1
|
Kamphuis ME, Greuter MJW, Slart RHJA, Slump CH. Quantitative imaging: systematic review of perfusion/flow phantoms. Eur Radiol Exp 2020; 4:15. [PMID: 32128653 PMCID: PMC7054493 DOI: 10.1186/s41747-019-0133-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 11/08/2019] [Indexed: 11/10/2022] Open
Abstract
Background We aimed at reviewing design and realisation of perfusion/flow phantoms for validating quantitative perfusion imaging (PI) applications to encourage best practices. Methods A systematic search was performed on the Scopus database for “perfusion”, “flow”, and “phantom”, limited to articles written in English published between January 1999 and December 2018. Information on phantom design, used PI and phantom applications was extracted. Results Of 463 retrieved articles, 397 were rejected after abstract screening and 32 after full-text reading. The 37 accepted articles resulted to address PI simulation in brain (n = 11), myocardial (n = 8), liver (n = 2), tumour (n = 1), finger (n = 1), and non-specific tissue (n = 14), with diverse modalities: ultrasound (n = 11), computed tomography (n = 11), magnetic resonance imaging (n = 17), and positron emission tomography (n = 2). Three phantom designs were described: basic (n = 6), aligned capillary (n = 22), and tissue-filled (n = 12). Microvasculature and tissue perfusion were combined in one compartment (n = 23) or in two separated compartments (n = 17). With the only exception of one study, inter-compartmental fluid exchange could not be controlled. Nine studies compared phantom results with human or animal perfusion data. Only one commercially available perfusion phantom was identified. Conclusion We provided insights into contemporary phantom approaches to PI, which can be used for ground truth evaluation of quantitative PI applications. Investigators are recommended to verify and validate whether assumptions underlying PI phantom modelling are justified for their intended phantom application.
Collapse
Affiliation(s)
- Marije E Kamphuis
- Multimodality Medical Imaging M3i Group, Faculty of Science and Technology, Technical Medical Centre, University of Twente, PO Box 217, Enschede, The Netherlands. .,Robotics and Mechatronics Group, Faculty of Electrical Engineering, Mathematics, and Computer Science, Technical Medical Centre, University of Twente, Enschede, The Netherlands.
| | - Marcel J W Greuter
- Robotics and Mechatronics Group, Faculty of Electrical Engineering, Mathematics, and Computer Science, Technical Medical Centre, University of Twente, Enschede, The Netherlands.,Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Riemer H J A Slart
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Biomedical Photonic Imaging Group, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | - Cornelis H Slump
- Robotics and Mechatronics Group, Faculty of Electrical Engineering, Mathematics, and Computer Science, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| |
Collapse
|
2
|
Shirinifard A, Thiagarajan S, Johnson MD, Calabrese C, Sablauer A. Measuring Absolute Blood Perfusion in Mice Using Dynamic Contrast-Enhanced Ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:1628-1638. [PMID: 28522149 DOI: 10.1016/j.ultrasmedbio.2017.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/31/2017] [Accepted: 02/04/2017] [Indexed: 06/07/2023]
Abstract
We investigated the feasibility of estimating absolute tissue blood perfusion using dynamic contrast-enhanced ultrasound (CEUS) imaging in mice. We developed a novel method of microbubble administration and a model-free approach to estimate absolute kidney perfusion, and explored the kidney as a reference organ to estimate absolute perfusion of a neuroblastoma tumor. We performed CEUS on the kidneys of CD1 nude mice using the VisualSonics VEVO 2100 imaging system. We estimated individual kidney blood perfusion using the burst-replenishment (BR) technique. We repeated the kidney imaging on the mice after a week. We performed CEUS imaging of a neuroblastoma mouse xenograft tumor along with its right kidney using two sets of microbubble administration parameters to estimate absolute tumor blood perfusion. We performed statistical tests at a significance level of 0.05. Our estimated absolute kidney perfusion (425 ± 123 mL/min/100 g) was within the range of previously reported values. There was no statistical difference between the estimated absolute kidney blood perfusions from the 2 wk of imaging (paired t-test, p = 0.09). We estimated the absolute blood perfusion in the neuroblastoma tumor to be 16.49 and 16.9 mL/min/100 g for the two sets of microbubble administration parameters (Wilcoxon rank-sum test, p = 0.6). We have established the kidney as a reliable reference organ in which to estimate absolute perfusion of other tissues. Using a neuroblastoma tumor, we have determined the feasibility of estimating absolute blood perfusion in tissues using contrast-enhanced ultrasound imaging.
