1
|
Zhang Q, Zhu Y, Zhang G, Xue H, Ding B, Tu J, Zhang D, Guo X. 2D spatiotemporal passive cavitation imaging and evaluation during ultrasound thrombolysis based on diagnostic ultrasound platform. ULTRASONICS SONOCHEMISTRY 2024; 110:107051. [PMID: 39232288 PMCID: PMC11404082 DOI: 10.1016/j.ultsonch.2024.107051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024]
Abstract
Acoustic cavitation plays a critical role in various biomedical applications. However, uncontrolled cavitation can lead to undesired damage to healthy tissues. Therefore, real-time monitoring and quantitative evaluation of cavitation dynamics is essential for understanding underlying mechanisms and optimizing ultrasound treatment efficiency and safety. The current research addressed the limitations of traditionally used cavitation detection methods by developing introduced an adaptive time-division multiplexing passive cavitation imaging (PCI) system integrated into a commercial diagnostic ultrasound platform. This new method combined real-time cavitation monitoring with B-mode imaging, allowing for simultaneous visualization of treatment progress and 2D quantitative evaluation of cavitation dosage within targeted area. An improved delay-and-sum (DAS) algorithm, optimized with a minimum variance (MV) beamformer, is utilized to minimize the side lobe effect and improve the axial resolution typically associated with PCI. In additional to visualize and quantitatively assess the cavitation activities generated under varied acoustic pressures and microbubble concentrations, this system was specifically applied to perform 2D cavitation evaluation for ultrasound thrombolysis mediated by different solutions, e.g., saline, nanodiamond (ND) and nitrogen-annealed nanodiamond (N-AND). This research aims to bridge the gap between laboratory-based research systems and real-time spatiotemporal cavitation evaluation demands in practical uses. Results indicate that this improved 2D cavitation monitoring and evaluation system could offer a useful tool for comprehensive evaluating cavitation-mediated effects (e.g., ultrasound thrombolysis), providing valuable insights into in-depth understanding of cavitation mechanisms and optimization of cavitation applications.
Collapse
Affiliation(s)
- Qi Zhang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Yifei Zhu
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Guofeng Zhang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Honghui Xue
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China; Wuxi Vocational Institute of Commerce, Wuxi 214153, Jiangsu, China
| | - Bo Ding
- Zhuhai Ecare Electronics Science & Technology Co., Ltd., Zhuhai 519041, China
| | - Juan Tu
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China.
| | - Dong Zhang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China.
| | - Xiasheng Guo
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| |
Collapse
|
2
|
Micaletti F, Escoffre JM, Kerneis S, Bouakaz A, Galvin JJ, Boullaud L, Bakhos D. Microbubble-assisted ultrasound for inner ear drug delivery. Adv Drug Deliv Rev 2024; 204:115145. [PMID: 38042259 DOI: 10.1016/j.addr.2023.115145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023]
Abstract
Treating pathologies of the inner ear is a major challenge. To date, a wide range of procedures exists for administering therapeutic agents to the inner ear, with varying degrees of success. The key is to deliver therapeutics in a way that is minimally invasive, effective, long-lasting, and without adverse effects on vestibular and cochlear function. Microbubble-assisted ultrasound ("sonoporation") is a promising new modality that can be adapted to the inner ear. Combining ultrasound technology with microbubbles in the middle ear can increase the permeability of the round window, enabling therapeutic agents to be delivered safely and effectively to the inner ear in a targeted manner. As such, sonoporation is a promising new approach to treat hearing loss and vertigo. This review summarizes all studies on the delivery of therapeutic molecules to the inner ear using sonoporation.
Collapse
Affiliation(s)
- Fabrice Micaletti
- ENT and Cervico-Facial Surgery Department, University Hospital Center of Tours, 2 Boulevard Tonnellé, 37044 Tours, France.
| | | | - Sandrine Kerneis
- ENT and Cervico-Facial Surgery Department, University Hospital Center of Tours, 2 Boulevard Tonnellé, 37044 Tours, France
| | - Ayache Bouakaz
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - John J Galvin
- Faculty of medicine, Université de Tours, 10 boulevard Tonnellé, 37044 Tours, France; House Institute Foundation, 2100 W 3rd Street, Suite 111, Los Angeles, CA 90057, USA
| | - Luc Boullaud
- ENT and Cervico-Facial Surgery Department, University Hospital Center of Tours, 2 Boulevard Tonnellé, 37044 Tours, France
| | - David Bakhos
- ENT and Cervico-Facial Surgery Department, University Hospital Center of Tours, 2 Boulevard Tonnellé, 37044 Tours, France; UMR 1253, iBrain, Université de Tours, Inserm, Tours, France; Faculty of medicine, Université de Tours, 10 boulevard Tonnellé, 37044 Tours, France; House Institute Foundation, 2100 W 3rd Street, Suite 111, Los Angeles, CA 90057, USA
| |
Collapse
|
3
|
Maciulevičius M, Raišutis R, Jakštys B, Svilainis L, Chaziachmetovas A, Šatkauskas S. The Assessment of Calcium and Bleomycin Cytotoxic Efficiency in Relation to Cavitation Dosimetry. Pharmaceutics 2023; 15:pharmaceutics15051463. [PMID: 37242705 DOI: 10.3390/pharmaceutics15051463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Microbubble (MB)- and ultrasound (US)-facilitated intracellular Ca2+ delivery, known as sonoporation (SP), is a promising anticancer treatment modality, since it allows a spatio-temporally controllable and side-effect-free alternative to conventional chemotherapy. The current study provides extensive evidence that a 5 mM concentration of Ca2+ in combination with US alone or US and Sonovue MBs can be an alternative to the conventional 20 nM concentration of the anticancer drug bleomycin (BLM). Ca2+ application together with SP induces a similar level of death in Chinese hamster ovary cells to the combination of BLM and SP but does not cause systemic toxicity, as is inherent to conventional anticancer drugs. In addition, Ca2+ delivery via SP alters three vital characteristics essential for viable cells: membrane permeability, metabolic activity and proliferation ability. Most importantly, Ca2+ delivery via SP elicits sudden cell death-occurring within 15 min-which remains similar during 24-72 h and 6 d periods. The extensive study of US waves side-scattered by MBs led to the quantification of the cavitation dose (CD) separately for subharmonics, ultraharmonics, harmonics and broadband noise (up to 4 MHz). The CD was suitable for the prognostication of the cytotoxic efficiency of both anticancer agents, Ca2+ and BLM, as was indicated by an overall high (R2 ≥ 0.8) correlation (22 pairs in total). These extensive analytical data imply that a broad range of frequencies are applicable for the feedback-loop control of the process of US-mediated Ca2+ or BLM delivery, successively leading to the eventual standardization of the protocols for the sonotransfer of anticancer agents as well as the establishment of a universal cavitation dosimetry model.
Collapse
Affiliation(s)
- Martynas Maciulevičius
- Biophysical Research Group, Faculty of Natural Sciences, Vytautas Magnus University, Vileikos St. 8, LT-44404 Kaunas, Lithuania
- Ultrasound Research Institute, Kaunas University of Technology, K. Baršausko St. 59, LT-51423 Kaunas, Lithuania
| | - Renaldas Raišutis
- Ultrasound Research Institute, Kaunas University of Technology, K. Baršausko St. 59, LT-51423 Kaunas, Lithuania
- Department of Electrical Power Systems, Faculty of Electrical and Electronics Engineering, Kaunas University of Technology, Studentų St. 48, LT-51367 Kaunas, Lithuania
| | - Baltramiejus Jakštys
- Biophysical Research Group, Faculty of Natural Sciences, Vytautas Magnus University, Vileikos St. 8, LT-44404 Kaunas, Lithuania
| | - Linas Svilainis
- Electronics Engineering Department, Kaunas University of Technology, LT-51368 Kaunas, Lithuania
| | - Andrius Chaziachmetovas
- Electronics Engineering Department, Kaunas University of Technology, LT-51368 Kaunas, Lithuania
| | - Saulius Šatkauskas
- Biophysical Research Group, Faculty of Natural Sciences, Vytautas Magnus University, Vileikos St. 8, LT-44404 Kaunas, Lithuania
| |
Collapse
|
4
|
Yasui K. Origin of the broad-band noise in acoustic cavitation. ULTRASONICS SONOCHEMISTRY 2023; 93:106276. [PMID: 36638653 PMCID: PMC9852655 DOI: 10.1016/j.ultsonch.2022.106276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/30/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
The broad-band noise has been experimentally used to monitor the cavitation activity in a sonochemical reactor, an ultrasonic cleaning bath, a biological tissue, etc. However, the origin of the broad-band noise is still under debate. In the present review, two models for the mechanism of the broad-band noise are discussed. One is acoustic emissions from chaotically (non-periodically) pulsating bubbles. The other is acoustic emissions from bubbles with temporal fluctuation in the number of bubbles. It is suggested that the latter mechanism is sometimes dominant. Further studies are required on the role for bubble cluster dynamics as well as the bubble-bubble interaction in the broad-band noise especially at relatively low ultrasonic frequencies.
Collapse
Affiliation(s)
- Kyuichi Yasui
- National Institute of Advanced Industrial Science and Technology (AIST), Nagoya 463-8560, Japan.
| |
Collapse
|
5
|
Wang J, Li Z, Pan M, Fiaz M, Hao Y, Yan Y, Sun L, Yan F. Ultrasound-mediated blood-brain barrier opening: An effective drug delivery system for theranostics of brain diseases. Adv Drug Deliv Rev 2022; 190:114539. [PMID: 36116720 DOI: 10.1016/j.addr.2022.114539] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 09/04/2022] [Accepted: 09/11/2022] [Indexed: 01/24/2023]
Abstract
Blood-brain barrier (BBB) remains a significant obstacle to drug therapy for brain diseases. Focused ultrasound (FUS) combined with microbubbles (MBs) can locally and transiently open the BBB, providing a potential strategy for drug delivery across the BBB into the brain. Nowadays, taking advantage of this technology, many therapeutic agents, such as antibodies, growth factors, and nanomedicine formulations, are intensively investigated across the BBB into specific brain regions for the treatment of various brain diseases. Several preliminary clinical trials also have demonstrated its safety and good tolerance in patients. This review gives an overview of the basic mechanisms, ultrasound contrast agents, evaluation or monitoring methods, and medical applications of FUS-mediated BBB opening in glioblastoma, Alzheimer's disease, and Parkinson's disease.
