1
|
Delattre V, Cambronero S, Chen Y, Haar GT, Rivens I, Polton G, Lafon C, Melodelima D. In vivo exposure of the bladder using a non-invasive high intensity focused ultrasound toroidal transducer. ULTRASONICS 2024; 138:107239. [PMID: 38211366 DOI: 10.1016/j.ultras.2024.107239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/15/2023] [Accepted: 01/01/2024] [Indexed: 01/13/2024]
Abstract
A toroidal high-intensity focused ultrasound (HIFU) transducer was used to expose normal bladder wall tissues non-invasively in vivo in a porcine model in order to investigate the potential to treat bladder tumors. The transducer was divided into 32 concentric rings with equal surface areas, operating at 2.5 MHz. Eight animals were split into two groups of 4. In the first group, post-mortem evaluation was performed immediately after ultrasound exposure. In the second group, animals survived for up to seven days before post-mortem evaluation. The ultrasound imaging guided HIFU device was hand-held during the procedure using optical tracking to ensure correct targeting. One thermal lesion in each animal was created using a 40 s exposure at 80 acoustic Watts (free-field) in the trigone region of the bladder wall. The average (±Standard Deviation) abdominal wall and bladder wall thicknesses were 10.3 ± 1.4 mm and 1.1 ± 0.4 mm respectively. The longest and shortest axes of the HIFU ablations were 7.7 ± 2.9 mm and 6.0 ± 1.8 mm, respectively, resulting in an ablation of the whole thickness of the bladder wall in most cases. Ablation were performed at an average depth (distance from the skin surface to the centre of the HIFU lesion) of 42.5 ± 3.8 mm and extended throughout the thickness of the bladder. There were two cases of injury to tissues immediately adjacent to the bladder wall but without signs of perforation, as confirmed by histological analysis. Non-invasive HIFU ablation using a hand-held toroidal transducer was successfully performed to destroy regions of the bladder wall in vivo.
Collapse
Affiliation(s)
- Victor Delattre
- LabTAU, INSERM, Centre Léon Bérard, Université Claude Bernard Lyon 1, F-69003, Lyon, France.
| | - Sophie Cambronero
- LabTAU, INSERM, Centre Léon Bérard, Université Claude Bernard Lyon 1, F-69003, Lyon, France
| | - Yao Chen
- LabTAU, INSERM, Centre Léon Bérard, Université Claude Bernard Lyon 1, F-69003, Lyon, France
| | - Gail Ter Haar
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden Hospital NHS Trust, Sutton, Surrey, UK
| | - Ian Rivens
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden Hospital NHS Trust, Sutton, Surrey, UK
| | - Gerry Polton
- North Downs Specialist Referrals, Bletchingley, Surrey, UK
| | - Cyril Lafon
- LabTAU, INSERM, Centre Léon Bérard, Université Claude Bernard Lyon 1, F-69003, Lyon, France; Joint Department of Physics, Institute of Cancer Research and Royal Marsden Hospital NHS Trust, Sutton, Surrey, UK
| | - David Melodelima
- LabTAU, INSERM, Centre Léon Bérard, Université Claude Bernard Lyon 1, F-69003, Lyon, France
| |
Collapse
|
2
|
Liao M, Du J, Chen L, Huang J, Yang R, Bao W, Zeng K, Wang W, Aphan BC, Wu Z, Ma L, Lu Q. Sono-activated materials for enhancing focused ultrasound ablation: Design and application in biomedicine. Acta Biomater 2024; 173:36-50. [PMID: 37939816 DOI: 10.1016/j.actbio.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023]
Abstract
The ablation effect of focused ultrasound (FUS) has played an increasingly important role in the biomedical field over the past decades, and its non-invasive features have great advantages, especially for clinical diseases where surgical treatment is not available or appropriate. Recently, rapid advances in the adjustable morphology, enzyme-mimetic activity, and biostability of sono-activated materials have significantly promoted the medical application of FUS ablation. However, a systematic review of sono-activated materials based on FUS ablation is not yet available. This progress review focuses on the recent design, fundamental principles, and applications of sono-activated materials in the FUS ablation biomedical field. First, the different ablation mechanisms and the key factors affecting ablation are carefully determined. Then, the design of sono-activated materials with high FUS ablation efficiencies