1
|
Abstract
The conventional microbubble-based ultrasound biomedicine clinically plays a vital role in providing the dynamic detection of macro and microvasculature and disease theranostics. However, the intrinsic limitation of particle size severely decreases the treatment effectiveness due to their vascular transport characteristics, which promotes the development and application of multifunctional ultrasound-responsive nanomaterials. Herein, we put forward a research field of "ultrasound nanomedicine and materdicine", referring to the interdiscipline of ultrasound, nanobiotechnology and materials, which seeks to produce specific biological effects for addressing the challenges faced and dilemma of conventional ultrasound medicine. We comprehensively summarize the state-of-the-art scientific advances in the latest progress in constructing ultrasound-based platforms and ultrasound-activated sonosensitizers, ranging from the synthesis strategies, biological functions to ultrasound-triggered therapeutic applications. Ultimately, the unresolved challenges and clinical-translation potentials of ultrasound nanomedicine and materdicine are discussed and prospected in this evolving field.
Collapse
Affiliation(s)
- Zeyu Wang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Xue Wang
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Meiqi Chang
- Central Laboratory of Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P. R. China.
| | - Jia Guo
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| |
Collapse
|
2
|
Fabio GB, Martin BA, Dalmolin LF, Lopez RFV. Antimicrobial photodynamic therapy and the advances impacted by the association with nanoparticles. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2022.104147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
3
|
Araújo Martins Y, Zeferino Pavan T, Fonseca Vianna Lopez R. Sonodynamic therapy: Ultrasound parameters and in vitro experimental configurations. Int J Pharm 2021; 610:121243. [PMID: 34743959 DOI: 10.1016/j.ijpharm.2021.121243] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 10/07/2021] [Accepted: 10/25/2021] [Indexed: 01/02/2023]
Abstract
Sonodynamic therapy (SDT) is a new therapeutic modality for noninvasive cancer treatment based on the association of ultrasound and sonosensitizer drugs. Up to date, there is not a consensus on the standardization of the experimental conditions for the in vitro studies to correctly assess cell viability during SDT. Therefore, this review article mainly describes how the main ultrasound parameters and experimental setups of ultrasound application in vitro studies can influence the SDT bioeffects/response. The sonodynamic action is impacted by the combination of frequency, intensity, duty cycle, and ultrasound application time. The variation of experimental setups in cell culture, such as the transducer position, cell-transducer distance, coupling medium thickness, or type of culture, also influences the sonodynamic response. The intensity, duty cycle, and sonication duration increase cytotoxicity and reactive oxygen species production. For similar ultrasound parameters, differences in the experimental configuration impact cell death in vitro. Four main experimental setups are used to assess for SDT in cell culture (i) a planar transducer placed directly in contact with the bottom of the culture microplate; (ii) microplate positioned in the transducer's far-field using a water tank; (iii) sealed cell culture tubes immersed in water away from the transducer; and (iv) transducer dipped directly into the well with cell culture. Because of the significant variations in the experimental setups, sonodynamic response can significantly vary, and the translation of these results for in vivo experimentation is difficult. Therefore, a well-designed and detailed in vitro experimental setup is vital for understanding the interactions among the biological medium, the sonosensitizer, and the ultrasound for the in vitro to in vivo translation in SDT.
Collapse
Affiliation(s)
- Yugo Araújo Martins
- Pharmaceutical Sciences Department, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (FCFRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Theo Zeferino Pavan
- Department of Physics, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto (FFCLRP-USP), University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Renata Fonseca Vianna Lopez
- Pharmaceutical Sciences Department, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (FCFRP-USP), Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
4
|
Li D, Yang Y, Li D, Pan J, Chu C, Liu G. Organic Sonosensitizers for Sonodynamic Therapy: From Small Molecules and Nanoparticles toward Clinical Development. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101976. [PMID: 34350690 DOI: 10.1002/smll.202101976] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/17/2021] [Indexed: 06/13/2023]
Abstract
Sonodynamic therapy (SDT) is a novel noninvasive therapeutic modality that combines low-intensity ultrasound and sonosensitizers. Versus photo-mediated therapy, SDT has the advantages of deeper tissue penetration, high accuracy, and less side effects. Sonosensitizers are critical for therapeutic efficacy during SDT and organic sonosensitizers are important because of their clear structure, easy monitoring, evaluation of drug metabolism, and clinical transformation. Notably, nanotechnology can be used in the field of sonosensitizers and SDT to overcome the inherent obstacles and achieve sustainable innovation. This review introduces organic small molecule sonosensitizers, nano organic sonosensitizers, and their clinical translation by providing ideas and references for the design of sonosensitizers and SDT so as to promote its transformation to clinical applications in the future.