Collapse
Affiliation(s)
- Jieqiong Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 201206, China
| | - Zhenzhou Li
- Department of Ultrasound, The Second People's Hospital of Shenzhen, The First Affiliated Hospital of Shenzhen University, Shenzhen 518061, China
| | - Min Pan
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen 518034, China
| | - Muhammad Fiaz
- Department of Radiology, Azra Naheed Medical College, Lahore, Pakistan
| | - Yongsheng Hao
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yiran Yan
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Litao Sun
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, China.
| | - Fei Yan
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
6
|
Maciulevičius M, Tamošiūnas M, Navickaitė D, Šatkauskas S, Venslauskas MS. Free- and liposomal- doxorubicin delivery via microbubble inertial cavitation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Perra E, Hayward N, Pritzker KPH, Nieminen HJ. An ultrasonically actuated fine-needle creates cavitation in bovine liver. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 151:3690. [PMID: 35778205 DOI: 10.1121/10.0010534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Ultrasonic cavitation is being used in medical applications as a way to influence matter, such as tissue or drug vehicles, on a micro-scale. Oscillating or collapsing cavitation bubbles provide transient mechanical force fields, which can, e.g., fractionate soft tissue or even disintegrate solid objects, such as calculi. Our recent study demonstrates that an ultrasonically actuated medical needle can create cavitation phenomena inside water. However, the presence and behavior of cavitation and related bioeffects in diagnostic and therapeutic applications with ultrasonically actuated needles are not known. Using simulations, we demonstrate numerically and experimentally the cavitation phenomena near ultrasonically actuated needles. We define the cavitation onset within a liver tissue model with different total acoustic power levels. We directly visualize and quantitatively characterize cavitation events generated by the ultrasonic needle in thin fresh bovine liver sections enabled by high-speed imaging. On a qualitative basis, the numerical and experimental results show a close resemblance in threshold and spatial distribution of cavitation. These findings are crucial for developing new methods and technologies employing ultrasonically actuated fine needles, such as ultrasound-enhanced fine-needle biopsy, drug delivery, and histotripsy.
Collapse
Affiliation(s)
- Emanuele Perra
- Medical Ultrasonics Laboratory (MEDUSA), Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, 02150, Finland
| | - Nick Hayward
- Medical Ultrasonics Laboratory (MEDUSA), Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, 02150, Finland
| | - Kenneth P H Pritzker
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Heikki J Nieminen
- Medical Ultrasonics Laboratory (MEDUSA), Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, 02150, Finland
| |
Collapse
|
8
|
Maciulevičius M, Tamošiūnas M, Jurkonis R, Šatkauskas S. Dosimetric Assessment of Antitumor Treatment by enhanced Bleomycin Delivery via Electroporation and Sonoporation. Bioelectrochemistry 2022; 146:108153. [DOI: 10.1016/j.bioelechem.2022.108153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/15/2022] [Accepted: 05/02/2022] [Indexed: 11/26/2022]
|
9
|
Moyano DB, Paraiso DA, González-Lezcano RA. Possible Effects on Health of Ultrasound Exposure, Risk Factors in the Work Environment and Occupational Safety Review. Healthcare (Basel) 2022; 10:423. [PMID: 35326901 PMCID: PMC8954895 DOI: 10.3390/healthcare10030423] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/12/2022] [Accepted: 02/22/2022] [Indexed: 02/05/2023] Open
Abstract
Ultrasonic waves are mechanical waves with a frequency greater than 20,000 Hz. Ultrasonic waves are emitted by devices that are used in industry or that have a medical or aesthetic purpose. There is growing interest in the effect of ultrasound absorption on the human body, since people's exposure to these acoustic waves has increased considerably in recent years. There are more and more devices that emit ultrasounds used for different sanitary procedures, aesthetic treatments and industrial processes, creating more possibilities of ultrasound noise, and therefore an increased risk of occupational hazard and occupational danger. Experiments on animals have shown damage to internal organs from receiving different ultrasonic frequencies. The main task of this work was to organize and summarize recent studies on ultrasound to reflect the current state of this technique and establish a systematic basis for future lines of research. This work has allowed us to better understand the unknown field of these high frequencies of sound, and highlights the need to carry out more studies on the ultrasound emissions that can be absorbed by the human body to determine how this energy could affect humans by calculating the maximum dose of exposure and developing manuals for the use of ultrasound-emitting equipment to protect the health of workers and all people. It is necessary to develop regulations by public administrations to improve the protection of workers, health professionals, patients and all people in general for better occupational safety, indoor environmental quality and environmental health.
Collapse
Affiliation(s)
- David Baeza Moyano
- Department of Chemistry and Biochemistry, Campus Montepríncipe University San Pablo CEU, Alcorcón, 28668 Madrid, Spain;
| | - Daniel Arranz Paraiso
- Department Pharmaceutical and Health Sciences, Knowledge Area Pharmaceutics and Pharmaceutical Technology, Campus Montepríncipe, University San Pablo CEU, Alcorcón, 28668 Madrid, Spain;
| | - Roberto Alonso González-Lezcano
- Architecture and Design Department, Escuela Politécnica Superior, Campus Montepríncipe, University San Pablo CEU, Alcorcón, 28668 Madrid, Spain
| |
Collapse
|
10
|
de Maar JS, Rousou C, van Elburg B, Vos HJ, Lajoinie GPR, Bos C, Moonen CTW, Deckers R. Ultrasound-Mediated Drug Delivery With a Clinical Ultrasound System: In Vitro Evaluation. Front Pharmacol 2021; 12:768436. [PMID: 34737709 PMCID: PMC8560689 DOI: 10.3389/fphar.2021.768436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/05/2021] [Indexed: 12/22/2022] Open
Abstract
Chemotherapy efficacy is often reduced by insufficient drug uptake in tumor cells. The combination of ultrasound and microbubbles (USMB) has been shown to improve drug delivery and to enhance the efficacy of several drugs in vitro and in vivo, through effects collectively known as sonopermeation. However, clinical translation of USMB therapy is hampered by the large variety of (non-clinical) US set-ups and US parameters that are used in these studies, which are not easily translated to clinical practice. In order to facilitate clinical translation, the aim of this study was to prove that USMB therapy using a clinical ultrasound system (Philips iU22) in combination with clinically approved microbubbles (SonoVue) leads to efficient in vitro sonopermeation. To this end, we measured the efficacy of USMB therapy for different US probes (S5-1, C5-1 and C9-4) and US parameters in FaDu cells. The US probe with the lowest central frequency (i.e. 1.6 MHz for S5-1) showed the highest USMB-induced intracellular uptake of the fluorescent dye SYTOX™ Green (SG). These SG uptake levels were comparable to or even higher than those obtained with a custom-built US system with optimized US parameters. Moreover, USMB therapy with both the clinical and the custom-built US system increased the cytotoxicity of the hydrophilic drug bleomycin. Our results demonstrate that a clinical US system can be used to perform USMB therapy as efficiently as a single-element transducer set-up with optimized US parameters. Therefore, future trials could be based on these clinical US systems, including validated US parameters, in order to accelerate successful translation of USMB therapy.
Collapse
Affiliation(s)
- Josanne S de Maar
- Imaging and Oncology Division, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Charis Rousou
- Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, Netherlands
| | - Benjamin van Elburg
- Physics of Fluids Group, MIRA Institute of Biomedical Technology and Technical Medicine, University of Twente, Enschede, Netherlands
| | - Hendrik J Vos
- Laboratory of Acoustical Wavefield Imaging, Faculty of Applied Sciences, Delft University of Technology, Delft, Netherlands
| | - Guillaume P R Lajoinie
- Physics of Fluids Group, MIRA Institute of Biomedical Technology and Technical Medicine, University of Twente, Enschede, Netherlands
| | - Clemens Bos
- Imaging and Oncology Division, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Chrit T W Moonen
- Imaging and Oncology Division, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Roel Deckers
- Imaging and Oncology Division, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
11
|
Fatahi Asl J, Farzanegan Z, Tahmasbi M, Birgani SM, Malekzade M, Yazdaninejad H. Evaluation of the Scan Duration and Mechanical and Thermal Indices Applied for the Diagnostic Ultrasound Examinations. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2021; 40:1839-1850. [PMID: 33179801 DOI: 10.1002/jum.15565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 09/15/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE Although epidemiological studies have failed to show the harmful effects of ultrasound in humans, as a form of energy, ultrasound has the potential to cause bio-effects in tissues. Therefore, clinical guidelines have been established for ultrasound technology related to human safety, which include Thermal (TI) and mechanical (MI) indices. The appropriate TI and MI ranges for embryonic examinations are between 0-1.0 and 0-0.4, respectively. The accepted TI and MI ranges are 0-2.0 and 0-1.9, respectively, for general ultrasound examinations. In addition, the scan duration should be kept as low as possible. Therefore, the present study aimed at evaluating the scan duration, TI, and MI as measures of acoustic output during ultrasound studies. METHODS A cross-sectional descriptive study was conducted for patients undergoing pregnancy checkups, routine checkups, and initial diagnosis ultrasound examinations. Samples were selected from imaging departments of 4 educational hospitals based on convenience sampling and 321 checklists completed by direct observation of ultrasound examinations. RESULTS For pregnancy scans, the mean TI and MI were obtained as 0.32 ± 0.27 and 1.15 ± 0.13, respectively. For non-pregnancy examinations, the mean value of TI and MI were 0.30 ± 0.29 and 1.07 ± 0.35, respectively. Therefore, mean TI for pregnancy and non-pregnancy examinations and mean MI for non-pregnancy studies obtained lower than the permitted values, while the mean MI was higher than the permitted level for first trimester of pregnancy. Also, relatively suitable scan durations were seen in reviewed studies. CONCLUSION From this study, it may be concluded that the reported ultrasound scans were safe.
Collapse
Affiliation(s)
- Jafar Fatahi Asl
- Department of Radiology Technology, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Farzanegan
- Department of Radiotherapy Technology, School of Allied Medical Sciences, Arak University of Medical Sciences, Arak, Iran
| | - Marziyeh Tahmasbi
- Department of Radiology Technology, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shadab Moradi Birgani
- Department of Radiology Technology, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehrnaz Malekzade
- Department of Radiotherapy Technology, School of Allied Medical Sciences, Arak University of Medical Sciences, Arak, Iran
| | - Hamid Yazdaninejad
- Department of Anaesthesiology, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
12
|
Deprez J, Lajoinie G, Engelen Y, De Smedt SC, Lentacker I. Opening doors with ultrasound and microbubbles: Beating biological barriers to promote drug delivery. Adv Drug Deliv Rev 2021; 172:9-36. [PMID: 33705877 DOI: 10.1016/j.addr.2021.02.015] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/01/2021] [Accepted: 02/17/2021] [Indexed: 12/13/2022]
Abstract
Apart from its clinical use in imaging, ultrasound has been thoroughly investigated as a tool to enhance drug delivery in a wide variety of applications. Therapeutic ultrasound, as such or combined with cavitating nuclei or microbubbles, has been explored to cross or permeabilize different biological barriers. This ability to access otherwise impermeable tissues in the body makes the combination of ultrasound and therapeutics very appealing to enhance drug delivery in situ. This review gives an overview of the most important biological barriers that can be tackled using ultrasound and aims to provide insight on how ultrasound has shown to improve accessibility as well as the biggest hurdles. In addition, we discuss the clinical applicability of therapeutic ultrasound with respect to the main challenges that must be addressed to enable the further progression of therapeutic ultrasound towards an effective, safe and easy-to-use treatment tailored for drug delivery in patients.