is comprehensively discussed. Subsequently, the representative biological applications are summarized in detail. Finally, the primary challenges and future perspectives are also outlined. We believe this timely review will provide key information and insights for further exploration of focused ultrasound ablation and new inspiration for designing future sono-activated materials. STATEMENT OF SIGNIFICANCE: The ablation effect of focused ultrasound (FUS) has played an increasingly important role in the biomedical field over the past decades. However, there are also some challenges of FUS ablation, such as skin burns, tumour recurrence after thermal ablation, and difficulty in controlling cavitation ablation. The rapid advance in adjustable morphology, enzyme-mimetic activity, and biostability of sono-activated materials has significantly promoted the medical application of FUS ablation. However, the systematic review of sono-activated materials based on FUS ablation is not yet available. This progress review focuses on the recent design, fundamental principles, and applications in the FUS ablation biomedical field of sono-activated materials. We believe this timely review will provide key information and insights for further exploration of FUS ablation.
Collapse
Affiliation(s)
- Min Liao
- Department of Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinpeng Du
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Lin Chen
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Jiayan Huang
- Department of Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rui Yang
- Department of Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wuyongga Bao
- Department of Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Keyu Zeng
- Department of Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenhui Wang
- Department of Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Benjamín Castañeda Aphan
- Department of Engineering, Medical Imaging Laboratory, Pontificia Universidad Católica del Perú, Lima, Peru
| | - Zhe Wu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| | - Lang Ma
- Department of Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qiang Lu
- Department of Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Rohfritsch A, Franceschini E, Dupré A, Melodelima D. Quantitative ultrasound techniques for assessing thermal ablation: Measurement of the backscatter coefficient from ex vivo human liver. Med Phys 2023; 50:6908-6919. [PMID: 37769022 DOI: 10.1002/mp.16762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Understanding the changes occurring in biological tissue during thermal ablation is at the heart of many current challenges in both therapy and medical imaging research. PURPOSE The objective of this work is to quantitatively interpret the scattering response of human liver samples, before and after thermal ablation. We report acoustic measurements performed involving n = 21 human liver samples. Thermal ablation is achieved at temperatures between 45 and 80°C and quantification of the irreversible changes in acoustic attenuation and Backscattering Coefficient (BSC) is reported, with a particular attention to the latter. METHODS Both attenuation coefficient and BSCs were measured in the frequency range from 10 to 52 MHz. Scans were performed before heating and after cooling down. Attenuation coefficients were calculated using spectral difference method and BSC estimated using the reference phantom method. RESULTS Strong increases of attenuation coefficients and BSCs with heating temperature were observed. Quantitative ultrasonic parameters obtained with the polydisperse structure factor model (poly-SFM)are compared to histological observations and seen to be close to hepatocyte mean diameter (HMD). CONCLUSIONS The results presented in this study provide a description of the impact of thermal ablation in human liver tissue on acoustic attenuation and the BSC. For the first time, quantitative agreement between the Effective Scatterer Diameter (ESD) estimated from BSC and HMD was shown, highlighting the important role of cellular network in the scattering response of the medium. This core result is an important step toward the determination of the nature of scattering sources in biological tissues.
