1
|
Rajagopal S, Cox BT. Modelling laser ultrasound waveforms: The effect of varying pulse duration and material properties. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 149:2040. [PMID: 33765774 DOI: 10.1121/10.0003558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
Optical generation of ultrasound using nanosecond duration laser pulses has generated great interest both in industrial and biomedical applications. The availability of portable laser devices using semiconductor technology and optical fibres, as well as numerous source material types based on nanocomposites, has proliferated the applications of laser ultrasound. The nanocomposites can be deposited on the tip of optical fibres as well as planar hard and soft backing materials using various fabrication techniques, making devices suitable for a variety of applications. The ability to choose the acoustic material properties and the laser pulse duration gives considerable control over the ultrasound output. Here, an analytical time-domain solution is derived for the acoustic pressure waveform generated by a planar optical ultrasound source consisting of an optically absorbing layer on a backing. It is shown that by varying the optical attenuation coefficient, the thickness of the absorbing layer, the acoustic properties of the materials, and the laser pulse duration, a wide variety of pulse shapes and trains can be generated. It is shown that a source with a reflecting backing can generate pulses with higher amplitude than a source with an acoustically-matched backing in the same circumstances when stress-confinement has not been satisfied.
Collapse
Affiliation(s)
- Srinath Rajagopal
- Ultrasound and Underwater Acoustics, National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, United Kingdom
| | - Ben T Cox
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London, WC1E 6BT, United Kingdom
| |
Collapse
|
2
|
Wear KA, Howard SM. Correction for Spatial Averaging Artifacts in Hydrophone Measurements of High-Intensity Therapeutic Ultrasound: An Inverse Filter Approach. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:1453-1464. [PMID: 31247548 PMCID: PMC6936621 DOI: 10.1109/tuffc.2019.2924351] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
High-intensity therapeutic ultrasound (HITU) pressure is often measured using a hydrophone. HITU pressure waves typically contain multiple harmonics due to nonlinear propagation. As harmonic frequency increases, harmonic beamwidth decreases. For sufficiently high harmonic frequency, beamwidth may become comparable to the hydrophone effective sensitive element diameter, resulting in signal reduction due to spatial averaging. An analytic formula for a hydrophone spatial averaging filter for beams with Gaussian harmonic radial profiles was tested on HITU pressure signals generated by three transducers (1.45 MHz, F/1; 1.53 MHz, F/1.5; 3.91 MHz, F/1) with focal pressures up to 48 MPa. The HITU signals were measured using fiber-optic and needle hydrophones (nominal geometrical sensitive element diameters: 100 and [Formula: see text]). Harmonic radial profiles were measured with transverse scans in the focal plane using the fiber-optic hydrophone. Harmonic radial profiles were accurately approximated by Gaussian functions with root-mean-square (rms) differences between transverse scans and Gaussian fits less than 9% for frequencies up to approximately 50 MHz. The Gaussian harmonic beamwidth parameter σn varied with harmonic number n according to a power law, σn = σ1/nq where . RMS differences between experimental and theoretical spatial averaging filters were 11% ± 1% (1.45 MHz), 8% ± 1% (1.53 MHz), and 4% ± 1% (3.91 MHz). For the two more highly focused (F/1) transducers, the effect of spatial averaging was to underestimate peak compressional pressure (pcp), peak rarefactional pressure (prp), and pulse intensity integral (pii) by (mean ± standard deviation) (pcp: 4.9% ± 0.5%, prp: 0.4% ± 0.2%, pii: 2.9% ± 1%) and (pcp: 28.3% ± 9.6%, prp: 6% ± 2.4%, pii: 24.3% ± 6.7%) for the 100- and 400- [Formula: see text]-diameter hydrophones, respectively. These errors can be suppressed by the application of the inverse spatial averaging filter.
Collapse
|
3
|
Wear KA. Considerations for Choosing Sensitive Element Size for Needle and Fiber-Optic Hydrophones-Part I: Spatiotemporal Transfer Function and Graphical Guide. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:318-339. [PMID: 30530326 PMCID: PMC6935508 DOI: 10.1109/tuffc.2018.2886067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The spatiotemporal transfer function for a needle or reflectance-based fiber-optic hydrophone is modeled as separable into the product of two filters corresponding to frequency-dependent sensitivity and spatial averaging. The separable hydrophone transfer function model is verified numerically by comparison to a more general rigid piston spatiotemporal response model that does not assume separability. Spatial averaging effects are characterized by frequency-dependent "effective" sensitive element diameter, which can be more than double the geometrical sensitive element diameter. The transfer function is tested in simulation using a nonlinear focused pressure wave model based on Gaussian harmonic radial pressure distributions. The pressure wave model is validated by comparing to experimental hydrophone scans of nonlinear beams produced by three source transducers. An analytic form for the spatial averaging filter, applicable to Gaussian harmonic beams, is derived. A second analytic form for the spatial averaging filter, applicable to quadratic harmonic beams, is derived by extending the spatial averaging correction recommended by IEC 62127-1 Annex E to nonlinear signals with multiple harmonics. Both forms are applicable to all hydrophones (not just needle and fiber-optic hydrophones). Simulation analysis performed for a wide variety of transducer geometries indicates that the Gaussian spatial averaging filter formula is more accurate than the quadratic formula over a wider range of harmonics. Additional experimental validation is provided in Part II. Readers who are uninterested in hydrophone theory may skip the theoretical and experimental sections of this paper and proceed to the graphical guide for practical information to inform and support selection of hydrophone sensitive element size (but might be well advised to read the Introduction).