Collapse
Affiliation(s)
- Dong Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yang Yang
- Department of Cardiovascular, Xiang'an Hospital of Xiamen University, Xiamen, 361102, China
| | - Dengfeng Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jie Pan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Chengchao Chu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen, 361102, China
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Engineering Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
5
|
Zheng Y, Ye J, Li Z, Chen H, Gao Y. Recent progress in sono-photodynamic cancer therapy: From developed new sensitizers to nanotechnology-based efficacy-enhancing strategies. Acta Pharm Sin B 2021; 11:2197-2219. [PMID: 34522584 PMCID: PMC8424231 DOI: 10.1016/j.apsb.2020.12.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/27/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022] Open
Abstract
Many sensitizers have not only photodynamic effects, but also sonodynamic effects. Therefore, the combination of sonodynamic therapy (SDT) and photodynamic therapy (PDT) using sensitizers for sono-photodynamic therapy (SPDT) provides alternative opportunities for clinical cancer therapy. Although significant advances have been made in synthesizing new sensitizers for SPDT, few of them are successfully applied in clinical settings. The anti-tumor effects of the sensitizers are restricted by the lack of tumor-targeting specificity, incapability in deep intratumoral delivery, and the deteriorating tumor microenvironment. The application of nanotechnology-based drug delivery systems (NDDSs) can solve the above shortcomings, thereby improving the SPDT efficacy. This review summarizes various sensitizers as sono/photosensitizers that can be further used in SPDT, and describes different strategies for enhancing tumor treatment by NDDSs, such as overcoming biological barriers, improving tumor-targeted delivery and intratumoral delivery, providing stimuli-responsive controlled-release characteristics, stimulating anti-tumor immunity, increasing oxygen supply, employing different therapeutic modalities, and combining diagnosis and treatment. The challenges and prospects for further development of intelligent sensitizers and translational NDDSs for SPDT are also discussed.
Collapse
Affiliation(s)
- Yilin Zheng
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Jinxiang Ye
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350116, China
| | - Ziying Li
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Haijun Chen
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350116, China
| | - Yu Gao
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou 350116, China
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350116, China
| |
Collapse
|
6
|
Xie L, Feng X, Shi Y, He M, Wang P, Wang X, Mi Z, Liu Q, Zhang K. Blocking the Glycolytic Pathway Sensitizes Breast Cancer to Sonodynamic Therapy. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:1233-1243. [PMID: 29555321 DOI: 10.1016/j.ultrasmedbio.2018.01.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 01/03/2018] [Accepted: 01/24/2018] [Indexed: 06/08/2023]
Abstract
Inhibition of the increased aerobic glycolysis in cancer cells is a promising methodology for various malignant tumor therapies but is limited by systemic toxicity, at least in part. Recent studies suggest that dual restriction of glycolysis and mitochondrial function may overcome this issue. Sonodynamic therapy (SDT), a prospective therapeutic modality for cancers, has been reported to induce mitochondria-dependent cell damage. Here, we investigated the combined effect of SDT and 2-deoxyglucose (2DG), an anti-glycolytic agent, on breast cancer both in vitro and in vivo. In vitro, we found that, compared with a single treatment, SDT + 2DG co-treatment significantly decreased cell viability and increased cell apoptosis. Moreover, the generation of reactive oxygen species was enhanced and mitochondrial membrane potential (MMP) was reduced after SDT + 2DG co-treatment. Furthermore, the oxidative phosphorylation was also restrained after SDT + 2DG co-treatment, further to cause the blockage of ATP provision. In vivo, SDT + 2DG markedly reduced tumor volume and weight, consistent with the in vitro findings. Furthermore, toxicology tests concurrently indicated that the dosages of sinoporphyrin sodium and 2DG were comparatively tolerable. Generally, these results indicated that SDT + 2DG combination therapy may be an available, promising therapy for highly metastatic breast cancer.