Collapse
Affiliation(s)
- Adrien Rohfritsch
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, Lyon, France
| | | | - Aurélien Dupré
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, Lyon, France
| | - David Melodelima
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, Lyon, France
| |
Collapse
|
4
|
Dupré A, Rivoire M, Metzger S, Cropet C, Vincenot J, Peyrat P, Chen Y, Pérol D, Melodelima D. Intra-operative High-Intensity Focused Ultrasound in Patients With Colorectal Liver Metastases: A Prospective Ablate-and-Resect Study. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1845-1851. [PMID: 37268553 DOI: 10.1016/j.ultrasmedbio.2023.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/07/2023] [Accepted: 04/21/2023] [Indexed: 06/04/2023]
Abstract
OBJECTIVE High-intensity focused ultrasound (HIFU) is a recent, non-ionizing and non-invasive technology of focal destruction. Independence from the heat-sink effect of blood flow makes HIFU an interesting technique for focal ablation of liver tumors. Current available technology is based on extracorporeal treatment that limits use of HIFU for the treatment of liver tumors, as elementary ablations are small and must be juxtaposed to treat tumors, resulting in long-duration treatment. We developed an HIFU probe with toroidal technology, which increases the volume of ablation, for intra-operative use, and we assessed the feasibility and efficacy of this device in patients with colorectal liver metastasis (CLM) measuring less than 30 mm. METHODS This study was an ablate-and-resect, prospective, single-center, phase II study. All ablations were performed in the area of liver scheduled for liver resection to avoid loss of chance of recovery. The primary objective was to ablate CLM with safety margins (>5 mm). RESULTS Between May 2014 and July 2020, 15 patients were enrolled and 24 CLM were targeted. The HIFU ablation time was 370 s. In total, 23 of 24 CLM were successfully treated (95.8%). No damage occurred to extrahepatic tissues. HIFU ablations were oblate shaped with an average long axis of 44.3 ± 6.1 mm and an average shortest axis of 35.9 ± 6.7 mm. On pathological examination, the average diameter of the treated metastasis was 12.2 ± 4.8 mm. CONCLUSION Intra-operative HIFU can safely and accurately produce large ablations in 6 min with real-time guidance (ClinicalTrials.gov identifier: NCT01489787).
Collapse
Affiliation(s)
- Aurélien Dupré
- Department of Surgical Oncology, Centre Léon Bérard, Lyon, France; LabTAU, INSERM, Université Lyon 1, Centre Léon Bérard, Lyon, France.
| | - Michel Rivoire
- Department of Surgical Oncology, Centre Léon Bérard, Lyon, France; LabTAU, INSERM, Université Lyon 1, Centre Léon Bérard, Lyon, France
| | | | - Claire Cropet
- DRCI, Biostatistics Unit, Centre Léon Bérard, Lyon, France
| | - Jérémy Vincenot
- LabTAU, INSERM, Université Lyon 1, Centre Léon Bérard, Lyon, France
| | - Patrice Peyrat
- Department of Surgical Oncology, Centre Léon Bérard, Lyon, France
| | - Yao Chen
- Department of Surgical Oncology, Centre Léon Bérard, Lyon, France
| | - David Pérol
- DRCI, Biostatistics Unit, Centre Léon Bérard, Lyon, France
| | - David Melodelima
- LabTAU, INSERM, Université Lyon 1, Centre Léon Bérard, Lyon, France
| |
Collapse
|
5
|
Kim H, Song I, Kang J, Yoo Y. Phase aberration correction for ultrasound imaging guided extracorporeal shock wave therapy (ESWT): Feasibility study. ULTRASONICS 2023; 132:107011. [PMID: 37071943 DOI: 10.1016/j.ultras.2023.107011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/27/2022] [Accepted: 04/08/2023] [Indexed: 05/03/2023]
Abstract
Image guidance of extracorporeal shock wave therapy (ESWT) is important to enhance its efficacy while lowering pain in patients. Real-time ultrasound imaging is an appropriate modality for image guidance, but its image quality substantially reduces due to severe phase aberration from the different speed of sound between soft tissues and a gel pad, which is utilized to control a therapeutic focal point in ESWT. This paper presents a phase aberration correction method for improving image quality in the ultrasound imaging guided ESWT. To correct an error from phase aberration, a time delay based on a two-layer model with different speeds of sound is calculated for dynamic receive beamforming. For the phantom and in vivo studies, a rubber type gel pad (i.e., 1400 m/s) with a specific thickness (3 or 5-cm) was placed on the top of soft tissue and full scanline RF data were acquired. In the phantom study, with phase aberration correction, image quality was highly increased compared to image reconstructions with a fixed speed of sound (i.e., 1540 or 1400 m/s), i.e., 1.1 vs. 2.2 and 1.3 mm in -6dB lateral resolution and 0.64 vs. 0.61 and 0.56 in contrast-to-noise ratio (CNR), respectively. From an in vivo musculoskeletal (MSK) imaging, the phase aberration correction method provided a clearly improved depiction of muscle fibers in a rectus femoris region. These results indicate that the proposed method enables effective imaging guidance of ESWT by improving image quality of ultrasound imaging in real-time.