Collapse
Affiliation(s)
- J Deprez
- Ghent Research Group on Nanomedicines, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - G Lajoinie
- Physics of Fluids Group, MESA+ Institute for Nanotechnology and Technical Medical (TechMed) Center, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands
| | - Y Engelen
- Ghent Research Group on Nanomedicines, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - S C De Smedt
- Ghent Research Group on Nanomedicines, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - I Lentacker
- Ghent Research Group on Nanomedicines, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
13
|
Sudden Cell Death Induced by Ca 2+ Delivery via Microbubble Cavitation. Biomedicines 2021; 9:biomedicines9010032. [PMID: 33406593 PMCID: PMC7823641 DOI: 10.3390/biomedicines9010032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 02/08/2023] Open
Abstract
Intracellular calcium ion delivery via sonoporation has been validated to be a substitute for classical chemotherapy. However, the mechanism behind calcium sonoporation remains unclear to this day. To elucidate the role of calcium in the process of sonoporation, we aimed to investigate the influence of different calcium concentration on cell membrane permeabilization and cell viability after sonoporation. In this study, we present experimental evidence that extracellular calcium plays a major role in cell membrane molecular transport after applying ultrasound pulses. Ultrasound-microbubble cavitation in the presence of different calcium concentration affects fundamental cell bio-physio-chemical conditions: cell membrane integrity, metabolic activity, and colony formation. Corresponding vital characteristics were evaluated using three independent viability tests: propidium iodide assay (20 min–3 h), MTT assay (48 h), and cell clonogenic assay (6 d). The results indicate instant cell death, as the level of cell viability was determined to be similar within a 20 min–48 h–6 d period. Inertial cavitation activities have been determined to be directly involved in calcium delivery via sonoporation according to high correlation (R2 > 0.85, p < 0.01) of inertial cavitation dose with change in either cell membrane permeabilization, metabolic activity, and colony formation efficiency. In general, calcium delivery via sonoporation induces rapid cell death, occurring within 20 min after treatment, that is the result of ultrasound mediated microbubble cavitation.
Collapse
|
14
|
Maciulevicius M, Tiwari KA, Navickaite D, Chopra S, Satkauskas S, Raisutis R. Optimization of microbubble side-scattering signal analysis for efficient cavitation dosimetry. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2020.102235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Investigation of Plasmid DNA Delivery and Cell Viability Dynamics for Optimal Cell Electrotransfection In Vitro. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10176070] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Electroporation is an effective method for delivering plasmid DNA molecules into cells. The efficiency of gene electrotransfer depends on several factors. To achieve high transfection efficiency while maintaining cell viability is a tedious task in electroporation. Here, we present a combined study in which the dynamics of both evaluation types of transfection efficiency and the cell viability were evaluated in dependence of plasmid concentration as well as at the different number of high voltage (HV) electric pulses. The results of this study reveal a quantitative sigmoidal (R2 > 0.95) dependence of the transfection efficiency and cell viability on the distance between the cell membrane and the nearest plasmid. We propose this distance value as a new, more accurate output parameter that could be used in further optimization studies as a predictor and a measure of electrotransfection efficiency.
Collapse
|
16
|
The relation of Bleomycin Delivery Efficiency to Microbubble Sonodestruction and Cavitation Spectral Characteristics. Sci Rep 2020; 10:7743. [PMID: 32385397 PMCID: PMC7210292 DOI: 10.1038/s41598-020-64213-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/09/2020] [Indexed: 12/26/2022] Open
Abstract
The concurrent assessment of principal sonoporation factors has been accomplished in a single systemic study. Microbubble sonodestruction dynamics and cavitation spectral characteristics, ultrasound scattering and attenuation, were examined in relation to the intracellular delivery of anticancer drug, bleomycin. Experiments were conducted on Chinese hamster ovary cells coadministered with Sonovue microbubbles. Detailed analysis of the scattering and attenuation temporal functions culminated in quantification of metrics, inertial cavitation dose and attenuation rate, suitable for cavitation control. The exponents, representing microbubble sonodestruction kinetics were exploited to derive dosimetric, microbubble sonodestruction rate. High intracorrelation between empirically-attained metrics defines the relations which indicate deep physical interdependencies within inherent phenomena. Subsequently each quantified metric was validated to be well-applicable to prognosticate the efficacy of bleomycin delivery and cell viability, as indicated by strong overall correlation (R2 > 0.85). Presented results draw valuable insights in sonoporation dosimetry and contribute towards the development of universal sonoporation dosimetry model. Both bleomycin delivery and cell viability reach their respective plateau levels by the time, required to attain total microbubble sonodestruction, which accord with scattering and attenuation decrease to background levels. This suggests a well-defined criterion, feasible through signal-registration, universally employable to set optimal duration of exposure for efficient sonoporation outcome.
Collapse
|
17
|
Lin L, Cheng M, Wu R, Shi Q, Du L, Qin P. The Long-Term Fate of the Sonoporated Pancreatic Cancer Cells is Uncorrelated With the Degree of Model Molecular Loading. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:1015-1025. [PMID: 31932158 DOI: 10.1016/j.ultrasmedbio.2019.10.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 10/19/2019] [Accepted: 10/26/2019] [Indexed: 06/10/2023]
Abstract
Studies have determined that ultrasound-activated microbubbles can increase the membrane permeability of tumor cells by triggering membrane perforation (sonoporation) to improve drug loading. However, because of the distinct cavitation events adjacent to each cell, the degree of drug loading appeared to be heterogeneous. The relationship between the long-term fate trend and the degree of drug loading remains unclear. To investigate the time-lapse viability of diversity loading cells, fluorescein isothiocyanate-dextran (FITC-dextrans) was used as a molecular model mixed with 2% v/v SonoVue microbubbles (Bracco, Milan, Italy) and exposed to various peak negative pressures (0.25 MPa, 0.6 MPa, 1.2 MPa), 1 MHz frequency and 300 μs pulse duration. To select a suitable parameter, the cavitation activity was measured, and the cell analysis was performed by flow cytometry under these acoustic pressures. The sonoporated cells were then categorized into 3 sub-groups by flow cytometry according to the various fluorescence intensity distributions to analyze their long-term fate. We observed that the stable cavitation occurred at 0.25 MPa and microbubbles underwent ultra-harmonic emission, and obvious broadband signals were observed at 0.6 MPa and 1.2 MPa, suggesting the occurs of inertial cavitation. The cell analysis further showed the maximum delivery efficiency and cell viability at 0.6 MPa, and it was selected for the following experiment. The categorization displayed that the fluorescence intensity of FITC-dextrans in sub-groups 2 and 3 were approximate 5.62-fold and 19.53-fold higher than that in sub-group 1, respectively. After separation of these sub-groups, the apoptosis and necrosis ratios in all 3 sub-groups of sonoporated cells gradually increased with increasing culture time and displayed no significant difference in either the apoptosis (p > 0.05) or necrosis (p > 0.05) ratio after 6 h and 24 h of culture, respectively. Further analysis using Western blot verified that the long-term fate of sonoporated cells involves the mitochondrial signaling proteins. These results provide better insight into the role of cavitation-enhanced permeability and a critical guide for acoustic cavitation designs.
Collapse
Affiliation(s)
- Lizhou Lin
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mouwen Cheng
- Department of Instrument Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Rong Wu
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiusheng Shi
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lianfang Du
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Peng Qin
- Department of Instrument Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
18
|
Wu CY, Huang RY, Liao EC, Lin YC, Ho YJ, Chang CW, Chan HL, Huang YZ, Hsieh TH, Fan CH, Yeh CK. A preliminary study of Parkinson's gene therapy via sono-magnetic sensing gene vector for conquering extra/intracellular barriers in mice. Brain Stimul 2020; 13:786-799. [PMID: 32289709 DOI: 10.1016/j.brs.2020.02.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/31/2020] [Accepted: 02/19/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Non-virus genetic treatment for Parkinson's disease (PD) via plasmid glial cell-line derived neurotrophic factor (pGDNF) has shown potential for repairing damaged dopaminergic neurons. However, development of this gene therapy is largely hampered by the insufficient transfection efficiency as a result of the cell membrane, lysosome, and cytoskeleton meshwork. METHODS In this study, we propose the use of polyethylenimine (PEI)-superparamagnetic iron oxide-plasmid DNA (pDNA)-loaded microbubbles (PSp-MBs) in conjunction with focused ultrasound (FUS) and two-step magnetic navigation to provide cavitation, proton sponge effect and magnetic effects to increase the efficiency of gene delivery. RESULTS The gene transfection rate in the proposed system was 2.2-fold higher than that of the commercial agent (TransIT®-LT1). The transfection rate could be boosted ∼11%, ∼10%, and 6% by cavitation-magnetic hybrid enhanced cell membrane permeabilization, proton sponge effect, and magnetic-assisted cytoskeleton-reorganization, respectively. In vivo data suggested that effective gene delivery with this system results in a 3.2-fold increase in recovery of dopaminergic neurons and a 3.9-fold improvement in the motor behavior when compared to untreated genetic PD mice. CONCLUSIONS We proposed that this novel FUS-magnetic hybrid gene delivery platform could be integrated with a variety of therapeutic genes for treating neurodegenerative diseases in the future.
Collapse
Affiliation(s)
- Chun-Yao Wu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Rih-Yang Huang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - En-Chi Liao
- Department of Medical Science, Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Chun Lin
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan; Department of Molecular Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Ju Ho
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Chien-Wen Chang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Hong-Lin Chan
- Department of Medical Science, Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Ying-Zu Huang
- Neuroscience Research Center, Healthy Aging Research Center and Department of Neurology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taipei, Taiwan
| | - Tsung-Hsun Hsieh
- School of Physical Therapy & Neuroscience Research Center, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taipei, Taiwan
| | - Ching-Hsiang Fan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan; Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
19
|
Robertson J, Squire M, Becker S. Circulation Cooling in Continuous Skin Sonoporation at Constant Coupling Fluid Temperatures. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:137-148. [PMID: 31630889 DOI: 10.1016/j.ultrasmedbio.2019.08.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 08/22/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
Exposure of the skin to low-frequency ultrasound in the Franz diffusion cell has been found to increase the permeability of the skin to molecular transport. In many cases, significant heating of the coupling fluid requires the use of duty cycles that extend the total experimental time. This is a methodological study in which the coupling fluid is circulated between a modified Franz diffusion cell and a heat exchanger to allow for the continuous application of low-frequency ultrasound while the coupling fluid temperature is held constant. Dermatomed porcine skin was exposed to continuous ultrasound at 20 kHz for 10 min at an intensity of 55 W/cm2 while the coupling fluid was maintained at one of three target temperatures (13°C, 33°C or 46°C). Foil pitting and passive cavitation detection revealed that inertial cavitation activity decreased with increasing coupling fluid target temperature. Transport measurements revealed an increase in mean donor calcein concentration with increasing coupling fluid temperature, though these were not statistically significant. Taken together these findings suggest that the weakened stratum corneum lipid structure at higher temperatures is more susceptible to the introduction of defects from the jetting of cavitation.
