1
|
Martín Tempestti J, Kim S, Lindsey BD, Veneziani A. A Pseudo-Spectral Method for Wall Shear Stress Estimation from Doppler Ultrasound Imaging in Coronary Arteries. Cardiovasc Eng Technol 2024; 15:647-666. [PMID: 39103664 DOI: 10.1007/s13239-024-00741-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 06/24/2024] [Indexed: 08/07/2024]
Abstract
PURPOSE The Wall Shear Stress (WSS) is the component tangential to the boundary of the normal stress tensor in an incompressible fluid, and it has been recognized as a quantity of primary importance in predicting possible adverse events in cardiovascular diseases, in general, and in coronary diseases, in particular. The quantification of the WSS in patient-specific settings can be achieved by performing a Computational Fluid Dynamics (CFD) analysis based on patient geometry, or it can be retrieved by a numerical approximation based on blood flow velocity data, e.g., ultrasound (US) Doppler measurements. This paper presents a novel method for WSS quantification from 2D vector Doppler measurements. METHODS Images were obtained through unfocused plane waves and transverse oscillation to acquire both in-plane velocity components. These velocity components were processed using pseudo-spectral differentiation techniques based on Fourier approximations of the derivatives to compute the WSS. RESULTS Our Pseudo-Spectral Method (PSM) is tested in two vessel phantoms, straight and stenotic, where a steady flow of 15 mL/min is applied. The method is successfully validated against CFD simulations and compared against current techniques based on the assumption of a parabolic velocity profile. The PSM accurately detected Wall Shear Stress (WSS) variations in geometries differing from straight cylinders, and is less sensitive to measurement noise. In particular, when using synthetic data (noise free, e.g., generated by CFD) on cylindrical geometries, the Poiseuille-based methods and PSM have comparable accuracy; on the contrary, when using the data retrieved from US measures, the average error of the WSS obtained with the PSM turned out to be 3 to 9 times smaller than that obtained by state-of-the-art methods. CONCLUSION The pseudo-spectral approach allows controlling the approximation errors in the presence of noisy data. This gives a more accurate alternative to the present standard and a less computationally expensive choice compared to CFD, which also requires high-quality data to reconstruct the vessel geometry.
Collapse
Affiliation(s)
| | - Saeyoung Kim
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Dr., Atlanta, GA, 30332, USA
- Interdisciplinary BioEngineering Graduate Program, Georgia Institute of Technology, 315 Ferst Dr., Atlanta, GA, 30332, USA
| | - Brooks D Lindsey
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Dr., Atlanta, GA, 30332, USA
- Interdisciplinary BioEngineering Graduate Program, Georgia Institute of Technology, 315 Ferst Dr., Atlanta, GA, 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Dr NW, Atlanta, GA, 30332, USA
| | - Alessandro Veneziani
- Department of Mathematics, Emory University, 400 Dowman Dr, Atlanta, 30322, GA, USA
- Department of Computer Science, Emory University, 400 Dowman Dr, Atlanta, GA, 30322, USA
| |
Collapse
|
2
|
Rojas SS, Samady A, Kim S, Lindsey BD. High-Frequency, 2-mm-Diameter Forward-Viewing 2-D Array for 3-D Intracoronary Blood Flow Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:1051-1061. [PMID: 38913530 PMCID: PMC11381909 DOI: 10.1109/tuffc.2024.3418708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Coronary artery disease (CAD) is one of the leading causes of death globally. Currently, diagnosis and intervention in CAD are typically performed via minimally invasive cardiac catheterization procedures. Using current diagnostic technology, such as angiography and fractional flow reserve (FFR), interventional cardiologists must decide which patients require intervention and which can be deferred; 10% of patients with stable CAD are incorrectly deferred using current diagnostic best practices. By developing a forward-viewing intravascular ultrasound (FV-IVUS) 2-D array capable of simultaneously evaluating morphology, hemodynamics, and plaque composition, physicians would be better able to stratify risk of major adverse cardiac events in patients with intermediate stenosis. For this application, a forward-viewing, 16-MHz 2-D array transducer was designed and fabricated. A 2-mm-diameter aperture consisting of 140 elements, with element dimensions of 98×98×70 μ m ( w×h×t ) and a nominal interelement spacing of 120 μ m, was designed for this application based on simulations. The acoustic stack for this array was developed with a designed center frequency of 16 MHz. A novel via-less interconnect was developed to enable electrical connections to fan-out from a 140-element 2-D array with 120- μ m interelement spacing. The fabricated array transducer had 96/140 functioning elements operating at a center frequency of 16 MHz with a -6-dB fractional bandwidth of 62% ± 7 %. Single-element SNR was 23 ± 3 dB, and the measured electrical crosstalk was - 33 ± 3 dB. In imaging experiments, the measured lateral resolution was 0.231 mm and the measured axial resolution was 0.244 mm at a depth of 5 mm. Finally, the transducer was used to perform 3-D B-mode imaging of a 3-mm-diameter spring and 3-D B-mode and power Doppler imaging of a tissue-mimicking phantom.
