1
|
Huber CM, Dorsch N, Ermert H, Vossiek M, Ullmann I, Lyer S. Passive cavitation mapping for biomedical applications using higher order delay multiply and sum beamformer with linear complexity. ULTRASONICS 2025; 153:107653. [PMID: 40203513 DOI: 10.1016/j.ultras.2025.107653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/19/2025] [Accepted: 03/24/2025] [Indexed: 04/11/2025]
Abstract
Ultrasound-induced cavitation can be used in various biomedical therapies, including localized drug delivery, sonoporation, gene transfer, noninvasive sonothrombolysis, lithotripsy, and histotripsy. It can also enhance thermal ablation of tumors and facilitate trans-blood-brain-barrier treatments. Accurate monitoring of cavitation activity, including dose and location, is essential for the safe and effective application of these therapies. Passive cavitation mapping (PCM) is a key technique used to achieve this. However, conventional Delay and Sum (DAS) beamforming methods suffer from low resolution and high side-lobe levels in standard diagnostic ultrasound transducer, limiting their effectiveness or are computationally expensive, in the case of robust capon beamformer (RCB). To address these challenges, we propose a higher-order nonlinear Delay Multiply and Sum (DMAS) beamformer for improved passive cavitation mapping. Our approach utilizes a novel implementation with linear complexity, using a determinant from symmetrical polynomials. Simulation and experimental results demonstrate that the proposed method enhances both axial and lateral point spread function, resolution and increasing image quality, while exhibiting linear complexity. These improvements suggest that higher-order nonlinear beamforming is a promising advancement for more accurate and reliable cavitation monitoring in biomedical applications.
Collapse
Affiliation(s)
- Christian Marinus Huber
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Professorship for AI-Controlled Nanomaterials (KINAM), Universitätsklinikum Erlangen, Glücksstrasse 10a, Erlangen, 91054, Bavaria, Germany; Institute of Microwaves and Photonics (LHFT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstrasse 9, Erlangen, 91058, Bavaria, Germany.
| | - Nicole Dorsch
- Institute of Microwaves and Photonics (LHFT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstrasse 9, Erlangen, 91058, Bavaria, Germany
| | - Helmut Ermert
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Professorship for AI-Controlled Nanomaterials (KINAM), Universitätsklinikum Erlangen, Glücksstrasse 10a, Erlangen, 91054, Bavaria, Germany
| | - Martin Vossiek
- Institute of Microwaves and Photonics (LHFT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstrasse 9, Erlangen, 91058, Bavaria, Germany
| | - Ingrid Ullmann
- Institute of Microwaves and Photonics (LHFT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstrasse 9, Erlangen, 91058, Bavaria, Germany
| | - Stefan Lyer
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Professorship for AI-Controlled Nanomaterials (KINAM), Universitätsklinikum Erlangen, Glücksstrasse 10a, Erlangen, 91054, Bavaria, Germany
| |
Collapse
|
2
|
Zhu Y, Zhang G, Zhang Q, Luo L, Ding B, Guo X, Zhang D, Tu J. Real-time passive cavitation mapping and B-mode fusion imaging via hybrid adaptive beamformer with modified diagnostic ultrasound platform. ULTRASONICS 2024; 142:107375. [PMID: 38901152 DOI: 10.1016/j.ultras.2024.107375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/15/2024] [Accepted: 06/06/2024] [Indexed: 06/22/2024]
Abstract
The implementation of real-time, convenient and high-resolution passive cavitation imaging (PCM) is crucial for ensuring the safety and effectiveness of ultrasound applications related to cavitation effects. However, the current B-mode ultrasound imaging system cannot achieve these functions. By developing a hybrid adaptive beamforming algorithm, the current work presented a real-time PCM and B-mode fusion imaging technique, using a modified diagnostic ultrasound platform enabling time-division multiplexing external triggering function. The proposed hybrid adaptive beamformer combined the advantages of delay-multiply-and-sum (DMAS) and minimum variance (MV) methods to effectively suppress the side lobe and tail-like artifacts, improving the resolution of PCM images. A high-pass filter was applied to selectively detect cavitation-specific signals while removing the interference from the tissue scatters. The system enabled synchronous visualization of tissue structure and cavitation activity under ultrasound exposure. Both numerical and experimental studies demonstrated that, compared with DAS, MV-DAS and DMAS methods, the proposed MV-DMAS algorithm performed better in both axial and lateral resolutions. This work represented a significant advancement in achieving high-quality real-time B-mode and PCM fusion imaging utilizing commercial medical ultrasound system, providing a powerful tool for synchronous monitoring and manipulating cavitation activity, which would enhance the safety and efficacy of cavitation-based applications.
Collapse
Affiliation(s)
- Yifei Zhu
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Guofeng Zhang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Qi Zhang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Lan Luo
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Bo Ding
- Zhuhai Ecare Electronics Science & Technology Co., Ltd., Zhuhai 519041, China
| | - Xiasheng Guo
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Dong Zhang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China.
| | - Juan Tu
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
3
|
Zhang C, Wu Y, Zhang Q, Zhang M, Zhang D. The impact of ischemic vascular stenosis on LIPU hyperthermia efficacy investigated Based on in vivo rabbit limb ischemia model. ULTRASONICS 2024; 138:107263. [PMID: 38350312 DOI: 10.1016/j.ultras.2024.107263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/15/2024]
Abstract
Ischemic diseases due to arterial stenosis or occlusion are common and can have serious consequences if untreated. Therapeutic ultrasound like high-intensity focused ultrasound (HIFU) ablates tissues while low-intensity pulsed ultrasound (LIPU) promotes healing at relatively low temperatures. However, blood vessel cooling effect and reduced flow in ischemia impact temperature distribution and ultrasonic treatment efficacy. This work established a rabbit limb ischemia model by ligating the femoral artery, measuring vascular changes and temperature rise during LIPU exposures. Results showed the artery diameter was narrowed by 46.2% and the downstream velocity was reduced by 51.3% after ligation. Finite element simulations verified that the reduced flow velocity impaired heat dissipation, enhancing LIPU-induced heating. Simulation results also suggested the temperature rise was almost related linearly to vessel diameter but decayed exponentially with the increasing flow velocity. Findings indicate that the proposed model could be used as an effectively tool to model the heating effects in ischemic tissues during LIPU treatment. This research on relating varied ischemic flow to LIPU-induced thermal effects is significant for developing safe and efficacious clinical ultrasound hyperthermia treatment protocols for the patients with ischemic diseases.
Collapse
Affiliation(s)
- Chunbing Zhang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yiyun Wu
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Qi Zhang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Meimei Zhang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Dong Zhang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China; The State Key Laboratory of Acoustics, Chinese Academy of Science, Beijing 10080, China.
| |
Collapse
|