Collapse
Affiliation(s)
- Abbas Shirinifard
- Department of Information Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Suresh Thiagarajan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Melissa D Johnson
- Department of Small Animal Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Christopher Calabrese
- Department of Small Animal Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - András Sablauer
- Department of Information Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.
| |
Collapse
|
3
|
Gauthier M, Leguerney I, Thalmensi J, Chebil M, Parisot S, Peronneau P, Roche A, Lassau N. Estimation of intra-operator variability in perfusion parameter measurements using DCE-US. World J Radiol 2011; 3:70-81. [PMID: 21512654 PMCID: PMC3080053 DOI: 10.4329/wjr.v3.i3.70] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 03/02/2011] [Accepted: 03/09/2011] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate intra-operator variability of semi-quantitative perfusion parameters using dynamic contrast-enhanced ultrasonography (DCE-US), following bolus injections of SonoVue®.
METHODS: The in vitro experiments were conducted using three in-house sets up based on pumping a fluid through a phantom placed in a water tank. In the in vivo experiments, B16F10 melanoma cells were xenografted to five nude mice. Both in vitro and in vivo, images were acquired following bolus injections of the ultrasound contrast agent SonoVue® (Bracco, Milan, Italy) and using a Toshiba Aplio® ultrasound scanner connected to a 2.9-5.8 MHz linear transducer (PZT, PLT 604AT probe) (Toshiba, Japan) allowing harmonic imaging (“Vascular Recognition Imaging”) involving linear raw data. A mathematical model based on the dye-dilution theory was developed by the Gustave Roussy Institute, Villejuif, France and used to evaluate seven perfusion parameters from time-intensity curves. Intra-operator variability analyses were based on determining perfusion parameter coefficients of variation (CV).
RESULTS: In vitro, different volumes of SonoVue® were tested with the three phantoms: intra-operator variability was found to range from 2.33% to 23.72%. In vivo, experiments were performed on tumor tissues and perfusion parameters exhibited values ranging from 1.48% to 29.97%. In addition, the area under the curve (AUC) and the area under the wash-out (AUWO) were two of the parameters of great interest since throughout in vitro and in vivo experiments their variability was lower than 15.79%.
CONCLUSION: AUC and AUWO appear to be the most reliable parameters for assessing tumor perfusion using DCE-US as they exhibited the lowest CV values.
Collapse
|
4
|
Meairs S, Hennerici M, Mohr J. Ultrasonography. Stroke 2011. [DOI: 10.1016/b978-1-4160-5478-8.10044-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Grenier N, Quaia E, Prasad PV, Juillard L. Radiology Imaging of Renal Structure and Function by Computed Tomography, Magnetic Resonance Imaging, and Ultrasound. Semin Nucl Med 2011; 41:45-60. [DOI: 10.1053/j.semnuclmed.2010.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
6
|
Quaia E. Assessment of tissue perfusion by contrast-enhanced ultrasound. Eur Radiol 2010; 21:604-15. [PMID: 20927527 DOI: 10.1007/s00330-010-1965-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 08/13/2010] [Accepted: 08/17/2010] [Indexed: 12/11/2022]
Abstract
Contrast-enhanced ultrasound (CEUS) with microbubble contrast agents is a new imaging technique for quantifying tissue perfusion. CEUS presents several advantages over other imaging techniques in assessing tissue perfusion, including the use of microbubbles as blood-pool agents, portability, availability and absence of exposure to radiation or nuclear tracers. Dedicated software packages are necessary to quantify the echo-signal intensity and allow the calculation of the degree of tissue contrast enhancement based on the accurate distinction between microbubble backscatter signals and native tissue background. The measurement of organ transit time after microbubble injection and the analysis of tissue reperfusion kinetics represent the two fundamental methods for the assessment of tissue perfusion by CEUS. Transit time measurement has been shown to be feasible and has started to become accepted as a clinical tool, especially in the liver. The loudness of audio signals from spectral Doppler analysis is used to generate time-intensity curves to follow the wash-in and wash-out of the microbubble bolus. Tissue perfusion may be quantified also by analysing the replenishment kinetics of the volume of microbubbles after their destruction in the imaged slice. This allows to obtain semiquantitative parameters related to local tissue perfusion, especially in the heart, brain, and kidneys.