Collapse
Affiliation(s)
- Lifen Xie
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xiaolan Feng
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yin Shi
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Meng He
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Pan Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xiaobing Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Zeyuan Mi
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Quanhong Liu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Kun Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China.
| |
Collapse
|
7
|
Jia Y, Wang X, Liu Q, Leung AW, Wang P, Xu C. Sonodynamic action of hypocrellin B triggers cell apoptoisis of breast cancer cells involving caspase pathway. ULTRASONICS 2017; 73:154-161. [PMID: 27657480 DOI: 10.1016/j.ultras.2016.09.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 08/23/2016] [Accepted: 09/11/2016] [Indexed: 05/27/2023]
Abstract
OBJECTIVES The aim of the present study is to investigate the effects of sonodynamic action of hypocrellin B on human breast cancer cells and further explore its underlying mechanisms. METHODS The cell viability of breast cancer MDA-MB-231 cells was examined by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay. Alterations on cell apoptosis, intracellular reactive oxygen species generation (ROS), mitochondrial membrane potential, and DNA fragmentation was analyzed by flow cytometer. The subcellular localization of hypocrellin B was assessed by a confocal laser scanning microscope. Mitochondria damage and nuclear morphological changes were observed under a fluorescence microscope. To further explore whether caspase pathway was involved in cell apoptotic induction of sonodynamic action of hypocrellin B, the pan-caspase inhibitor Z-Val-Ala-DL-Asp (ome)-Fluoromethylketone (z-VAD-fmk) was added to the cells one hour prior to loading the sonosensitizer, and then cell viability and apoptosis were analyzed after hypocrellin B treatment. RESULTS Sonodynamic treatment of hypocrellin B HB significantly suppressed cell viability of MDA-MB-231 cells. Sonodynamic action of hypocrellin B caused excessive ROS accumulation, mitochondrial dysfunction, cell apoptosis, DNA fragmentation and nuclear morphological damage. Moreover, the cytotoxicity and cell apoptosis induced by sonodynamic action of hypocrellin B were remarkably rescued by the caspase spectrum inhibitor z-VAD-fmk. CONCLUSIONS These results demonstrated that hypocrellin B had significant sonodynamic killing and apoptotic induction effect on breast cancer cells. And cell apoptosis induced by sonodynamic action of hypocrellin B was partly dependent on caspase pathway.
Collapse
Affiliation(s)
- Yali Jia
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China; School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Xiaobing Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Quanhong Liu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Albert Wingnang Leung
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Pan Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China; School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Chuanshan Xu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
8
|
Wang H, Wang P, Li L, Zhang K, Wang X, Liu Q. Microbubbles Enhance the Antitumor Effects of Sinoporphyrin Sodium Mediated Sonodynamic Therapy both In Vitro and In Vivo. Int J Biol Sci 2015; 11:1401-9. [PMID: 26681919 PMCID: PMC4671997 DOI: 10.7150/ijbs.12802] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/20/2015] [Indexed: 11/29/2022] Open
Abstract
Objectives: To evaluate the anti-cancer effect of sonodynamic therapy combined with microbubbles both in vitro and in vivo. Methods: Cell viability was measured by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide and guava viacount assays. Annexin V-FITC/PI staining was adopted to analyze cell apoptosis rate. FD500 uptake assay was performed to assess cell membrane permeability changes. Tumor weight, mice weight and the visual image of tumor size were used to reflect the anti-tumor effect of this combined method. Histological change of tumor tissue after different treatments was measured through hematoxylin and eosin (H&E) staining. Results: Microbubbles can significantly enhance the cytotoxicity and necrocytosis rate induced by SDT treatment. Increased cell membrane permeability and more uptake of DVDMS were founded in SDT combined with microbubbles group. For in vivo experiments, SDT with microbubbles can significantly reduce tumor weight and size with pimping difference of mice weight compare with other treatment groups. In addition, microbubbles notably improved tumor tissue destruction caused by ultrasound and SDT treatment. Conclusion: The results suggest that microbubbles can markedly improve the anti-cancer effect of DVDMS mediate sonodynamic therapy both in vitro and in vivo.