Collapse
Affiliation(s)
- Jeremy Robertson
- Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand
| | - Marie Squire
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand
| | - Sid Becker
- Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand.
| |
Collapse
|
20
|
Brüningk SC, Rivens I, Mouratidis P, Ter Haar G. Focused Ultrasound-Mediated Hyperthermia in Vitro: An Experimental Arrangement for Treating Cells under Tissue-Mimicking Conditions. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:3290-3297. [PMID: 31500898 PMCID: PMC6878221 DOI: 10.1016/j.ultrasmedbio.2019.06.410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/13/2019] [Accepted: 06/18/2019] [Indexed: 06/01/2023]
Abstract
An experimental arrangement that allows in vitro exposure of cells to focused ultrasound-mediated hyperthermia (43°C-55°C) in a tissue-mimicking phantom with biological, acoustic and thermal properties comparable to those of human soft tissue is described. Cells were embedded in a compressed collagen gel, which was sandwiched between 6-mm-thick slices of biocompatible, acoustically absorbing and thermally tissue mimicking poly(vinyl alcohol) cryo-gel. To illustrate the system's potential, cells were exposed using a 1.66-MHz focused ultrasound beam (spatial-peak temporal-average intensities (ISPTA) = 900-1400 W/cm2) that traced out a circular trajectory (5-8 mm in diameter). Real-time temperature monitoring allowed cells to be exposed reproducibly to a pre-determined thermal dose. An experimental planning tool that estimates the thermal dose distribution throughout the sample and allows spatial correlation with cell position has been developed. Treatment response was evaluated qualitatively using microscopy and cell viability testing. This experimental arrangement has significant potential for future, biologically relevant, in vitro focused ultrasound-mediated hyperthermia studies.
Collapse
Affiliation(s)
- Sarah C Brüningk
- Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom.
| | - Ian Rivens
- Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Petros Mouratidis
- Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Gail Ter Haar
- Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom.
| |
Collapse
|
21
|
Fant C, Lafond M, Rogez B, Castellanos IS, Ngo J, Mestas JL, Padilla F, Lafon C. In vitro potentiation of doxorubicin by unseeded controlled non-inertial ultrasound cavitation. Sci Rep 2019; 9:15581. [PMID: 31666639 PMCID: PMC6821732 DOI: 10.1038/s41598-019-51785-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 10/07/2019] [Indexed: 12/20/2022] Open
Abstract
Ultrasound-generated non-inertial cavitation has the ability to potentiate the therapeutic effects of cytotoxic drugs. We report a novel strategy to induce and regulate unseeded (without nucleation agents) non-inertial cavitation, where cavitation is initiated, monitored and regulated using a confocal ultrasound setup controlled by an instrumentation platform and a PC programmed feedback control loop. We demonstrate, using 4T1 murine mammary carcinoma as model cell line, that unseeded non-inertial cavitation potentiates the cytotoxicity of doxorubicin, one of the most potent drugs used in the treatment of solid tumors including breast cancer. Combined treatment with doxorubicin and unseeded non-inertial cavitation significantly reduced cell viability and proliferation at 72 h. A mechanistic study of the potential mechanisms of action of the combined treatment identified the presence of cavitation as required to enhance doxorubicin efficacy, but ruled out the influence of changes in doxorubicin uptake, temperature increase, hydroxyl radical production and nuclear membrane modifications on the treatment outcome. The developed strategy for the reproducible generation and maintenance of unseeded cavitation makes it an attractive method as potential preclinical and clinical treatment modality to locally potentiate doxorubicin.
Collapse
Affiliation(s)
- Cécile Fant
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ-Lyon, F-69003, Lyon, France
| | - Maxime Lafond
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ-Lyon, F-69003, Lyon, France
- Department of Internal Medicine, University of Cincinnati, 2600 Clifton Ave, Cincinnati, OH, 45220, USA
| | - Bernadette Rogez
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ-Lyon, F-69003, Lyon, France
- University of Lille, building SN3, INSERM U908 "Cell plasticity and Cancer", 59655, Villeneuve d'Ascq, France
- OCR (Oncovet Clinical Research), Parc Eurasanté, Lille Métropole, 80 rue Docteur Yersin, 59120, Loos, France
| | | | - Jacqueline Ngo
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ-Lyon, F-69003, Lyon, France
| | - Jean-Louis Mestas
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ-Lyon, F-69003, Lyon, France
| | - Frédéric Padilla
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ-Lyon, F-69003, Lyon, France.
- Department of Radiation Oncology, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Focused Ultrasound Foundation, 1230 Cedars Court, Suite 206, Charlottesville, VA, USA.
| | - Cyril Lafon
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ-Lyon, F-69003, Lyon, France
| |
Collapse
|
22
|
Koda R, Origasa T, Nakajima T, Yamakoshi Y. Observing Bubble Cavitation by Back-Propagation of Acoustic Emission Signals. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:823-833. [PMID: 30735990 DOI: 10.1109/tuffc.2019.2897983] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Temporal- and spatial-resolved observations of microbubble cavitation generated through high-intensity ultrasound irradiation are key in improving both the efficiency and efficacy of ultrasound-assisted drug delivery systems. A method of measuring bubble cavitation applying an image-reconstruction technique of back-propagation of an acoustic cavitation emission (ACE) signal is proposed. A high-intensity focused ultrasound wave (pump wave) irradiates the bubble synchronously using ultrasound recording equipment to acquire the timing of the RF signal, which is produced when the bubble radiates a secondary wave during bubble cavitation. The ACE signal source is reconstructed through ultrasound-wave back-propagation followed by amplitude deconvolution. The proposed method was applied to microbubbles of an ultrasound contrast agent by changing the sound pressure of the pump wave. The method reliability of the temporal resolution was verified by simulating the amplitude-modulated signal of the virtual sound source. The temporal transition of the ACE signal exhibited sub-microsecond-order fluctuations in the signal intensity. From the amplitude signal image and the instantaneous frequency image reconstruction of the proposed method, two different ACE phenomena were visualized. One is the periodic pattern by the beat signals from the harmonic and ultraharmonic component of nonlinear oscillation under low-intensity ultrasound conditions. The other is the nonperiodic temporal and spatial distributions of this irradiation under high-intensity ultrasound conditions.
Collapse
|
23
|
Landa FJO, Penacoba SR, de Espinosa FM, Razansky D, Deán-Ben XL. Four-dimensional optoacoustic monitoring of tissue heating with medium intensity focused ultrasound. ULTRASONICS 2019; 94:117-123. [PMID: 30580815 DOI: 10.1016/j.ultras.2018.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 10/01/2018] [Accepted: 11/26/2018] [Indexed: 06/09/2023]
Abstract
Medium-intensity focused ultrasound (MIFU) concerns therapeutic ultrasound interventions aimed at stimulating physiological mechanisms to reinforce healing responses without reaching temperatures that can cause permanent tissue damage. The therapeutic outcome is strongly affected by the temperature distribution in the treated region and its accurate monitoring represents an unmet clinical need. In this work, we investigate on the capacities of four-dimensional optoacoustic tomography to monitor tissue heating with MIFU. Calibration experiments in a tissue-mimicking phantom have confirmed that the optoacoustically-estimated temperature variations accurately match the simultaneously acquired thermocouple readings. The performance of the suggested approach in real tissues was further shown with bovine muscle samples. Volumetric temperature maps were rendered in real time, allowing for dynamic monitoring of the ultrasound focal region, estimation of the peak temperature and the size of the heat-affected volume.
Collapse
Affiliation(s)
- Francisco Javier Oyaga Landa
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich, Neuherberg, Germany; School of Medicine, Technical University of Munich, Germany
| | | | | | - Daniel Razansky
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich, Neuherberg, Germany; School of Medicine, Technical University of Munich, Germany
| | - Xosé Luís Deán-Ben
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich, Neuherberg, Germany.
| |
Collapse
|
24
|
Burgess MT, Porter TM. Control of Acoustic Cavitation for Efficient Sonoporation with Phase-Shift Nanoemulsions. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:846-858. [PMID: 30638968 PMCID: PMC8859868 DOI: 10.1016/j.ultrasmedbio.2018.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 11/20/2018] [Accepted: 12/03/2018] [Indexed: 05/18/2023]
Abstract
Acoustic cavitation can be used to temporarily disrupt cell membranes for intracellular delivery of large biomolecules. Termed sonoporation, the ability of this technique for efficient intracellular delivery (i.e., >50% of initial cell population showing uptake) while maintaining cell viability (i.e., >50% of initial cell population viable) has proven to be very difficult. Here, we report that phase-shift nanoemulsions (PSNEs) function as inertial cavitation nuclei for improvement of sonoporation efficiency. The interplay between ultrasound frequency, resultant microbubble dynamics and sonoporation efficiency was investigated experimentally. Acoustic emissions from individual microbubbles nucleated from PSNEs were captured using a broadband passive cavitation detector during and after acoustic droplet vaporization with short pulses of ultrasound at 1, 2.5 and 5 MHz. Time domain features of the passive cavitation detector signals were analyzed to estimate the maximum size (Rmax) of the microbubbles using the Rayleigh collapse model. These results were then applied to sonoporation experiments to test if uptake efficiency is dependent on maximum microbubble size before inertial collapse. Results indicated that at the acoustic droplet vaporization threshold, Rmax was approximately 61.7 ± 5.2, 24.9 ± 2.8, and 12.4 ± 2.1 μm at 1, 2.5 and 5 MHz, respectively. Sonoporation efficiency increased at higher frequencies, with efficiencies of 39.5 ± 13.7%, 46.6 ± 3.28% and 66.8 ± 5.5% at 1, 2.5 and 5 MHz, respectively. Excessive cellular damage was seen at lower frequencies because of the erosive effects of highly energetic inertial cavitation. These results highlight the importance of acoustic cavitation control in determining the outcome of sonoporation experiments. In addition, PSNEs may serve as tailorable inertial cavitation nuclei for other therapeutic ultrasound applications.
Collapse
Affiliation(s)
- Mark T Burgess
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts, USA
| | - Tyrone M Porter
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts, USA; Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA.
| |
Collapse
|
25
|
Rich KT, Holland CK, Rao MB, Mast TD. Characterization of cavitation-radiated acoustic power using diffraction correction. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 144:3563. [PMID: 30599638 PMCID: PMC6308017 DOI: 10.1121/1.5083831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
A method is developed for compensating absolute pressure measurements made by a calibrated passive cavitation detector (PCD) to estimate the average acoustic power radiated from a region of interest (ROI) defined to encompass all cavitating bubbles. A diffraction correction factor for conversion of PCD-measured pressures to cavitation-radiated acoustic power per unit area or volume is derived as a simple analytic expression, accounting for position- and frequency-dependent PCD sensitivity. This approach can be applied to measurements made by any PCD without precise knowledge of the number, spatial, or temporal distribution of cavitating bubbles. The diffraction correction factor is validated in simulation for a wide range of ROI dimensions and frequencies. The correction factor is also applied to emission measurements obtained during in vitro ultrasound-enhanced sonophoresis experiments, allowing comparison of stable cavitation levels between therapeutic configurations with different source center frequencies. Results incorporating sonication at both 0.41 and 2.0 MHz indicate that increases in skin permeability correlate strongly with the acoustic power of subharmonic emissions radiated per unit skin area.