Collapse
Affiliation(s)
- Emilio Quaia
- Department of Radiology, Cattinara Hospital, University of Trieste, Strada di Fiume 447, Trieste, 34149, Italy.
| |
Collapse
|
7
|
Quaia E, Nocentini A, Torelli L. Assessment of a new mathematical model for the computation of numerical parameters related to renal cortical blood flow and fractional blood volume by contrast-enhanced ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2009; 35:616-627. [PMID: 19193486 DOI: 10.1016/j.ultrasmedbio.2008.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2007] [Revised: 09/20/2008] [Accepted: 10/03/2008] [Indexed: 05/27/2023]
Abstract
We analyzed the value of a new mathematical model for the quantification of renal cortical blood flow and fractional blood volume by contrast-enhanced ultrasound after the injection of sulfur hexafluoride-filled microbubbles. A vessel-mimicking phantom experiment was preliminarily performed which showed that the effect of microbubble diffusion is negligible compared with the effect of liquid drag. Twelve healthy volunteers (7 male, 5 female; 27 to 48 years [n = 6; group 1], and 61 to 80 years [n = 6; group 2], respectively), with normal renal and cardiac function and not undergoing any pharmacologic treatment, were examined. In each volunteer, both kidneys were scanned after intravenous injection of sulfur hexafluoride-filled microbubbles at a slow rate (4.8 mL at a flow of 4.0 mL/min), and the refill kinetics of the renal cortex after microbubble destruction was evaluated by echo-signal intensity quantification. The progressive replenishment of the renal vessels was approximated both by standard negative exponential function and by the piecewise linear function resulting from our mathematical model. A better dataset approximation was provided by piecewise linear versus standard negative exponential function (overall mean square error: 0.44 vs. 0.51; p < 0.05, Wilcoxon test). The piecewise linear function provided a curve composed of four linear tracts (n = 3 volunteers; 2 from group 1 and 1 from group 2), three linear tracts (n = 6 volunteers; 3 from group 1 and 3 from group 2) or two linear tracts (n = 3 volunteers; 1 from group 1 and 2 from group 2). The piecewise linear function versus standard negative exponential function improved data approximation for the computation of numerical values related to renal cortical blood flow velocity and fractional blood volume.
Collapse
Affiliation(s)
- Emilio Quaia
- Department of Radiology, Cattinara Hospital, Strada di Fiume 447, Trieste, Italy.
