJ), C.T. Block H, Room H327, Ilha do Fundão, ZIP 21.941-914 Rio de Janeiro, Brazil
| | - Wagner C A Pereira
- Biomedical Engineering Program - COPPE, Federal University of Rio de Janeiro (UFRJ), C.T. Block H, Room H327, Ilha do Fundão, ZIP 21.941-914 Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Sebeke LC, Rademann P, Maul AC, Schubert-Quecke C, Annecke T, Yeo SY, Castillo-Gómez JD, Schmidt P, Grüll H, Heijman E. Feasibility study of MR-guided pancreas ablation using high-intensity focused ultrasound in a healthy swine model. Int J Hyperthermia 2020; 37:786-798. [PMID: 32619373 DOI: 10.1080/02656736.2020.1782999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Purpose: Pancreatic cancer is typically diagnosed in a late stage with limited therapeutic options. For those patients, ultrasound-guided high-intensity focused ultrasound (US-HIFU) can improve local control and alleviate pain. However, MRI-guided HIFU (MR-HIFU) has not yet been studied extensively in this context. To facilitate related research and accelerate clinical translation, we report a workflow for the in vivo HIFU ablation of the porcine pancreas under MRI guidance.Materials and methods: The pancreases of five healthy German landrace pigs (35-58 kg) were sonicated using a clinical MR-HIFU system. Acoustic access to the pancreas was supported by a specialized diet and a hydrogel compression device for bowel displacement. Organ motion was suspended using periods of apnea. The size of the resulting thermal lesions was assessed using the thermal threshold- and dose profiles, non-perfused volume, and gross examination. The effect of the compression device on beam path length was assessed using MRI imaging.Results: Eight of ten treatments resulted in clearly visible damage in the target tissue upon gross examination. Five treatments resulted in coagulative necrosis. Good agreement between the four metrics for lesion size and a clear correlation between the delivered energy dose and the resulting lesion size were found. The compression device notably shortened the intra-abdominal beam path.Conclusions: We demonstrated a workflow for HIFU treatment of the porcine pancreas in-vivo under MRI-guidance. This development bears significance for the development of MR-guided HIFU interventions on the pancreas as the pig is the preferred animal model for the translation of pre-clinical research into clinical application.
Collapse
Affiliation(s)
- Lukas Christian Sebeke
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, University of Cologne, Cologne, Germany
| | - Pia Rademann
- Experimental Medicine, University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Alexandra Claudia Maul
- Experimental Medicine, University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Claudia Schubert-Quecke
- Experimental Medicine, University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Thorsten Annecke
- Department of Anesthesiology and Intensive Care Medicine, University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Sin Yuin Yeo
- Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, University of Cologne, Cologne, Germany.,Profound Medical GmbH, Hamburg, Germany
| | - Juan Daniel Castillo-Gómez
- Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, University of Cologne, Cologne, Germany
| | - Patrick Schmidt
- Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, University of Cologne, Cologne, Germany
| | - Holger Grüll
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, University of Cologne, Cologne, Germany
| | - Edwin Heijman
- Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, University of Cologne, Cologne, Germany.,Philips Research Eindhoven, High Tech, Eindhoven, The Netherlands
| |
Collapse
|
8
|
Teixeira CA, Pastrana-Chalco M, Simões RJ, Pedrosa A, von Krüger MA, Alvarenga AV, Fontes-Pereira AJ, Pereira WCA. On the Feasibility of Ultrasound Imaging Enrichment by Medium-Temperature Changes. ULTRASONIC IMAGING 2019; 41:17-34. [PMID: 30239291 DOI: 10.1177/0161734618800660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We describe the concept of a new imaging modality based on the tracking and dynamic modeling of local intensity changes (ICs) observed in conventional ultrasound images collected during a medium-temperature change. We computed the pixel-by-pixel IC from averaged B-mode images that exhibited different behaviors with varying temperature resulting from changes in the speed of sound, which consequently induce changes in the backscattered energy. Moreover, for each pixel, a first-order polynomial model was adjusted to the different temperature-dependent ICs. The representation of the polynomial angular parameter in 2D pixel space was used to obtain a parametric image. The results obtained by simulations and with real B-mode images indicated that this new ultrasound imaging modality was able to enhance the contrast and highlight structures that were poorly visible or even undetected in conventional images. A temperature change of 3°C was found to be sufficient to generate appropriate images with the proposed method. In addition, if a temperature change of 6°C was considered, the thermal dose, measured as the cumulative number of equivalent minutes at 43°C (CEM43°C), was 2.4 CEM43°C, which is a value that is considered safe according to the literature. We provide a proof-of-concept of a new imaging modality that opens new opportunities for the enhancement of ultrasound images and consequently contributes to improvements in ultrasound-based diagnoses. Our approach is based on images returned by commercial ultrasound scanners. Therefore, it can be implemented in any ultrasound system and is independent of specific ultrasound hardware and software data acquisition characteristics.