Collapse
Affiliation(s)
- Hongnam Kim
- Department of Electronic Engineering, Sogang University, Seoul 04107, Korea
| | - Ilseob Song
- Medical Solutions Institute, Sogang University, Seoul 04107, Korea
| | - Jinbum Kang
- Department of Bioengineering, University of Washington, Seattle, WA 98105, United States.
| | - Yangmo Yoo
- Department of Electronic Engineering, Sogang University, Seoul 04107, Korea; Medical Solutions Institute, Sogang University, Seoul 04107, Korea; Department of Biomedical Engineering, Sogang University, Seoul 04107, Korea.
| |
Collapse
|
6
|
Cambronero S, Dupré A, Mastier C, Melodelima D. Non-invasive High-Intensity Focused Ultrasound Treatment of Liver Tissues in an In Vivo Porcine Model: Fast, Large and Safe Ablations Using a Toroidal Transducer. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:212-224. [PMID: 36441030 DOI: 10.1016/j.ultrasmedbio.2022.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/30/2022] [Accepted: 08/28/2022] [Indexed: 06/16/2023]
Abstract
A toroidal high-intensity focused ultrasound (HIFU) transducer was used to non-invasively treat liver tissues in vivo in a pig model. The transducer was divided into 32 concentric rings with equal surface areas operating at 2.5 MHz. First, attenuation of skin, fat, muscle and liver tissues was measured in fresh animal samples to adjust the energy delivered to the focal zone. Then, 8 animals were included in the present protocol and placed in a dorsal decubitus proclive position at an angle of 15°. The device was held by hand, and sonications were performed during apnea. Two thermal HIFU lesions were created in 40 s in each animal. The average abdominal wall thickness was 14.8 ± 1.3 mm (12.5-17.6 mm). The longest and shortest axes of the HIFU ablations were 20.9 ± 6.3 mm (14.0-33.7 mm) and 14.2 ± 5.5 mm (7.0-22.0 mm), respectively. All HIFU lesions were visible on sonograms. The correlation between the dimensions of the HIFU lesions observed on sonograms and those obtained during gross examination was r = 0.84. Creating large and fast ablations with reliable ultrasound imaging guidance in the liver using this handheld device may represent a new therapeutic option for patients with liver tumors.
Collapse
Affiliation(s)
| | - Aurélien Dupré
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon, Lyon, France; Centre Léon Bérard, Lyon, France
| | | | - David Melodelima
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon, Lyon, France
| |
Collapse
|
7
|
Filippou A, Damianou C. Ultrasonic attenuation of canine mammary tumours. ULTRASONICS 2022; 125:106798. [PMID: 35785631 DOI: 10.1016/j.ultras.2022.106798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/10/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Canine mammary tumours (CMTs) are the most common neoplasm appearing in female dogs and are considered the equivalent animal model of human breast cancer. However, in the literature, there is a gap for ultrasonic characterisation of these tumours. In this study, experimental measurements for acoustic attenuation and propagation speed of three surgically excised malignant CMTs were implemented. METHODS The three tumours were fixed in formaldehyde for up to 72 h and a total of five sample pieces were sectioned from the three tumours to account for the varied morphology observed along the tumours. The through-transmission and pulse-echo techniques were employed for experimental measurements of the acoustic attenuation and propagation speed. RESULTS Acoustic propagation speed of the five samples as measured at 2.7 MHz was in the range of 1568-1636 m/s. Correspondingly, acoustic attenuation was in the range of 1.95-3.45 dB/cm.MHz. Variations in both speed and attenuation were observed between samples acquired from the same tumour. CONCLUSIONS Present findings suggest that both acoustic attenuation and propagation speed of CMTs are higher than normal canine tissues due to increased heterogeneity and varied morphology visually observed between the tumour specimens and evidenced by histological examination. Nevertheless, experimental results could aid in enhancing the use of ultrasound in the diagnosis and treatment of CMTs as well as provide essential data for comparative oncology.