| | | | | |
Collapse
|
8
|
Meairs S, Alonso A, Fatar M, Kern R, Hennerici M. Microbubbles traversing the blood-brain barrier for imaging and therapy. Med Biol Eng Comput 2009; 47:839-49. [PMID: 19283421 DOI: 10.1007/s11517-009-0468-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Accepted: 02/14/2009] [Indexed: 01/22/2023]
Abstract
In the last several years great progress has been made in the field of ultrasound perfusion imaging of the brain. Different approaches have been assessed and shown to be capable of early detection of cerebral perfusion deficits. Real-time low mechanical index imaging simplifies the acquisition of perfusion parameters and alleviates many of the previous imaging problems related to shadowing, uniplanar analysis, and temporal resolution. With the advent of this new, highly sensitive contrast-specific imaging technique new possibilities of real-time visualization of brain infarctions and cerebral hemorrhages have emerged. Microbubbles that traverse the blood-brain barrier (BBB) can also elicit bioeffects that may be used to open the BBB for targeted delivery of macromolecular agents to the brain. Possible ways in which substances cross the BBB after application of this novel approach include transcytosis, passage through endothelial cell cytoplasmic openings, opening of tight junctions, and free passage through injured endothelium. Although relatively little tissue damage occurs at low acoustic intensities capable of opening the BBB, no investigation has demonstrated a total lack of BBB injury when using ultrasound and microbubbles. Further studies are necessary to address the effects of ultrasound and microbubbles upon the various transport mechanisms of the BBB. Moreover, investigations aimed at elucidating how ultrasound and microbubbles interact at the molecular level of the BBB are necessary. Results of such studies will increase our understanding of the mechanisms of BBB opening and also allow a better appraisal of the safety of this technique for future clinical applications.
Collapse
Affiliation(s)
- Stephen Meairs
- Department of Neurology, Universitätsklinikum Mannheim, University of Heidelberg, 68167 Mannheim, Germany.
| | | | | | | | | |
Collapse
|
9
|
Hoskins PR. Simulation and validation of arterial ultrasound imaging and blood flow. ULTRASOUND IN MEDICINE & BIOLOGY 2008; 34:693-717. [PMID: 18329162 DOI: 10.1016/j.ultrasmedbio.2007.10.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 10/18/2007] [Accepted: 10/26/2007] [Indexed: 05/26/2023]
Abstract
We reviewed the simulation and validation of arterial ultrasound imaging and blood flow assessment. The physical process of ultrasound imaging and measurement is complex, especially in disease. Simulation of physiological flow in a phantom with tissue equivalence of soft tissue, vessel wall and blood is now achievable. Outstanding issues are concerned with production of anatomical models, simulation of arterial disease, refinement of blood mimics to account for non-Newtonian behavior and validation of velocity measurements against an independent technique such as particle image velocimetry. String and belt phantoms offer simplicity of design, especially for evaluation of velocity estimators, and have a role as portable test objects. Electronic injection and vibrating test objects produce nonphysiologic Doppler signals, and their role is limited. Computational models of the ultrasound imaging and measurement process offer considerable flexibility in their ability to alter multiple parameters of both the propagation medium and ultrasound instrument. For these models, outstanding issues are concerned with the inclusion of different tissue types, multilayer arteries, inhomogeneous tissues and diseased tissues.
Collapse
Affiliation(s)
- Peter R Hoskins
- Medical Physics Section, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
10
|
Meairs S. Contrast-enhanced ultrasound perfusion imaging in acute stroke patients. Eur Neurol 2008; 59 Suppl 1:17-26. [PMID: 18382109 DOI: 10.1159/000114456] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The field of neurovascular ultrasound is expanding rapidly with exciting new applications. While ultrasound contrast agents were initially used to overcome insufficient transcranial bone windows for identification of the basal cerebral arteries, new-generation microbubbles in combination with very sensitive contrast-specific ultrasound techniques now enable real-time visualization of stroke. This article will provide a review of recent and emerging developments in ultrasound technology and contrast-specific imaging techniques for evaluation of acute stroke patients.
Collapse
Affiliation(s)
- Stephen Meairs
- Department of Neurology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
11
|
Abstract
Compound statistical modelling of the uncompressed envelope of the backscattered signal has received much interest recently. In this note, a comprehensive collection of models is derived for the uncompressed envelope of the backscattered signal by compounding the Nakagami distribution with 13 flexible families. The corresponding estimation procedures are derived by the method of moments and the method of maximum likelihood. The sensitivity of the models to their various parameters is examined. It is expected that this work could serve as a useful reference and lead to improved modelling of the uncompressed envelope of the backscattered signal.
Collapse
Affiliation(s)
- Saralees Nadarajah
- School of Mathematics, University of Manchester, Manchester M60 1QD, UK.
| |
Collapse
|