Collapse
Affiliation(s)
- Haiping Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Pan Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Li Li
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Kun Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Xiaobing Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Quanhong Liu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| |
Collapse
|
9
|
Jia Y, Yuan W, Zhang K, Wang J, Wang P, Liu Q, Wang X. Comparison of cell membrane damage induced by the therapeutic ultrasound on human breast cancer MCF-7 and MCF-7/ADR cells. ULTRASONICS SONOCHEMISTRY 2015; 26:128-135. [PMID: 25771334 DOI: 10.1016/j.ultsonch.2015.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 01/12/2015] [Accepted: 03/02/2015] [Indexed: 05/28/2023]
Abstract
OBJECTIVES The aim of this study was to compare the cell membrane damage induced by ultrasound at different intensities between MCF-7/ADR cells and MCF-7 cells. METHODS Tumor cells in the culture dishes (35 mm diameter) were exposed to planner ultrasound at intensities range from 0.25 W/cm(2) to 0.75 W/cm(2) for 60s. The viability of cells was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay and Guava Viacount assay. The cell membrane integrity was estimated by flow cytometry using propidium iodide (PI) staining and cellular uptake of fluorescein isothiocyanate-dextran (FD500). The membrane lipid peroxidation and membrane fluidity were also specially compared between two cell lines in this paper using spectrophotometry. Ultrastructural alterations on membrane surface were observed by scanning electron microscopy. RESULTS The ultrasound produced cytotoxicity in both cell lines increased with the irradiation intensity increased from 0.25 W/cm(2) to 0.75 W/cm(2). Cell membrane permeability and the level of lipid peroxidation were remarkably enhanced after ultrasound application. In addition, relatively severe cell damage was observed under scanning electron microscopy after 0.75 W/cm(2) ultrasound treatment. CONCLUSIONS Ultrasound exposure decreased MCF-7 and MCF-7/ADR cell viability in an intensity-dependent manner and MCF-7/ADR cells were more sensitive to ultrasound exposure than MCF-7 cells at the same experimental conditions. The declined membrane fluidity in MCF-7/ADR cell may be one of the reasons for its increased membrane damage.
Collapse
Affiliation(s)
- Yali Jia
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Wenjuan Yuan
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Kun Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Juan Wang
- Laboratory of Biophysics and Biomedicine, College of Physics and Information Technology, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Pan Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Quanhong Liu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xiaobing Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China.
| |
Collapse
|
10
|
Xu HN, Chen HJ, Zheng BY, Zheng YQ, Ke MR, Huang JD. Preparation and sonodynamic activities of water-soluble tetra-α-(3-carboxyphenoxyl) zinc(II) phthalocyanine and its bovine serum albumin conjugate. ULTRASONICS SONOCHEMISTRY 2015; 22:125-131. [PMID: 24927903 DOI: 10.1016/j.ultsonch.2014.05.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/23/2014] [Accepted: 05/23/2014] [Indexed: 06/03/2023]
Abstract
Sonodynamic therapy (SDT) is a new approach for cancer treatment, involving the synergistic effect of ultrasound and certain chemical compounds termed as sonosensitizers. A water-soluble phthalocyanine, namely tetra-α-(3-carboxyphenoxyl) zinc(II) phthalocyanine (ZnPcC4), has been prepared and characterized. The interactions between ZnPcC4 and bovine serum albumin (BSA) were also investigated by absorption and fluorescence spectroscopy. It was found that there were strong interactions between ZnPcC4 and BSA with a binding constant of 6.83×10(7)M(-1). A non-covalent BSA conjugate of ZnPcC4 (ZnPcC4-BSA) was prepared. Both ZnPcC4 and ZnPcC4-BSA exhibited efficient sonodynamic activities against HepG2 human hepatocarcinoma cells. Compared with ZnPcC4, conjugate ZnPcC4-BSA showed a higher sonodynamic activity with an IC50 value of 7.5μM. Upon illumination with ultrasound, ZnPcC4-BSA can induce an increase of intracellular reactive oxygen species (ROS) level, resulting in cellular apoptosis. The results suggest that the albumin conjugates of zinc(II) phthalocyanines functionalized with carboxyls can serve as promising sonosensitizers for sonodynamic therapy.