Collapse
Affiliation(s)
- Antria Filippou
- Cyprus University of Technology, Department of Electrical Engineering, Computer Engineering, and Informatics, Limassol, Cyprus.
| | - Christakis Damianou
- Cyprus University of Technology, Department of Electrical Engineering, Computer Engineering, and Informatics, Limassol, Cyprus.
| |
Collapse
|
8
|
Xue H, Zhang X, Guo X, Tu J, Zhang D. Optimization of a random linear ultrasonic therapeutic array based on a genetic algorithm. ULTRASONICS 2022; 124:106751. [PMID: 35512579 DOI: 10.1016/j.ultras.2022.106751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/01/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Given their advantage of suppressing grating lobes, randomly arranged linear arrays have potential for use in ultrasonic treatment. The current work proposes a method based on genetic algorithm to optimize the random arrangement of array elements, so that the suppression effect of grating lobes can be significantly improved with reduced calculating time. The maximum and average kerfs of array elements are used as genes, and the ratio of the maximum to the secondary maximum sound pressure at the focal plane is used as the optimized target. Typically, the calculation requirements of the current method can be reduced to ∼ 25% of the traversing method. We further discuss how the kerf width, the effective ratio of element areas and the ratio of focal distance to array aperture affect the suppression of grating lobes. For a typical linear array with 32 elements (1-MHz operating frequency, 1.5-mm element width and 150-mm focal distance), the results suggest that the grating lobes are suppressed well when (1) the ratio of maximum width to average width of the element is between 5 and 8, (2) the ratio of the effective element area to the area of the whole array is between 0.5 and 0.9, and (3) the ratio of the effective emission aperture to the actual emission aperture of the array is as large as possible. Based on optimized parameters, an experimental array was fabricated and the measured results of corresponding sound field were entirely consistent with the simulated results (Given her role as an Associate Editor of this journal, Juan Tu had no involvement in the peer-review of articles for which she was an author and had no access to information regarding the peer-review. Full responsibility for the peer-review process for this article was delegated to another Editor of this journal.).
Collapse
Affiliation(s)
- Honghui Xue
- Key Laboratory of Modern Acoustics (MOE), School of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Xin Zhang
- Key Laboratory of Modern Acoustics (MOE), School of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Xiasheng Guo
- Key Laboratory of Modern Acoustics (MOE), School of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Juan Tu
- Key Laboratory of Modern Acoustics (MOE), School of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China; The State Key Laboratory of Acoustics, Chinese Academy of Science, Beijing 10080, China.
| | - Dong Zhang
- Key Laboratory of Modern Acoustics (MOE), School of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China; The State Key Laboratory of Acoustics, Chinese Academy of Science, Beijing 10080, China.