Collapse
Affiliation(s)
- Kyle T Rich
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | - Christy K Holland
- Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | - Marepalli B Rao
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | - T Douglas Mast
- Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio 45267, USA
| |
Collapse
|
26
|
Stewart MP, Langer R, Jensen KF. Intracellular Delivery by Membrane Disruption: Mechanisms, Strategies, and Concepts. Chem Rev 2018; 118:7409-7531. [PMID: 30052023 PMCID: PMC6763210 DOI: 10.1021/acs.chemrev.7b00678] [Citation(s) in RCA: 412] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intracellular delivery is a key step in biological research and has enabled decades of biomedical discoveries. It is also becoming increasingly important in industrial and medical applications ranging from biomanufacture to cell-based therapies. Here, we review techniques for membrane disruption-based intracellular delivery from 1911 until the present. These methods achieve rapid, direct, and universal delivery of almost any cargo molecule or material that can be dispersed in solution. We start by covering the motivations for intracellular delivery and the challenges associated with the different cargo types-small molecules, proteins/peptides, nucleic acids, synthetic nanomaterials, and large cargo. The review then presents a broad comparison of delivery strategies followed by an analysis of membrane disruption mechanisms and the biology of the cell response. We cover mechanical, electrical, thermal, optical, and chemical strategies of membrane disruption with a particular emphasis on their applications and challenges to implementation. Throughout, we highlight specific mechanisms of membrane disruption and suggest areas in need of further experimentation. We hope the concepts discussed in our review inspire scientists and engineers with further ideas to improve intracellular delivery.
Collapse
Affiliation(s)
- Martin P. Stewart
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Klavs F. Jensen
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
| |
Collapse
|
27
|
Johansen K, Song JH, Prentice P. Performance characterisation of a passive cavitation detector optimised for subharmonic periodic shock waves from acoustic cavitation in MHz and sub-MHz ultrasound. ULTRASONICS SONOCHEMISTRY 2018; 43:146-155. [PMID: 29555269 DOI: 10.1016/j.ultsonch.2018.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/17/2017] [Accepted: 01/04/2018] [Indexed: 06/08/2023]
Abstract
We describe the design, construction and characterisation of a broadband passive cavitation detector, with the specific aim of detecting low frequency components of periodic shock waves, with high sensitivity. A finite element model is used to guide selection of matching and backing layers for the shock wave passive cavitation detector (swPCD), and the performance is evaluated against a commercially available device. Validation of the model, and characterisation of the swPCD is achieved through experimental detection of laser-plasma bubble collapse shock waves. The final swPCD design is 20 dB more sensitive to the subharmonic component, from acoustic cavitation driven at 220 kHz, than the comparable commercial device. This work may be significant for monitoring cavitation in medical applications, where sensitive detection is critical, and higher frequencies are more readily absorbed by tissue.
Collapse
Affiliation(s)
- Kristoffer Johansen
- Cavitation Laboratory, Medical and Industrial Ultrasonics, School of Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom.
| | - Jae Hee Song
- Cavitation Laboratory, Medical and Industrial Ultrasonics, School of Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Paul Prentice
- Cavitation Laboratory, Medical and Industrial Ultrasonics, School of Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
28
|
Tran DM, Harrang J, Song S, Chen J, Smith BM, Miao CH. Prolonging pulse duration in ultrasound-mediated gene delivery lowers acoustic pressure threshold for efficient gene transfer to cells and small animals. J Control Release 2018; 279:345-354. [PMID: 29702143 DOI: 10.1016/j.jconrel.2018.04.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 03/08/2018] [Accepted: 04/06/2018] [Indexed: 12/20/2022]
Abstract
While ultrasound-mediated gene delivery (UMGD) has been accomplished using high peak negative pressures (PNPs) of 2 MPa or above, emerging research showed that this may not be a requirement for microbubble (MB) cavitation. Thus, we investigated lower-pressure conditions close to the MB inertial cavitation threshold and focused towards further increasing gene transfer efficiency and reducing associated cell damage. We created a matrix of 21 conditions (n = 3/cond.) to test in HEK293T cells using pulse durations spanning 18 μs-36 ms and PNPs spanning 0.5-2.5 MPa. Longer pulse duration conditions yielded significant increase in transgene expression relative to sham with local maxima between 20 J and 100 J energy curves. A similar set of 17 conditions (n = 4/cond.) was tested in mice using pulse durations spanning 18 μs-22 ms and PNPs spanning 0.5-2.5 MPa. We observed local maxima located between 1 J and 10 J energy curves in treated mice. Of these, several low pressure conditions showed a decrease in ALT and AST levels while maintaining better or comparable expression to our positive control, indicating a clear benefit to allow for effective transfection with minimized tissue damage versus the high-intensity control. Our data indicates that it is possible to eliminate the requirement of high PNPs by prolonging pulse durations for effective UMGD in vitro and in vivo, circumventing the peak power density limitations imposed by piezo-materials used in US transducers. Overall, these results demonstrate the advancement of UMGD technology for achieving efficient gene transfer and potential scalability to larger animal models and human application.
Collapse
Affiliation(s)
- Dominic M Tran
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - James Harrang
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Shuxian Song
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Jeremy Chen
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Bryn M Smith
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Carol H Miao
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Pediatrics, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
29
|
Cornu C, Guédra M, Béra JC, Liu HL, Chen WS, Inserra C. Ultrafast monitoring and control of subharmonic emissions of an unseeded bubble cloud during pulsed sonication. ULTRASONICS SONOCHEMISTRY 2018; 42:697-703. [PMID: 29429720 DOI: 10.1016/j.ultsonch.2017.12.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/08/2017] [Accepted: 12/15/2017] [Indexed: 06/08/2023]
Abstract
In the aim of limiting the destructive effects of collapsing bubbles, the regime of stable cavitation activity is currently targeted for sensitive therapeutic applications such as blood-brain barrier opening by ultrasound. This activity is quantified through the emergence of the subharmonic component of the fundamental frequency. Due to the intrinsically stochastic behavior of the cavitation phenomenon, a better control of the different (stable or inertial) cavitation regimes is a key requirement in the understanding of the mechanisms involving each bubble-induced mechanical effect. Current strategies applied to stable cavitation control rely on the use of either seeded microbubbles or a long-lasting pulse to reinitiate subharmonic emission. The present work aims at developing an ultrafast (inferior to 250 μs) monitoring and control of subharmonic emissions during long-pulsed (50 ms) sonication. The use of a FPGA-based feedback loop provides reproducible level of subharmonic emissions combined with temporal stability during the sonication duration. In addition, stable cavitation events are differentiated from the broadband noise characterizing inertial cavitation activity, with perspectives in the discrimination of the involved mechanisms underlying bubble-mediated therapeutic applications.
Collapse
Affiliation(s)
- Corentin Cornu
- Univ Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard, INSERM, UMR 1032, LabTAU, F-69003 Lyon, France.
| | - Matthieu Guédra
- Univ Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard, INSERM, UMR 1032, LabTAU, F-69003 Lyon, France
| | - Jean-Christophe Béra
- Univ Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard, INSERM, UMR 1032, LabTAU, F-69003 Lyon, France
| | - Hao-Li Liu
- Department of Electrical Engineering, Chang-Gung University, Taoyuan 333, Taiwan
| | - Wen-Shiang Chen
- Department of Physical Medicine & Rehabilitation, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Claude Inserra
- Univ Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard, INSERM, UMR 1032, LabTAU, F-69003 Lyon, France
| |
Collapse
|
30
|
Sengupta A, Gray MD, Kelly SC, Holguin SY, Thadhani NN, Prausnitz MR. Energy Transfer Mechanisms during Molecular Delivery to Cells by Laser-Activated Carbon Nanoparticles. Biophys J 2017; 112:1258-1269. [PMID: 28355552 DOI: 10.1016/j.bpj.2017.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 11/26/2022] Open
Abstract
Previous studies have shown that exposure of carbon black nanoparticles to nanosecond pulsed near-infrared laser causes intracellular delivery of molecules through hypothesized transient breaks in the cell membrane. The goal of this study is to determine the underlying mechanisms of sequential energy transfer from laser light to nanoparticle to fluid medium to cell. We found that laser pulses on a timescale of 10 ns rapidly heat carbon nanoparticles to temperatures on the order of 1200 K. Heat is transferred from the nanoparticles to the surrounding aqueous medium on a similar timescale, causing vaporization of the surrounding water and generation of acoustic emissions. Nearby cells can be impacted thermally by the hot bubbles and mechanically by fluid mechanical forces to transiently increase cell membrane permeability. The experimental and theoretical results indicate that transfer of momentum and/or heat from the bubbles to the cells are the dominant mechanisms of energy transfer that results in intracellular uptake of molecules. We further conclude that neither thermal expansion of the nanoparticles nor a carbon-steam chemical reaction play a significant role in the observed effects on cells, and that acoustic pressure appears to be concurrent with, but not essential to, the observed bioeffects.
Collapse
Affiliation(s)
- Aritra Sengupta
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Michael D Gray
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Sean C Kelly
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Stefany Y Holguin
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Naresh N Thadhani
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia.
| |
Collapse
|
31
|
Izadifar Z, Babyn P, Chapman D. Mechanical and Biological Effects of Ultrasound: A Review of Present Knowledge. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:1085-1104. [PMID: 28342566 DOI: 10.1016/j.ultrasmedbio.2017.01.023] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 01/26/2017] [Accepted: 01/30/2017] [Indexed: 05/12/2023]
Abstract
Ultrasound is widely used for medical diagnosis and increasingly for therapeutic purposes. An understanding of the bio-effects of sonography is important for clinicians and scientists working in the field because permanent damage to biological tissues can occur at high levels of exposure. Here the underlying principles of thermal mechanisms and the physical interactions of ultrasound with biological tissues are reviewed. Adverse health effects derived from cellular studies, animal studies and clinical reports are reviewed to provide insight into the in vitro and in vivo bio-effects of ultrasound.