Collapse
Affiliation(s)
- He-Nan Xu
- College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou, China
| | - Hai-Jun Chen
- College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou, China
| | - Bi-Yuan Zheng
- College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou, China
| | - Yun-Quan Zheng
- College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou, China
| | - Mei-Rong Ke
- College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou, China
| | - Jian-Dong Huang
- College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou, China.
| |
Collapse
|
11
|
Zhang S, Cheng J, Qin YX. Mechanobiological modulation of cytoskeleton and calcium influx in osteoblastic cells by short-term focused acoustic radiation force. PLoS One 2012; 7:e38343. [PMID: 22701628 PMCID: PMC3368843 DOI: 10.1371/journal.pone.0038343] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 05/03/2012] [Indexed: 01/27/2023] Open
Abstract
Mechanotransduction has demonstrated potential for regulating tissue adaptation in vivo and cellular activities in vitro. It is well documented that ultrasound can produce a wide variety of biological effects in biological systems. For example, pulsed ultrasound can be used to noninvasively accelerate the rate of bone fracture healing. Although a wide range of studies has been performed, mechanism for this therapeutic effect on bone healing is currently unknown. To elucidate the mechanism of cellular response to mechanical stimuli induced by pulsed ultrasound radiation, we developed a method to apply focused acoustic radiation force (ARF) (duration, one minute) on osteoblastic MC3T3-E1 cells and observed cellular responses to ARF using a spinning disk confocal microscope. This study demonstrates that the focused ARF induced F-actin cytoskeletal rearrangement in MC3T3-E1 cells. In addition, these cells showed an increase in intracellular calcium concentration following the application of focused ARF. Furthermore, passive bending movement was noted in primary cilium that were treated with focused ARF. Cell viability was not affected. Application of pulsed ultrasound radiation generated only a minimal temperature rise of 0.1°C, and induced a streaming resulting fluid shear stress of 0.186 dyne/cm(2), suggesting that hyperthermia and acoustic streaming might not be the main causes of the observed cell responses. In conclusion, these data provide more insight in the interactions between acoustic mechanical stress and osteoblastic cells. This experimental system could serve as basis for further exploration of the mechanosensing mechanism of osteoblasts triggered by ultrasound.
Collapse
Affiliation(s)
- Shu Zhang
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, United States of America
| | | | | |
Collapse
|
12
|
Tang W, Liu Q, Wang X, Wang P, Zhang J, Cao B. Potential mechanism in sonodynamic therapy and focused ultrasound induced apoptosis in sarcoma 180 cells in vitro. ULTRASONICS 2009; 49:786-793. [PMID: 19640555 DOI: 10.1016/j.ultras.2009.06.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2009] [Revised: 06/08/2009] [Accepted: 06/27/2009] [Indexed: 05/28/2023]
Abstract
Sonodynamic therapy employs a combination of ultrasound and a sonosensitizer to enhance the cytotoxic effect of ultrasound and promote apoptosis. However, the mechanism underlying the synergistic effect of ultrasound and hematoporphyrin is still unclear. In this study, we investigated mechanism of the induction of apoptosis by sonodynamic therapy in Sarcoma 180 cells. The cell suspension was treated by 1.75-MHz focused continuous ultrasound at an acoustic power (I(SATA)) of 1.4+/-0.07 W/cm(2) for 3 min in the absence or presence of 20 microg/ml hematoporphyrin. The proportion of apoptotic cells was determined by flow cytometry. We then analyzed the reactive oxygen species generation and localization by confocal microscopy. Western blotting and reverse transcriptase-polymerase chain reaction were used to analyze the expression of caspase-8, caspase-9, poly(ADP)-ribose polymerase, and nuclear factor-kappaB. The findings of our study indicate that ultrasound treatment induced the activation of nuclear factor-kappaB as an early stress response. When cells were pretreated with hematoporphyrin, the initial response to the therapy was the formation of (1)O(2) in the mitochondria. Our results primarily demonstrate that the mechanisms of induction of apoptosis by ultrasound and hematoporphyrin-sonodynamic therapies are very different. Our findings can provide a basis for explaining the synergistic effect of ultrasound and hematoporphyrin.