Collapse
Affiliation(s)
- C A Teixeira
- 1 Department of Informatics Engineering, Centre for Informatics and Systems (CISUC), University of Coimbra, Coimbra, Portugal
| | - M Pastrana-Chalco
- 1 Department of Informatics Engineering, Centre for Informatics and Systems (CISUC), University of Coimbra, Coimbra, Portugal
- 2 Biomedical Engineering Program, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - R J Simões
- 1 Department of Informatics Engineering, Centre for Informatics and Systems (CISUC), University of Coimbra, Coimbra, Portugal
| | - A Pedrosa
- 1 Department of Informatics Engineering, Centre for Informatics and Systems (CISUC), University of Coimbra, Coimbra, Portugal
| | - M A von Krüger
- 2 Biomedical Engineering Program, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - A V Alvarenga
- 3 Laboratory of Ultrasound, National Institute of Metrology, Quality and Technology (Inmetro), Rio de Janeiro, Brazil
| | - A J Fontes-Pereira
- 2 Biomedical Engineering Program, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - W C A Pereira
- 2 Biomedical Engineering Program, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Alvarenga AV, Wilkens V, Georg O, Costa-Félix RPB. Non-invasive Estimation of Temperature during Physiotherapeutic Ultrasound Application Using the Average Gray-Level Content of B-Mode Images: A Metrological Approach. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:1938-1952. [PMID: 28619277 DOI: 10.1016/j.ultrasmedbio.2017.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/03/2017] [Accepted: 04/09/2017] [Indexed: 06/07/2023]
Abstract
Healing therapies that make use of ultrasound are based on raising the temperature in biological tissue. However, it is not possible to heal impaired tissue by applying a high dose of ultrasound. The temperature of the tissue is ultimately the physical quantity that has to be assessed to minimize the risk of undesired injury. Invasive temperature measurement techniques are easy to use, despite the fact that they are detrimental to human well being. Another approach to assessing a rise in tissue temperature is to derive the material's general response to temperature variations from ultrasonic parameters. In this article, a method for evaluating temperature variations is described. The method is based on the analytical study of an ultrasonic image, in which gray-level variations are correlated to the temperature variations in a tissue-mimicking material. The physical assumption is that temperature variations induce wave propagation changes modifying the backscattered ultrasound signal, which are expressed in the ultrasonographic images. For a temperature variation of about 15°C, the expanded uncertainty for a coverage probability of 0.95 was found to be 2.5°C in the heating regime and 1.9°C in the cooling regime. It is possible to use the model proposed in this article in a straightforward manner to monitor temperature variation during a physiotherapeutic ultrasound application, provided the tissue-mimicking material approach is transferred to actual biological tissue. The novelty of such approach resides in the metrology-based investigation outlined here, as well as in its ease of reproducibility.