Collapse
Affiliation(s)
- Zahra Izadifar
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | - Paul Babyn
- Department of Medical Imaging, Royal University Hospital, University of Saskatchewan and Saskatoon Health Region, Saskatoon, Saskatchewan, Canada
| | - Dean Chapman
- Anatomy & Cell Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
32
|
Li Y, Gao J, Zhang C, Cao Z, Cheng D, Liu J, Shuai X. Stimuli-Responsive Polymeric Nanocarriers for Efficient Gene Delivery. Top Curr Chem (Cham) 2017; 375:27. [DOI: 10.1007/s41061-017-0119-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/31/2017] [Indexed: 11/25/2022]
|
33
|
Johansen K, Song JH, Johnston K, Prentice P. Deconvolution of acoustically detected bubble-collapse shock waves. ULTRASONICS 2017; 73:144-153. [PMID: 27657479 DOI: 10.1016/j.ultras.2016.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 09/06/2016] [Accepted: 09/07/2016] [Indexed: 05/12/2023]
Abstract
The shock wave emitted by the collapse of a laser-induced bubble is detected at propagation distances of 30, 40and50mm, using a PVdF needle hydrophone, with a non-flat end-of-cable frequency response, calibrated for magnitude and phase, from 125kHz to 20MHz. High-speed shadowgraphic imaging at 5×106 frames per second, 10nstemporal resolution and 256 frames per sequence, records the bubble deflation from maximum to minimum radius, the collapse and shock wave generation, and the subsequent rebound in unprecedented detail, for a single sequence of an individual bubble. The Gilmore equation for bubble oscillation is solved according to the resolved bubble collapse, and simulated shock wave profiles deduced from the acoustic emissions, for comparison to the hydrophone recordings. The effects of single-frequency calibration, magnitude-only and full waveform deconvolution of the experimental data are presented, in both time and frequency domains. Magnitude-only deconvolution increases the peak pressure amplitude of the measured shock wave by approximately 9%, from single-frequency calibration, with full waveform deconvolution increasing it by a further 3%. Full waveform deconvolution generates a shock wave profile that is in agreement with the simulated profile, filtered according to the calibration bandwidth. Implications for the detection and monitoring of acoustic cavitation, where the role of periodic bubble collapse shock waves has recently been realised, are discussed.
Collapse
Affiliation(s)
- Kristoffer Johansen
- Cavitation Laboratory, School of Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Jae Hee Song
- Cavitation Laboratory, School of Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Keith Johnston
- Division of Imaging and Technology, School of Medicine, University of Dundee, Dundee DD1 9SY, United Kingdom
| | - Paul Prentice
- Cavitation Laboratory, School of Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom.
| |
Collapse
|
34
|
Saliev T, Feril LB, Ogawa K, Watanabe A, Begimbetova D, Molkenov A, Alimbetov D, Tachibana K. Induction of Apoptosis in U937 Cells by Using a Combination of Bortezomib and Low-Intensity Ultrasound. Med Sci Monit 2016; 22:5049-5057. [PMID: 28003640 PMCID: PMC5201119 DOI: 10.12659/msm.898323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background We scrutinized the feasibility of apoptosis induction in blood cancer cells by means of low-intensity ultrasound and the proteasome inhibitor bortezomib (Velcade). Material/Methods Human leukemic monocyte lymphoma U937 cells were subjected to ultrasound in the presence of bortezomib and the echo contrast agent Sonazoid. Two types of acoustic intensity (0.18 W/cm2 and 0.05 W/cm2) were used for the experiments. Treated U937 cells were analyzed for viability and levels of early and late apoptosis. In addition, scanning electron microscopy analysis of treated cells was performed. Results The percentage of cells that underwent early apoptosis in the group treated with ultrasound and Sonazoid was 8.0±1.31% (intensity 0.18 W/cm2) and 7.0±1.69% (0.05 W/cm2). However, coupling of bortezomib and Sonazoid resulted in an increase in the percentage of cells in the early apoptosis phase, up to 32.50±3.59% (intensity 0.18 W/cm2) and 33.0±4.90% (0.05 W/cm2). The percentage of U937 cells in the late apoptosis stage was not significantly different from that in the group treated with bortezomib only. Conclusions Our findings indicate the feasibility of apoptosis induction in blood cancer cells by using a combination of bortezomib, ultrasound contrast agents, and low-intensity ultrasound.
Collapse
Affiliation(s)
- Timur Saliev
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Loreto B Feril
- Department of Anatomy, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Koichi Ogawa
- Department of Anatomy, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Akiko Watanabe
- Department of Anatomy, Fukuoka University School of Medicine, Fukuoka, Japan
| | | | - Askhat Molkenov
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Dauren Alimbetov
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Katsuro Tachibana
- Department of Anatomy, Fukuoka University School of Medicine, Fukuoka, Japan
| |
Collapse
|
35
|
Maciulevičius M, Tamošiūnas M, Jakštys B, Jurkonis R, Venslauskas MS, Šatkauskas S. Investigation of Microbubble Cavitation-Induced Calcein Release from Cells In Vitro. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:2990-3000. [PMID: 27637933 DOI: 10.1016/j.ultrasmedbio.2016.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 07/13/2016] [Accepted: 08/02/2016] [Indexed: 06/06/2023]
Abstract
In the present study, microbubble (MB) cavitation signal analysis was performed together with calcein release evaluation in both pressure and exposure duration domains of the acoustic field. A passive cavitation detection system was used to simultaneously measure MB scattering and attenuation signals for subsequent extraction efficiency relative to MB cavitation activity. The results indicate that the decrease in the efficiency of extraction of calcein molecules from Chinese hamster ovary cells, as well as cell viability, is associated with MB cavitation activity and can be accurately predicted using inertial cavitation doses up to 0.18 V × s (R2 > 0.9, p < 0.0001). No decrease in additional calcein release or cell viability was observed after complete MB sonodestruction was achieved. This indicates that the optimal exposure duration within which maximal sono-extraction efficiency is obtained coincides with the time necessary to achieve complete MB destruction. These results illustrate the importance of MB inertial cavitation in the sono-extraction process. To our knowledge, this study is the first to (i) investigate small molecule extraction from cells via sonoporation and (ii) relate the extraction process to the quantitative characteristics of MB cavitation acoustic spectra.
Collapse
Affiliation(s)
| | | | | | - Rytis Jurkonis
- Biomedical Engineering Institute, Kaunas University of Technology, Kaunas, Lithuania
| | | | - Saulius Šatkauskas
- Biophysical Research Group, Vytautas Magnus University, Kaunas, Lithuania.
| |
Collapse
|
36
|
Song JH, Johansen K, Prentice P. An analysis of the acoustic cavitation noise spectrum: The role of periodic shock waves. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 140:2494. [PMID: 27794293 DOI: 10.1121/1.4964633] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Research on applications of acoustic cavitation is often reported in terms of the features within the spectrum of the emissions gathered during cavitation occurrence. There is, however, limited understanding as to the contribution of specific bubble activity to spectral features, beyond a binary interpretation of stable versus inertial cavitation. In this work, laser-nucleation is used to initiate cavitation within a few millimeters of the tip of a needle hydrophone, calibrated for magnitude and phase from 125 kHz to 20 MHz. The bubble activity, acoustically driven at f0 = 692 kHz, is resolved with high-speed shadowgraphic imaging at 5 × 106 frames per second. A synthetic spectrum is constructed from component signals based on the hydrophone data, deconvolved within the calibration bandwidth, in the time domain. Cross correlation coefficients between the experimental and synthetic spectra of 0.97 for the f0/2 and f0/3 regimes indicate that periodic shock waves and scattered driving field predominantly account for all spectral features, including the sub-harmonics and their over-harmonics, and harmonics of f0.
Collapse
Affiliation(s)
- Jae Hee Song
- Cavitation Laboratory, School of Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Kristoffer Johansen
- Cavitation Laboratory, School of Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Paul Prentice
- Cavitation Laboratory, School of Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
37
|
Guirro ECDO, Angelis DDFD, Sousa NTAD, Guirro RRDJ. Combination of therapeutic ultrasound with antibiotics interfere with the growth of bacterial culture that colonizes skin ulcers: An in-vitro study. ULTRASONICS SONOCHEMISTRY 2016; 32:284-289. [PMID: 27150772 DOI: 10.1016/j.ultsonch.2016.03.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 06/05/2023]
Abstract
Staphylococcus aureus and Escherichia coli are among the major bacterial species that colonize skin ulcers. Therapeutic ultrasound (TUS) produces biophysical effects that are relevant to wound healing; however, its application over a contaminated injury is not evidence-based. The objective of this research was to analyze the effect of TUS on in vitro-isolated S. aureus and E. coli, including the combination of ultrasound and antibiotics, in order to assess their antibiotic action on bacterial susceptibility. For the experiments, the bacterial strains were suspended in saline, then diluted (10(4)CFU/mL) for irradiation (at 1 and 3MHz, 0.5 and 0.8W/cm(2) for 0 and 15min) and the combination treatment of ultrasonication and antibiotics was administered by adding nalidixic acid (S. aureus) and tetracycline (E. coli) at concentrations equivalent to 50% of the minimum inhibitory concentration (MIC). The experiments were carried out in duplicate with six repetitions. The suspensions were inoculated on to Petri plates and incubated at 37°C and the colony forming units (CFUs) were counted after 24h. The results were subjected to the Shapiro-Wilk normality test, followed by parametric ANOVA and Tukey's post hoc test at a significance level of 1%. The results demonstrated that the action of TUS at 1MHz inhibited bacterial growth while at 3MHz, bacterial growth was observed in both species. However, the synergistic combination of ultrasound and antibiotics was able to inhibit the growth of both bacteria completely after 15min of ultrasonication. The results suggest that the action of ultrasound on S. aureus and E. coli are dependent on the oscillation frequency as well as the intensity and time of application. The combination of ultrasound with antibiotics was able to inhibit bacterial growth fully at all frequencies and doses in both species.
Collapse
Affiliation(s)
- Elaine Caldeira de Oliveira Guirro
- Department of Biomechanics, Medicine and Rehabilitation of the Locomotor System, Laboratory of Physiotherapeutic Resources, Ribeirão Preto Medical School of University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Dejanira de Franceschi de Angelis
- Department of Biochemistry and Microbiology, Institute of Biosciences of Rio Claro of Paulista State University, Rio Claro, SP, Brazil
| | - Natanael Teixeira Alves de Sousa
- Post-Graduation Program in Rehabilitation and Performance Functional, Ribeirão Preto Medical School of University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Rinaldo Roberto de Jesus Guirro
- Department of Biomechanics, Medicine and Rehabilitation of the Locomotor System, Laboratory of Physiotherapeutic Resources, Ribeirão Preto Medical School of University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
38
|
Lafond M, Aptel F, Mestas JL, Lafon C. Ultrasound-mediated ocular delivery of therapeutic agents: a review. Expert Opin Drug Deliv 2016; 14:539-550. [DOI: 10.1080/17425247.2016.1198766] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Maxime Lafond
- Inserm, LabTAU, Lyon, France
- Univ Lyon, Université Lyon 1, Lyon, France
| | - Florent Aptel
- Department of Ophthalmology, University Hospital of Grenoble, Université Grenoble Alpes, Grenoble, France
| | - Jean-Louis Mestas
- Inserm, LabTAU, Lyon, France
- Univ Lyon, Université Lyon 1, Lyon, France
| | - Cyril Lafon
- Inserm, LabTAU, Lyon, France
- Univ Lyon, Université Lyon 1, Lyon, France
| |
Collapse
|
39
|
Tamošiūnas M, Mir LM, Chen WS, Lihachev A, Venslauskas M, Šatkauskas S. Intracellular Delivery of Bleomycin by Combined Application of Electroporation and Sonoporation in Vitro. J Membr Biol 2016; 249:677-689. [PMID: 27317391 DOI: 10.1007/s00232-016-9911-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/08/2016] [Indexed: 01/19/2023]
Abstract
In this study, we aimed to determine whether the combination of electroporation (EP) and ultrasound (US) waves (sonoporation) can result in an increased intracellular delivery of anticancer drug bleomycin. CHO cells were treated with electric pulses (1 or 8 high voltage pulses of 800 or 1200 V/cm, 100 μs or 1 low voltage pulse of 100 or 250 V/cm, 100 ms) and with 880 kHz US of 320 or 500 kPa peak negative pressure, 100 % duty cycle, applied for 2 s in the presence or absence of exogenously added contrast agent microbubbles. Various sequential or simultaneous combinations of EP and sonoporation were used. The results of the study showed that i) sequential treatment of cells by EP and sonoporation enhanced bleomycin electrosonotransfer at the reduced energy of electric field and US; ii) sequential combination of EP and sonoporation induced a summation effect which at some conditions was more prominent when the cells were treated first by EP and then by sonoporation; iii) the most efficient intracellular delivery of bleomycin was achieved by the simultaneous application of cell EP and sonoporation resulting in percentage of reversibly porated cells above the summation level; and iv) compared with sequential application of EP and sonoporation, simultaneous use of electric pulses and US increased cell viability in the absence of bleomycin.