Collapse
Affiliation(s)
- Wei Tang
- College of Life Sciences, Shaanxi Normal University, Shaanxi, Xi'an 710062, China
| | | | | | | | | | | |
Collapse
|
13
|
Kolarova H, Tomankova K, Bajgar R, Kolar P, Kubinek R. Photodynamic and sonodynamic treatment by phthalocyanine on cancer cell lines. ULTRASOUND IN MEDICINE & BIOLOGY 2009; 35:1397-1404. [PMID: 19515482 DOI: 10.1016/j.ultrasmedbio.2009.03.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 02/22/2009] [Accepted: 03/04/2009] [Indexed: 05/27/2023]
Abstract
Photodynamic therapy is a modality of treatment for tumors. The photochemical interactions of sensitizer, light and molecular oxygen produce reactive oxygen species (ROS) such as singlet oxygen, peroxide, hydroxyl radical and superoxide ion. The tumor is destroyed either by the formation of highly reactive singlet oxygen (type II mechanism) or by the formation of radical products (type 1 mechanism) generated in an energy transfer reaction. The resulting damage to organelles within malignant cells leads to tumor ablation. The cellular effects include membrane damage, mitochondrial damage and DNA damage. A new treatment modality called sonodynamic therapy has been developed, in which the ultrasound-induced cytotoxicity of sonochemical sensitizers inhibits tumor growth. In this study, the promising new generation of sensitizers - phthalocyanines - were used to induce the photodamage. In addition, we applied an ultrasound treatment to support the photodynamic effect. We report on the production of ROS in G361 melanoma cells. Light-emitting diodes were used to evoke the photodynamic effect. Changes in cells were evaluated using fluorescence microscope and atomic force microscopy. The quantitative ROS production changes in relation to sensitizer concentration, irradiation doses and ultrasound intensity were proved by a fluororeader. Our results showed the highest generation of ROS within G361 melanoma cells was achieved at an irradiation dose of 15 Jcm(-2) followed by ultrasound treatment at intensity of 2 Wcm(-2) and frequency of 1 MHz in the presence of 100 muM chloroaluminum phthalocyanine disulfonate (ClAlPcS2). These results suggest that ClAlPcS2 is a potential photosensitizer and sonosensitizer for sonodynamic or photodynamic treatment of cancer.
Collapse
Affiliation(s)
- Hana Kolarova
- Department of Medical Biophysics, Faculty of Medicine, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic.
| | | | | | | | | |
Collapse
|
14
|
Milowska K, Gabryelak T. Enhancement of ultrasonically induced cell damage by phthalocyanines in vitro. ULTRASONICS 2008; 48:724-730. [PMID: 18495194 DOI: 10.1016/j.ultras.2008.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 03/26/2008] [Accepted: 04/04/2008] [Indexed: 05/26/2023]
Abstract
In this work, erythrocytes from carp were used as a nucleated cell model to test the hypothesis that the phthalocyanines (zinc--ZnPc and chloroaluminium -AlClPc) enhance ultrasonically induced damage in vitro. In order to confirm and complete our earlier investigation, the influence of ultrasound (US) and phthalocyanines (Pcs) on unresearched cellular components, was studied. Red blood cells were exposed to 1 MHz continuous ultrasound wave (0.61 and/or 2.44 W/cm(2)) in the presence or absence of phthalocyanines (3 microM). To identify target cell damage, we studied hemolysis, membrane fluidity and morphology of erythrocytes. To demonstrate the changes in the fluidity of plasma membrane we used the spectrofluorimetric methods using two fluorescence probes: 1-[4-(trimethylamino)phenyl]-6-phenyl-1,3,5,-hexatriene (TMA-DPH) and 1,6-diphenyl-1,3,5-hexatriene (DPH). The effect of US and Pcs on nucleated erythrocytes morphology was estimated on the basis of microscopic observation. The enhancement of ultrasonically induced membrane damage by both phthalocyanines was observed in case of hemolysis, and membrane surface fluidity, in comparison to ultrasound. The authors also observed changes in the morphology of erythrocytes. The obtained results support the hypothesis that the Pcs enhance ultrasonically induced cell damage in vitro. Furthermore, the influence of ultrasound on phthalocyanines (Pcs) in medium and in cells was tested. The authors observed changes in the phthalocyanines absorption spectra in the medium and the increase in the intensity of phthalocyanines fluorescence in the cells. These data can suggest changes in the structure of phthalocyanines after ultrasound action.