Collapse
Affiliation(s)
- André V Alvarenga
- Laboratory of Ultrasound, Directory of Scientific and Industrial Metrology (DIMCI), National Institute of Metrology, Quality and Technology (INMETRO), Rio de Janeiro, Brazil.
| | - Volker Wilkens
- Physikalisch-Technische Bundesanstalt, Braunschweig, Germany
| | - Olga Georg
- Physikalisch-Technische Bundesanstalt, Braunschweig, Germany
| | - Rodrigo P B Costa-Félix
- Laboratory of Ultrasound, Directory of Scientific and Industrial Metrology (DIMCI), National Institute of Metrology, Quality and Technology (INMETRO), Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Karwat P, Kujawska T, Lewin PA, Secomski W, Gambin B, Litniewski J. Determining temperature distribution in tissue in the focal plane of the high (>100 W/cm(2)) intensity focused ultrasound beam using phase shift of ultrasound echoes. ULTRASONICS 2016; 65:211-219. [PMID: 26498063 DOI: 10.1016/j.ultras.2015.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 10/01/2015] [Accepted: 10/01/2015] [Indexed: 06/05/2023]
Abstract
In therapeutic applications of High Intensity Focused Ultrasound (HIFU) the guidance of the HIFU beam and especially its focal plane is of crucial importance. This guidance is needed to appropriately target the focal plane and hence the whole focal volume inside the tumor tissue prior to thermo-ablative treatment and beginning of tissue necrosis. This is currently done using Magnetic Resonance Imaging that is relatively expensive. In this study an ultrasound method, which calculates the variations of speed of sound in the locally heated tissue volume by analyzing the phase shifts of echo-signals received by an ultrasound scanner from this very volume is presented. To improve spatial resolution of B-mode imaging and minimize the uncertainty of temperature estimation the acoustic signals were transmitted and received by 8 MHz linear phased array employing Synthetic Transmit Aperture (STA) technique. Initially, the validity of the algorithm developed was verified experimentally in a tissue-mimicking phantom heated from 20.6 to 48.6 °C. Subsequently, the method was tested using a pork loin sample heated locally by a 2 MHz pulsed HIFU beam with focal intensity ISATA of 129 W/cm(2). The temperature calibration of 2D maps of changes in the sound velocity induced by heating was performed by comparison of the algorithm-determined changes in the sound velocity with the temperatures measured by thermocouples located in the heated tissue volume. The method developed enabled ultrasound temperature imaging of the heated tissue volume from the very inception of heating with the contrast-to-noise ratio of 3.5-12 dB in the temperature range 21-56 °C. Concurrently performed, conventional B-mode imaging revealed CNR close to zero dB until the temperature reached 50 °C causing necrosis. The data presented suggest that the proposed method could offer an alternative to MRI-guided temperature imaging for prediction of the location and extent of the thermal lesion prior to applying the final HIFU treatment.
Collapse
Affiliation(s)
- Piotr Karwat
- Department of Ultrasound, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5b, 02-106 Warsaw, Poland.
| | - Tamara Kujawska
- Department of Ultrasound, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5b, 02-106 Warsaw, Poland
| | - Peter A Lewin
- Biomedical Ultrasound Research and Education Center, Drexel University, Bossone 7 701, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| | - Wojciech Secomski
- Department of Ultrasound, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5b, 02-106 Warsaw, Poland
| | - Barbara Gambin
- Department of Ultrasound, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5b, 02-106 Warsaw, Poland
| | - Jerzy Litniewski
- Department of Ultrasound, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5b, 02-106 Warsaw, Poland
| |
Collapse
|
11
|
Abstract
In this review we present the current status of ultrasound thermometry and ablation monitoring, with emphasis on the diverse approaches published in the literature and with an eye on which methods are closest to clinical reality. It is hoped that this review will serve as a guide to the expansion of sonographic methods for treatment monitoring and thermometry since the last brief review in 2007.
Collapse
Affiliation(s)
- Matthew A. Lewis
- Department of Radiology, UT Southwestern Medical Center at Dallas
| | - Robert M. Staruch
- Department of Radiology, UT Southwestern Medical Center at Dallas
- Ultrasound Imaging & Interventions, Philips Research North America
| | - Rajiv Chopra
- Department of Radiology, UT Southwestern Medical Center at Dallas
- Advanced Imaging Research Center, UT Southwestern Medical Center at Dallas
| |
Collapse
|