1
|
Torres-Ortiz D, García-Alcocer G, Loske AM, Fernández F, Becerra-Becerra E, Esparza R, Gonzalez-Reyna MA, Estevez M. Green Synthesis and Antiproliferative Activity of Gold Nanoparticles of a Controlled Size and Shape Obtained Using Shock Wave Extracts from Amphipterygium adstringens. Bioengineering (Basel) 2023; 10:bioengineering10040437. [PMID: 37106624 PMCID: PMC10136038 DOI: 10.3390/bioengineering10040437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 04/03/2023] Open
Abstract
In this study, green chemistry was used as a tool to obtain gold nanoparticles using Amphipterygium adstringens extracts as a synthesis medium. Green ethanolic and aqueous extracts were obtained using ultrasound and shock wave-assisted extraction. Gold nanoparticles with sizes ranging between 100 and 150 nm were obtained with ultrasound aqueous extract. Interestingly, homogeneous quasi-spherical gold nanoparticles with sizes between 50 and 100 nm were achieved with shock wave aqueous-ethanolic extracts. Furthermore, 10 nm gold nanoparticles were obtained by the traditional methanolic macerate extraction method. The physicochemical characteristics, morphology, size, stability, and Z potential of the nanoparticles were determined using microscopic and spectroscopic techniques. The viability assay in leukemia cells (Jurkat) was performed using two different sets of gold nanoparticles, with final IC50 values of 87 µM and 94.7 µM, reaching a maximum cell viability decrease of 80% The results do not indicate a significant difference between the cytotoxic effects produced by the gold nanoparticles synthesized in this study and vincristine on normal lymphoblasts (CRL-1991).
Collapse
Affiliation(s)
- Daniela Torres-Ortiz
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas s/n, Santiago de Querétaro 76010, Querétaro, Mexico
| | - Guadalupe García-Alcocer
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas s/n, Santiago de Querétaro 76010, Querétaro, Mexico
- Correspondence: (G.G.-A.); (M.E.)
| | - Achim M. Loske
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Santiago de Querétaro 76230, Querétaro, Mexico
| | - Francisco Fernández
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Santiago de Querétaro 76230, Querétaro, Mexico
| | - Edgardo Becerra-Becerra
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas s/n, Santiago de Querétaro 76010, Querétaro, Mexico
| | - Rodrigo Esparza
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Santiago de Querétaro 76230, Querétaro, Mexico
| | - Marlen Alexis Gonzalez-Reyna
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Santiago de Querétaro 76230, Querétaro, Mexico
| | - Miriam Estevez
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Santiago de Querétaro 76230, Querétaro, Mexico
- Correspondence: (G.G.-A.); (M.E.)
| |
Collapse
|
2
|
Zhang H, Zhu M, Ji S, Dou Y. Combining the Finite Element Analysis and Kriging Model for Study on Laser Surface Hardening Parameters of Pitch Bearing Raceway. MATERIALS 2022; 15:ma15072681. [PMID: 35408013 PMCID: PMC9000486 DOI: 10.3390/ma15072681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 12/10/2022]
Abstract
Laser surface hardening is used to improve the fatigue performance of the large diameter pitch bearing. Determination of the process parameters by a trial and error method, depending on the experience of the technician, by changing the parameters repeatedly for each laser surface hardening process is time-consuming and costly. In this paper, a method of analyzing the maximum temperature and depth of a hardened layer during the laser surface hardening process for a pitch bearing raceway of a wind turbine is proposed, which combines finite element simulation and the Kriging model. A three-dimensional finite element model of a pitch bearing ring was established using ABAQUS. The temperature field analysis was performed. The effects of process parameters including laser power, scanning speed, and laser spot radius on the depth of the hardening layer were investigated. Then, taking into account the interactional effects of different process parameters, Kriging models were constructed to reflect the relationship between input process parameters and output responses. The results show that the Kriging approximation model has a small relative error compared with the simulated results and can be used to predict the hardened layer depth.
Collapse
|
3
|
Ullah M, Xia L, Xie S, Sun S. CRISPR/Cas9-based genome engineering: A new breakthrough in the genetic manipulation of filamentous fungi. Biotechnol Appl Biochem 2020; 67:835-851. [PMID: 33179815 DOI: 10.1002/bab.2077] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 10/24/2020] [Indexed: 12/26/2022]
Abstract
Filamentous fungi have several industrial, environmental, and medical applications. However, they are rarely utilized owing to the limited availability of full-genome sequences and genetic manipulation tools. Since the recent discovery of the full-genome sequences for certain industrially important filamentous fungi, CRISPR/Cas9 technology has drawn attention for the efficient development of engineered strains of filamentous fungi. CRISPR/Cas9 genome editing has been successfully applied to diverse filamentous fungi. In this review, we briefly discuss the use of common genetic transformation techniques as well as CRISPR/Cas9-based systems in filamentous fungi. Furthermore, we describe potential limitations and challenges in the practical application of genome engineering of filamentous fungi. Finally, we provide suggestions and highlight future research prospects in the area.
Collapse
Affiliation(s)
- Mati Ullah
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lin Xia
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shangxian Xie
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Su Sun
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|