Collapse
|
15
|
Tang W, Liu Q, Wang X, Wang P, Cao B, Mi N, Zhang J. Involvement of caspase 8 in apoptosis induced by ultrasound-activated hematoporphyrin in sarcoma 180 cells in vitro. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2008; 27:645-656. [PMID: 18359913 DOI: 10.7863/jum.2008.27.4.645] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
OBJECTIVE Sonodynamic therapy (SDT), a novel and promising cancer therapy that uses a combination of ultrasound and hematoporphyrin, can induce apoptosis in some cancer cells. However, the mechanism(s) of SDT-induced cell apoptosis is not well understood. This study investigated SDT-induced apoptosis in sarcoma 180 cells. METHODS Cell suspension were treated by 1.75-MHz continuous focused ultrasound in the presence of hematoporphyrin for 3 minutes, and apoptosis was assessed by flow cytometry, scanning electron microscopy, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end labeling, confocal microscopy, and apoptosis-related protein analysis. RESULTS DNA breaks, apoptotic bodies, and cleaved poly (adenosine triphosphate-ribose) polymerase were observed 1 hour after SDT. By using laser-scanning confocal microscopy, we found that the Fas-associated death domain and caspase 8 translocated from the cytoplasm to the plasma membrane. Activities of caspase 8 and caspase 3 were detected by an immunohistochemical assay. The results suggested that SDT led to activation of caspase 8, which in turn activated downstream caspase 3. In addition, Z-Ile-Glu-Thr-Asp-fluoromethylketone, a specific inhibitor for caspase 8, was used to confirm the effect of caspase 8 in apoptosis. CONCLUSIONS Our data primarily show that SDT can induce apoptosis in sarcoma 180 cells in vitro, and caspase 8 may play an important role in SDT-induced apoptosis.
Collapse
Affiliation(s)
- Wei Tang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | | | | | | | | | | | | |
Collapse
|
16
|
Tang W, Liu Q, Wang X, Mi N, Wang P, Zhang J. Membrane fluidity altering and enzyme inactivating in sarcoma 180 cells post the exposure to sonoactivated hematoporphyrin in vitro. ULTRASONICS 2008; 48:66-73. [PMID: 18082237 DOI: 10.1016/j.ultras.2007.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Accepted: 10/25/2007] [Indexed: 05/25/2023]
Abstract
Sonodynamic therapy (SDT) is a novel tumor therapy method. We investigated membrane fluidity, activity of the enzymes and membrane morphology in vitro post hematoporphyrin-SDT treatment. Furthermore, the potential mechanisms behind the changes in membrane fluidity and enzymic activity were discussed. Tumor cells were exposed to ultrasound at 1.75 MHz for up to 3 min in the presence and absence of hematoporphyrin. Fluorescence polarization, contents of Malonaldehyde, and levels of free fatty acid were assessed. Activity of enzymes was checked by the plumbic nitrate detection method. For the morphologic study, a scanning electron microscope was used to observe the cellular surface. Ultrasonically induced cell damage increased in the presence of HPD (from 15% to 24%). Compared with ultrasound treatment alone, the fluidity decreased from 5.037 to 3.908, malonaldehyde content and free fatty acid level increased from 0.743 nmol/mL to 0.97 9 nmol/mL and from 237.180 micromol/L to 730.769 micromol/L, respectively, post ultrasound combined with HPD treatment. Inactivity of adenylate cyclase and guanylate cyclase and significant deformation of the cellular surface were also observed post SDT treatment. Our results suggested that alterations in membrane modality and lipid composition played important roles in SDT-mediated inhibition of tumor growth, even inducing tumor cell death, which might be attributed to a sono-chemical activation mechanism.