Collapse
Affiliation(s)
- Mindaugas Tamošiūnas
- Biophysical research group, Faculty of Natural Sciences, Vytautas Magnus University, Vileikos 8, 44404, Kaunas, Lithuania
| | - Lluis M Mir
- Vectorology and Anticancer Therapeutics, UMR 8203, Univ. Paris-Sud Gustave Roussy, Université Paris-Saclay, 94805, Villejuif, France
| | - Wen-Shiang Chen
- Department of Physical Medicine & Rehabilitation, National Taiwan University Hospital, Taipei, Taiwan
| | - Alexey Lihachev
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Rīga, Latvia
| | - Mindaugas Venslauskas
- Biophysical research group, Faculty of Natural Sciences, Vytautas Magnus University, Vileikos 8, 44404, Kaunas, Lithuania
| | - Saulius Šatkauskas
- Biophysical research group, Faculty of Natural Sciences, Vytautas Magnus University, Vileikos 8, 44404, Kaunas, Lithuania.
| |
Collapse
|
40
|
Sengupta A, Mezencev R, McDonald JF, Prausnitz MR. Delivery of siRNA to ovarian cancer cells using laser-activated carbon nanoparticles. Nanomedicine (Lond) 2016; 10:1775-84. [PMID: 26080699 DOI: 10.2217/nnm.15.27] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
AIM The RNAi-mediated knockdown of gene expression is an attractive tool for research and therapeutic purposes but its implementation is challenging. Here we report on a new method based on photoacoustic delivery of siRNA developed to address some of these challenges. MATERIALS & METHODS Physical properties and photoacoustic emission of carbon black (CB) particles upon near-infrared laser irradiation were characterized. Next, ovarian cancer cells Hey A8-F8 were exposed to near-infrared nanosecond laser pulses in the presence of siRNA targeting EGFR gene and CB particles. The intracellular delivery of siRNA and silencing of the target gene were determined by specific qPCR assays. RESULTS & CONCLUSION Laser-activated CB nanoparticles generated photoacoustic emission and enabled intracellular delivery of siRNA and significant knockdown of its target EGFR mRNA. This physical method represents a new promising approach to targeted therapeutic delivery of siRNA.
Collapse
Affiliation(s)
- Aritra Sengupta
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Roman Mezencev
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - John F McDonald
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Mark R Prausnitz
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
41
|
Verhaagen B, Fernández Rivas D. Measuring cavitation and its cleaning effect. ULTRASONICS SONOCHEMISTRY 2016; 29:619-28. [PMID: 25819680 DOI: 10.1016/j.ultsonch.2015.03.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/08/2015] [Accepted: 03/13/2015] [Indexed: 05/24/2023]
Abstract
The advantages and limitations of techniques for measuring the presence and amount of cavitation, and for quantifying the removal of contaminants, are provided. After reviewing chemical, physical, and biological studies, a universal cause for the cleaning effects of bubbles cannot yet be concluded. An "ideal sensor" with high spatial and temporal resolution is proposed. Such sensor could be used to investigate bubble jetting, shockwaves, streaming, and even chemical effects, by correlating cleaning processes with cavitation effects, generated by hydrodynamics, lasers or ultrasound.
Collapse
Affiliation(s)
- Bram Verhaagen
- BuBclean, Institutenweg 25, 7521PH Enschede, The Netherlands
| | - David Fernández Rivas
- BuBclean, Institutenweg 25, 7521PH Enschede, The Netherlands; Mesoscale Chemical Systems Group, University of Twente, 7500AE Enschede, The Netherlands.
| |
Collapse
|
42
|
Helfield B, Black JJ, Qin B, Pacella J, Chen X, Villanueva FS. Fluid Viscosity Affects the Fragmentation and Inertial Cavitation Threshold of Lipid-Encapsulated Microbubbles. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:782-94. [PMID: 26674676 PMCID: PMC4744112 DOI: 10.1016/j.ultrasmedbio.2015.10.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 10/16/2015] [Accepted: 10/27/2015] [Indexed: 05/04/2023]
Abstract
Ultrasound and microbubble optimization studies for therapeutic applications are often conducted in water/saline, with a fluid viscosity of 1 cP. In an in vivo context, microbubbles are situated in blood, a more viscous fluid (∼4 cP). In this study, ultrahigh-speed microscopy and passive cavitation approaches were employed to investigate the effect of fluid viscosity on microbubble behavior at 1 MHz subject to high pressures (0.25-2 MPa). The propensity for individual microbubble (n = 220) fragmentation was found to significantly decrease in 4-cP fluid compared with 1-cP fluid, despite achieving similar maximum radial excursions. Microbubble populations diluted in 4-cP fluid exhibited decreased wideband emissions (up to 10.2 times), and increasingly distinct harmonic emission peaks (e.g., ultraharmonic) with increasing pressure, compared with those in 1-cP fluid. These results suggest that in vitro studies should consider an evaluation using physiologic viscosity perfusate before transitioning to in vivo evaluations.
Collapse
Affiliation(s)
- Brandon Helfield
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - John J Black
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Bin Qin
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - John Pacella
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Xucai Chen
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Flordeliza S Villanueva
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
43
|
Parameters affecting intracellular delivery of molecules using laser-activated carbon nanoparticles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:1003-1011. [PMID: 26772422 DOI: 10.1016/j.nano.2015.12.380] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 08/02/2015] [Accepted: 12/24/2015] [Indexed: 11/20/2022]
Abstract
UNLABELLED Previous studies showed that carbon nanoparticles exposed to nanosecond laser pulses cause intracellular uptake of molecules. In this study, prostate cancer cells incubated with carbon-black (CB) nanoparticles and fluorescent marker compounds were exposed to 10ns laser pulses at 1064nm wavelength, after which intracellular uptake was measured by flow cytometry. Calcein and dextran (150kDa) were delivered into >50% of cells, whereas larger dextrans (≤2000kDa) were taken up by ~10% of cells. Under all conditions studied, cell viability loss was minimal. Uptake also increased with increasing laser power, increasing CB nanoparticle concentration, increasing CB nanoparticle size and decreasing laser wavelength. CB nanoparticles enabled uptake better than gold nanoparticles or multi-walled carbon nanotubes under the conditions studied. Proof-of-principle experiments showed intracellular uptake by cells in vivo. We conclude that intracellular uptake of molecules using laser-activated CB nanoparticles provides a promising approach to deliver molecules into cells. FROM THE CLINICAL EDITOR Delivery of drugs using nanoparticles as carriers is promising. The authors in this study investigated the use of laser-activated carbon nanoparticles to increase the cellular uptake of payloads in various parameters. The positive data generated should provide further platform for a new approach for intracellular delivery of molecules.
Collapse
|
44
|
Moncion A, Arlotta KJ, Kripfgans OD, Fowlkes JB, Carson PL, Putnam AJ, Franceschi RT, Fabiilli ML. Design and Characterization of Fibrin-Based Acoustically Responsive Scaffolds for Tissue Engineering Applications. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:257-71. [PMID: 26526782 PMCID: PMC4666743 DOI: 10.1016/j.ultrasmedbio.2015.08.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/21/2015] [Accepted: 08/27/2015] [Indexed: 05/11/2023]
Abstract
Hydrogel scaffolds are used in tissue engineering as a delivery vehicle for regenerative growth factors. Spatiotemporal patterns of growth factor signaling are critical for tissue regeneration, yet most scaffolds afford limited control of growth factor release, especially after implantation. We previously found that acoustic droplet vaporization can control growth factor release from a fibrin scaffold doped with a perfluorocarbon emulsion. This study investigates properties of the acoustically responsive scaffold (ARS) critical for further translation. At 2.5 MHz, acoustic droplet vaporization and inertial cavitation thresholds ranged from 1.5 to 3.0 MPa and from 2.0 to 7.0 MPa peak rarefactional pressure, respectively, for ARSs of varying composition. Viability of C3H/10T1/2 cells, encapsulated in the ARS, did not decrease significantly for pressures below 4 MPa. ARSs with perfluorohexane emulsions displayed higher stability versus those with perfluoropentane emulsions, while surrogate payload release was minimal without ultrasound. These results enable the selection of ARS compositions and acoustic parameters needed for optimized spatiotemporally controlled release.
Collapse
Affiliation(s)
- Alexander Moncion
- Applied Physics Program, University of Michigan, Ann Arbor, Michigan, USA; Department of Radiology, University of Michigan Health System, Ann Arbor, Michigan, USA.
| | - Keith J Arlotta
- Department of Radiology, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Oliver D Kripfgans
- Applied Physics Program, University of Michigan, Ann Arbor, Michigan, USA; Department of Radiology, University of Michigan Health System, Ann Arbor, Michigan, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - J Brian Fowlkes
- Applied Physics Program, University of Michigan, Ann Arbor, Michigan, USA; Department of Radiology, University of Michigan Health System, Ann Arbor, Michigan, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Paul L Carson
- Applied Physics Program, University of Michigan, Ann Arbor, Michigan, USA; Department of Radiology, University of Michigan Health System, Ann Arbor, Michigan, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Andrew J Putnam
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Renny T Franceschi
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA; School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA; Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Mario L Fabiilli
- Applied Physics Program, University of Michigan, Ann Arbor, Michigan, USA; Department of Radiology, University of Michigan Health System, Ann Arbor, Michigan, USA
| |
Collapse
|
45
|
Zhao L, Feng Y, Shi A, Zong Y, Wan M. Apoptosis Induced by Microbubble-Assisted Acoustic Cavitation in K562 Cells: The Predominant Role of the Cyclosporin A-Dependent Mitochondrial Permeability Transition Pore. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:2755-64. [PMID: 26164288 DOI: 10.1016/j.ultrasmedbio.2015.05.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 05/15/2015] [Accepted: 05/25/2015] [Indexed: 05/24/2023]
Abstract
Acoustic cavitation of microbubbles has been described as inducing tumor cell apoptosis that is partly associated with mitochondrial dysfunction; however, the exact mechanisms have not been fully characterized. Here, low-intensity pulsed ultrasound (1 MHz, 0.3-MPa peak negative pressure, 10% duty cycle and 1-kHz pulse repetition frequency) was applied to K562 chronic myelogenous leukemia cells for 1 min with 10% (v/v) SonoVue microbubbles. After ultrasound exposure, the apoptotic index was determined by flow cytometry with annexin V-fluorescein isothiocyanate/propidium iodide. In addition, mitochondrial membrane potential (ΔΨm) was determined with the JC-1 assay. Translocation of apoptosis-associated protein cytochrome c was evaluated by Western blotting. We found that microbubble-assisted acoustic cavitation can increase the cellular apoptotic index, mitochondrial depolarization and cytochrome c release in K562 cells, compared with ultrasound treatment alone. Furthermore, mitochondrial dysfunction and apoptosis were significantly inhibited by cyclosporin A, a classic inhibitor of the mitochondrial permeability transition pore; however, the inhibitor of Bax protein, Bax-inhibiting peptide, could not suppress these effects. Our results suggest that mitochondrial permeability transition pore opening is involved in mitochondrial dysfunction after exposure to microbubble-assisted acoustic cavitation. Moreover, the release of cytochrome c from the mitochondria is dependent on cyclosporin A-sensitive mitochondrial permeability transition pore opening, but not formation of the Bax-voltage dependent anion channel complex or Bax oligomeric pores. These data provide more insight into the mechanisms underlying mitochondrial dysfunction induced by acoustic cavitation and can be used as a basis for therapy.