| |
Collapse
|
9
|
Qu X, Azuma T, Takagi S. Localized motion imaging for monitoring HIFU therapy: Comparison of modulating frequencies and utilization of square modulating wave. ULTRASONICS 2022; 120:106658. [PMID: 34922218 DOI: 10.1016/j.ultras.2021.106658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/02/2021] [Accepted: 11/28/2021] [Indexed: 06/14/2023]
Abstract
High-intensity focused ultrasound (HIFU) has been successfully used as a minimally invasive cancer therapy method. For monitoring the therapy, the amplitude-modulated (AM) localized motion imaging (LMI) method had been proposed. This paper compares the performance of AM-LMI while using different sine modulating wave frequencies and proposes the utilization of square modulating waves to gain the advantages of both high and low modulating frequencies. A single element therapy transducer with a 2 MHz central frequency was driven by sine modulating waves with different frequencies (approximate 34, 67, 102, 168, and 201 Hz) and by square modulating waves with two frequencies (34 and 67 Hz). An imaging probe with a 5 MHz central frequency and a 20 MHz sampling frequency was mounted in the center hole of the therapy transducer to acquire pulse-echo data, which were used to estimate the tissue oscillation amplitude induced by the acoustic radiation force of the HIFU beam. The decrease ratio of the oscillation amount was then utilized to estimate the coagulated lesion length during the therapy. The comparison of modulating frequencies demonstrated that a higher frequency could bring higher sensitivity to small lesions, while a lower frequency not only gives greater noise robustness but also promotes the ability to estimate lengths of larger lesions. The utilization of a square modulating wave demonstrated its utility to produce tissue oscillation with multiple frequencies and gain the advantages of both high and low modulating frequencies.
Collapse
Affiliation(s)
- Xiaolei Qu
- School of Instrumentation and Optoelectronics Engineering, Beihang University, Beijing, China.
| | - Takashi Azuma
- Graduate School of Engineering, the University of Tokyo, Tokyo, Japan
| | - Shu Takagi
- Graduate School of Engineering, the University of Tokyo, Tokyo, Japan
| |
Collapse
|
10
|
Cilleros C, Dupré A, Chen Y, Vincenot J, Rivoire M, Melodelima D. Intraoperative HIFU Ablation of the Pancreas Using a Toroidal Transducer in a Porcine Model. The First Step towards a Clinical Treatment of Locally Advanced Pancreatic Cancer. Cancers (Basel) 2021; 13:6381. [PMID: 34945001 PMCID: PMC8699564 DOI: 10.3390/cancers13246381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 12/20/2022] Open
Abstract
Apart from palliative chemotherapy, no other therapy has been proven effective for the treatment of locally advanced pancreatic tumors. In this study, an intraoperative high-intensity focused ultrasound (HIFU) device was tested in vivo to demonstrate the feasibility of treating the pancreatic parenchyma and tissues surrounding the superior mesenteric vessels prior to clinical translation of this technique. Twenty pigs were included and treated using a HIFU device equipped with a toroidal transducer and an integrated ultrasound imaging probe. Treatments were performed with energy escalation (from 30 kJ to 52 kJ). All treatments resulted in visible (macroscopically and in ultrasound images) homogeneous thermal damage, which was confirmed by histology. The dimensions of thermal lesions measured in ultrasound images and those measured macroscopically were correlated (r = 0.82, p < 0.05). No arterial spasms or occlusion were observed at the lowest energy setting. Temporary spasm of the peripancreatic artery was observed when using an energy setting greater than 30 kJ. The possibility of treating the pancreas and tissues around mesenteric vessels without vascular thrombosis holds great promise for the treatment of locally advanced pancreatic cancers. If clinically successful, chemotherapy followed by HIFU treatment could rapidly become a novel treatment option for locally advanced pancreatic cancer.
Collapse
Affiliation(s)
- Celia Cilleros
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003 Lyon, France; (C.C.); (A.D.); (Y.C.); (M.R.)
- EDAP TMS, 4 Rue du Dauphiné, F-69120 Vaulx-en-Velin, France;
| | - Aurélien Dupré
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003 Lyon, France; (C.C.); (A.D.); (Y.C.); (M.R.)
| | - Yao Chen
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003 Lyon, France; (C.C.); (A.D.); (Y.C.); (M.R.)
| | - Jeremy Vincenot
- EDAP TMS, 4 Rue du Dauphiné, F-69120 Vaulx-en-Velin, France;
| | - Michel Rivoire
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003 Lyon, France; (C.C.); (A.D.); (Y.C.); (M.R.)
| | - David Melodelima
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003 Lyon, France; (C.C.); (A.D.); (Y.C.); (M.R.)
| |
Collapse
|