Collapse
|
3
|
Kim S, Jing B, Lane BA, Tempestti JM, Padala M, Veneziani A, Lindsey BD. Dynamic Coronary Blood Flow Velocity and Wall Shear Stress Estimation Using Ultrasound in an Ex Vivo Porcine Heart. Cardiovasc Eng Technol 2024; 15:65-76. [PMID: 37962814 PMCID: PMC10923141 DOI: 10.1007/s13239-023-00697-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023]
Abstract
PURPOSE Wall shear stress (WSS) is a critically important physical factor contributing to atherosclerosis. Mapping the spatial distribution of local, oscillatory WSS can identify important mechanisms underlying the progression of coronary artery disease. METHODS In this study, blood flow velocity and time-varying WSS were estimated in the left anterior descending (LAD) coronary artery of an ex vivo beating porcine heart using ultrasound with an 18 MHz linear array transducer aligned with the LAD in a forward-viewing orientation. A pulsatile heart loop with physiologically-accurate flow was created using a pulsatile pump. The coronary artery wall motion was compensated using a local block matching technique. Next, 2D and 3D velocity magnitude and WSS maps in the LAD coronary artery were estimated at different time points in the cardiac cycle using an ultrafast Doppler approach. The blood flow velocity estimated using the presented approach was compared with a commercially-available, calibrated single element blood flow velocity measurement system. RESULTS The resulting root mean square error (RMSE) of 2D velocity magnitude acquired from a high frequency, linear array transducer was less than 8% of the maximum velocity estimated by the commercial system. CONCLUSION When implemented in a forward-viewing intravascular ultrasound device, the presented approach will enable dynamic estimation of WSS, an indicator of plaque vulnerability in coronary arteries.
Collapse
Affiliation(s)
- Saeyoung Kim
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Dr., Atlanta, GA, 30332, USA
- Interdisciplinary BioEngineering Graduate Program, Georgia Institute of Technology, 315 Ferst Dr., Atlanta, GA, 30332, USA
| | - Bowen Jing
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Dr NW, Atlanta, GA, 30332, USA
| | - Brooks A Lane
- Division of Cardiothoracic Surgery, Joseph P. Whitehead Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
- Structural Heart Research and Innovation Laboratory, Carlyle Fraser Heart Center, Emory University Hospital Midtown, Atlanta, GA, USA
| | | | - Muralidhar Padala
- Interdisciplinary BioEngineering Graduate Program, Georgia Institute of Technology, 315 Ferst Dr., Atlanta, GA, 30332, USA
- Division of Cardiothoracic Surgery, Joseph P. Whitehead Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
- Structural Heart Research and Innovation Laboratory, Carlyle Fraser Heart Center, Emory University Hospital Midtown, Atlanta, GA, USA
| | - Alessandro Veneziani
- Department of Mathematics, Emory University, 400 Dowman Dr NE, Atlanta, GA, 30322, USA
- Department of Computer Science, Emory University, 400 Dowman Dr NE, Atlanta, GA, 30322, USA
| | - Brooks D Lindsey
- Interdisciplinary BioEngineering Graduate Program, Georgia Institute of Technology, 315 Ferst Dr., Atlanta, GA, 30332, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Dr NW, Atlanta, GA, 30332, USA.
| |
Collapse
|