Collapse
Affiliation(s)
- Lu Zhao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi' an, China
| | - Yi Feng
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi' an, China.
| | - Aiwei Shi
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi' an, China
| | - Yujin Zong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi' an, China
| | - Mingxi Wan
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi' an, China.
| |
Collapse
|
46
|
Maciulevicius M, Tamosiunas M, Jurkonis R, Venslauskas MS, Satkauskas S. Analysis of Metrics for Molecular Sonotransfer in Vitro. Mol Pharm 2015; 12:3620-7. [PMID: 26312556 DOI: 10.1021/acs.molpharmaceut.5b00347] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Ultrasound induced microbubble (MB) cavitation is used to significantly enhance cell membrane permeabilization, thereby allowing delivery of various therapeutic agents into cells. In order to monitor and quantitatively control the extent of cavitation the uniform dosimetry model is needed. In present study we have simultaneously performed quantitative evaluation of three main sonoporation factors: (1) MB concentration, (2) MB cavitation extent, and (3) doxorubicin (DOX) sonotransfer into Chinese hamster ovary cells. MB concentration measurement results and passively recorded MB cavitation signals were used for MB sonodestruction rate and spectral root-mean-square (RMS) calculations, respectively. Subsequently, time to maximum value of RMS and inertial cavitation dose (ICD) quantifications were performed for every acoustic pressure value. This comprehensive research has led not only to explanation of relation of ICD and MB sonodestruction rate but also to the development of a new sonoporation metric: the inverse of time to maximum value of RMS (1/time to maximum value of RMS). ICD and MB sonodestruction rate intercorrelation and correlation with DOX sonotransfer suggest inertial cavitation to be the key mechanism for cell sonoporation. All these metrics were successfully used for doxorubicin sonotransfer prediction (R(2) > 0.9, p < 0.01) and therefore shows feasibility to be applied for future dosimetric applications for ultrasound-mediated drug and gene delivery.
Collapse
Affiliation(s)
| | - Mindaugas Tamosiunas
- Biophysical Research Group, Vytautas Magnus University , Kaunas 44248, Lithuania
| | - Rytis Jurkonis
- Biomedical Engineering Institute, Kaunas University of Technology , Kaunas 44249, Lithuania
| | | | - Saulius Satkauskas
- Biophysical Research Group, Vytautas Magnus University , Kaunas 44248, Lithuania
| |
Collapse
|
47
|
Rich KT, Mast TD. Methods to calibrate the absolute receive sensitivity of single-element, focused transducers. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2015; 138:EL193-8. [PMID: 26428812 PMCID: PMC4560723 DOI: 10.1121/1.4929620] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Absolute pressure measurements of acoustic emissions by single-element, focused passive cavitation detectors would be facilitated by improved wideband receive calibration techniques. Here, calibration methods were developed to characterize the absolute, frequency-dependent receive sensitivity of a spherically focused, single-element transducer using pulse-echo and pitch-catch techniques. Validation of these calibration methods on a focused receiver were made by generating a pulse from a small diameter source at the focus of the transducer and comparing the absolute pressure measured by a calibrated hydrophone to that of the focused transducer using the receive sensitivities determined here.
Collapse
Affiliation(s)
- Kyle T Rich
- Biomedical Engineering Program, University of Cincinnati, Cincinnati, Ohio 45267, USA ,
| | - T Douglas Mast
- Biomedical Engineering Program, University of Cincinnati, Cincinnati, Ohio 45267, USA ,
| |
Collapse
|
48
|
Burgess MT, Porter TM. Acoustic Cavitation-Mediated Delivery of Small Interfering Ribonucleic Acids with Phase-Shift Nano-Emulsions. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:2191-201. [PMID: 25979417 PMCID: PMC4466208 DOI: 10.1016/j.ultrasmedbio.2015.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 03/30/2015] [Accepted: 04/01/2015] [Indexed: 05/11/2023]
Abstract
Localized, targeted delivery of small interfering ribonucleic acid (siRNA) has been the foremost hurdle in the use of siRNA for the treatment of various diseases. Major advances have been achieved in the synthesis of siRNA, which have led to greater target messenger RNA (mRNA) silencing and stability under physiologic conditions. Although numerous delivery strategies have shown promise, there are still limited options for targeted delivery and release of siRNA administered systemically. In this in vitro study, phase-shift nano-emulsions (PSNE) were explored as cavitation nuclei to facilitate free siRNA delivery to cancer cells via sonoporation. A cell suspension containing varying amounts of PSNE and siRNA was exposed to 5-MHz pulsed ultrasound at fixed settings (6.2-MPa peak negative pressure, 5-cycle pulses, 250-Hz pulse repetition frequency (PRF) and total exposure duration of 100 s). Inertial cavitation emissions were detected throughout the exposure using a passive cavitation detector. Successful siRNA delivery was achieved (i.e., >50% cell uptake) with high (>80%) viability. The percentage of cells with siRNA uptake was correlated with the amount of inertial cavitation activity generated from vaporized PSNE. The siRNA remained functional after delivery, significantly reducing expression of green fluorescent protein in a stably transfected cell line. These results indicate that vaporized PSNE can facilitate siRNA entry into the cytosol of a majority of sonicated cells and may provide a non-endosomal route for siRNA delivery.
Collapse
Affiliation(s)
- Mark T Burgess
- Department of Mechanical Engineering and Center for Nanoscience and Nanobiotechnology, Boston University, Boston, Massachusetts, USA.
| | - Tyrone M Porter
- Department of Mechanical Engineering and Center for Nanoscience and Nanobiotechnology, Boston University, Boston, Massachusetts, USA; Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
49
|
Gourevich D, Volovick A, Dogadkin O, Wang L, Mulvana H, Medan Y, Melzer A, Cochran S. In Vitro Investigation of the Individual Contributions of Ultrasound-Induced Stable and Inertial Cavitation in Targeted Drug Delivery. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:1853-64. [PMID: 25887690 DOI: 10.1016/j.ultrasmedbio.2015.03.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 03/01/2015] [Accepted: 03/11/2015] [Indexed: 05/23/2023]
Abstract
Ultrasound-mediated targeted drug delivery is a therapeutic modality under development with the potential to treat cancer. Its ability to produce local hyperthermia and cell poration through cavitation non-invasively makes it a candidate to trigger drug delivery. Hyperthermia offers greater potential for control, particularly with magnetic resonance imaging temperature measurement. However, cavitation may offer reduced treatment times, with real-time measurement of ultrasonic spectra indicating drug dose and treatment success. Here, a clinical magnetic resonance imaging-guided focused ultrasound surgery system was used to study ultrasound-mediated targeted drug delivery in vitro. Drug uptake into breast cancer cells in the vicinity of ultrasound contrast agent was correlated with occurrence and quantity of stable and inertial cavitation, classified according to subharmonic spectra. During stable cavitation, intracellular drug uptake increased by a factor up to 3.2 compared with the control. Reported here are the value of cavitation monitoring with a clinical system and its subsequent employment for dose optimization.
Collapse
Affiliation(s)
- Dana Gourevich
- Institute for Medical Science and Technology, School of Medicine, University of Dundee, Dundee, United Kingdom; Capsutech Ltd., Nazareth, Israel
| | - Alexander Volovick
- Institute for Medical Science and Technology, School of Medicine, University of Dundee, Dundee, United Kingdom; InSightec Ltd., Haifa, Israel
| | - Osnat Dogadkin
- Institute for Medical Science and Technology, School of Medicine, University of Dundee, Dundee, United Kingdom; InSightec Ltd., Haifa, Israel
| | - Lijun Wang
- Institute for Medical Science and Technology, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Helen Mulvana
- School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Yoav Medan
- Department of Biomedical Engineering, Technion, Haifa, Israel
| | - Andreas Melzer
- Institute for Medical Science and Technology, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Sandy Cochran
- Institute for Medical Science and Technology, School of Medicine, University of Dundee, Dundee, United Kingdom.
| |
Collapse
|
50
|
Zijlstra A, Fernandez Rivas D, Gardeniers HJGE, Versluis M, Lohse D. Enhancing acoustic cavitation using artificial crevice bubbles. ULTRASONICS 2015; 56:512-523. [PMID: 25455191 DOI: 10.1016/j.ultras.2014.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 09/29/2014] [Accepted: 10/01/2014] [Indexed: 06/04/2023]
Abstract
We study the response of pre-defined cavitation nuclei driven continuously in the kHz regime (80, 100 and 200 kHz). The nuclei consist of stabilized gaspockets in cylindrical pits of 30 μm diameter etched in silicon or glass substrates. It is found that above an acoustic pressure threshold the dynamics of the liquid-gas meniscus switches from a stable drum-like vibration to expansion and deformation, frequently resulting in detachment of microbubbles. Just above this threshold small bubbles are continuously and intermittently ejected. At elevated input powers bubble detachment becomes more frequent and cavitation bubble clouds are formed and remain in the vicinity of the pit bubble. Surprisingly, the resulting loss of gas does not lead to deactivation of the pit which can be explained by a rectified gas diffusion process.
Collapse
Affiliation(s)
- Aaldert Zijlstra
- Physics of Fluids Group, MESA+Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - David Fernandez Rivas
- Mesoscale Chemical Systems Group, MESA+Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands.
| | - Han J G E Gardeniers
- Mesoscale Chemical Systems Group, MESA+Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands
| | - Michel Versluis
- Physics of Fluids Group, MESA+Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Detlef Lohse
- Physics of Fluids Group, MESA+Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|