Collapse
Affiliation(s)
- Wei Tang
- College of Life sciences, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | | | | | | | | | | |
Collapse
|
17
|
Liu Q, Li X, Xiao L, Wang P, Wang X, Wang Y. Study of the synergistic effect on hepatoma 22 tumor cells by focused ultrasound activation of hematoporphyrin. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2008; 27:57-64. [PMID: 18096731 DOI: 10.7863/jum.2008.27.1.57] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
OBJECTIVE The synergistic effect of ultrasound and drugs on tumor cells is known as sonodynamic therapy (SDT). The purpose of this study was to evaluate the effects of SDT on lipid peroxidation and the activity of antioxidative enzymes in isolated hepatoma 22 (H-22) cells to better understand the bioeffects of SDT. METHODS The viability of cells was evaluated by the Trypan blue dye exclusion test. The morphologic changes of H-22 cells were observed by a scanning electron microscope immediately after treatment. The intracellular reactive oxygen species levels were detected by 2',7'-dichlorofluorescein diacetate. Colorimetry and enzymatic chemical methods were used to measure the lipid peroxidation levels and activities of key antioxidant enzymes (ie, superoxide dismutase, selenium-dependent glutathione peroxidase, and catalase) in H-22 tumor cells. RESULTS Our experiments indicated that the ultrasonically induced cell damage rate was increased with 100-microg/mL hematoporphyrin, whereas no cell damage was observed with hematoporphyrin alone. Generation of reactive oxygen species in cell suspensions after SDT treatment was remarkably higher than in controls. The malondialdehyde content was remarkably enhanced, and antioxidative enzyme activities were obviously decreased compared with controls. CONCLUSIONS This study suggests that oxygen free radicals may play an important role in improving membrane lipid peroxidation and decreasing the activities of key antioxidant enzymes in cells. It was speculated that this biological mechanism might be involved in mediating the killing effect of H-22 cells in SDT.
Collapse
Affiliation(s)
- Quanhong Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, Shaanxi, China.
| | | | | | | | | | | |
Collapse
|
18
|
Milowska K, Gabryelak T. Reactive oxygen species and DNA damage after ultrasound exposure. ACTA ACUST UNITED AC 2007; 24:263-7. [PMID: 17353145 DOI: 10.1016/j.bioeng.2007.02.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Accepted: 02/01/2007] [Indexed: 11/30/2022]
Abstract
The aim of this work was to detect the formation of hydrogen peroxide and hydroxyl radicals after ultrasound (US) exposure and test the hypothesis that reactive oxygen species induced by ultrasound can contribute to DNA damage. Formation of reactive oxygen species was observed in incubated medium after sonication with 1 MHz continuous ultrasound at the intensities of 0.61-2.44 W/cm2. Free radicals and hydrogen peroxide produced by ultrasound exposure of cells can lead to DNA damage. Comet assay was used to assess the effect of ultrasound on the level of nuclear DNA damage. The nucleated erythrocytes from fish were exposed in vitro to ultrasound at the same intensities and frequency. It was noticed that ultrasound in all used intensities induced DNA damage. The effect was not eliminated by the addition of catalase, which indicates that DNA damage was not caused by hydrogen peroxide only. The results showed that the DNA damage can be repair and this mechanism was the most effective after 30 and 60 min after sonication. Furthermore, the ultrasound-induced DNA damage in the presence of sonosensitizer (Zn- and AlCl-phthalocyanine) was studied. It was noticed that phthalocyaniens (Pcs) alone or with ultrasound did not induce significant changes in the level of DNA damage.
Collapse
Affiliation(s)
- Katarzyna Milowska
- Department of General Biophysics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland.
| | | |
Collapse
|