Collapse
|
4
|
Wear KA, Liu Y, Harris GR. Pressure Pulse Distortion by Needle and Fiber-Optic Hydrophones due to Nonuniform Sensitivity. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:137-148. [PMID: 29389648 PMCID: PMC6103641 DOI: 10.1109/tuffc.2017.2778566] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Needle and fiber-optic hydrophones have frequency-dependent sensitivity, which can result in substantial distortion of nonlinear or broadband pressure pulses. A rigid cylinder model for needle and fiber-optic hydrophones was used to predict this distortion. The model was compared with measurements of complex sensitivity for a fiber-optic hydrophone and three needle hydrophones with sensitive element sizes ( ) of 100, 200, 400, and . Theoretical and experimental sensitivities agreed to within 12 ± 3% [root-mean-square (RMS) normalized magnitude ratio] and 8° ± 3° (RMS phase difference) for the four hydrophones over the range from 1 to 10 MHz. The model predicts that distortions in peak positive pressure can exceed 20% when and spectral index (SI) >7% and can exceed 40% when and SI >14%, where is the wavelength of the fundamental component and SI is the fraction of power spectral density contained in harmonics. The model predicts that distortions in peak negative pressure can exceed 15% when . Measurements of pulse distortion using a 2.25 MHz source and needle hydrophones with , 400, and agreed with the model to within a few percent on the average for SI values up to 14%. This paper 1) identifies conditions for which needle and fiber-optic hydrophones produce substantial distortions in acoustic pressure pulse measurements and 2) offers a practical deconvolution method to suppress these distortions.
Collapse
|
5
|
Finlay MC, Mosse CA, Colchester RJ, Noimark S, Zhang EZ, Ourselin S, Beard PC, Schilling RJ, Parkin IP, Papakonstantinou I, Desjardins AE. Through-needle all-optical ultrasound imaging in vivo: a preclinical swine study. LIGHT, SCIENCE & APPLICATIONS 2017; 6:e17103. [PMID: 30167220 PMCID: PMC6062020 DOI: 10.1038/lsa.2017.103] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 06/11/2017] [Accepted: 06/14/2017] [Indexed: 05/08/2023]
Abstract
High-frequency ultrasound imaging can provide exquisite visualizations of tissue to guide minimally invasive procedures. Here, we demonstrate that an all-optical ultrasound transducer, through which light guided by optical fibers is used to generate and receive ultrasound, is suitable for real-time invasive medical imaging in vivo. Broad-bandwidth ultrasound generation was achieved through the photoacoustic excitation of a multiwalled carbon nanotube-polydimethylsiloxane composite coating on the distal end of a 300-μm multi-mode optical fiber by a pulsed laser. The interrogation of a high-finesse Fabry-Pérot cavity on a single-mode optical fiber by a wavelength-tunable continuous-wave laser was applied for ultrasound reception. This transducer was integrated within a custom inner transseptal needle (diameter 1.08 mm; length 78 cm) that included a metallic septum to acoustically isolate the two optical fibers. The use of this needle within the beating heart of a pig provided unprecedented real-time views (50 Hz scan rate) of cardiac tissue (depth: 2.5 cm; axial resolution: 64 μm) and revealed the critical anatomical structures required to safely perform a transseptal crossing: the right and left atrial walls, the right atrial appendage, and the limbus fossae ovalis. This new paradigm will allow ultrasound imaging to be integrated into a broad range of minimally invasive devices in different clinical contexts.
Collapse
Affiliation(s)
- Malcolm C Finlay
- William Harvey Cardiovascular Research Institute, Queen Mary University of London and Barts Heart Centre, London EC1A 7BE, UK
| | - Charles A Mosse
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, Charles Bell House, 67-73 Riding House Street, London W1W 7EJ, UK
| | - Richard J Colchester
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, Charles Bell House, 67-73 Riding House Street, London W1W 7EJ, UK
| | - Sacha Noimark
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, Charles Bell House, 67-73 Riding House Street, London W1W 7EJ, UK
- UCL Centre for Materials Research, Department of Chemistry, University College London, London WC1H 0AJ, UK
| | - Edward Z Zhang
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, Charles Bell House, 67-73 Riding House Street, London W1W 7EJ, UK
| | - Sebastien Ourselin
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, Charles Bell House, 67-73 Riding House Street, London W1W 7EJ, UK
| | - Paul C Beard
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, Charles Bell House, 67-73 Riding House Street, London W1W 7EJ, UK
| | - Richard J Schilling
- William Harvey Cardiovascular Research Institute, Queen Mary University of London and Barts Heart Centre, London EC1A 7BE, UK
| | - Ivan P Parkin
- UCL Centre for Materials Research, Department of Chemistry, University College London, London WC1H 0AJ, UK
| | - Ioannis Papakonstantinou
- Department of Electronic and Electrical Engineering, University College London, London WC1E 7JE, UK
| | - Adrien E Desjardins
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, Charles Bell House, 67-73 Riding House Street, London W1W 7EJ, UK
| |
Collapse
|