1
|
Iori G, Schneider J, Reisinger A, Heyer F, Peralta L, Wyers C, Glüer CC, van den Bergh JP, Pahr D, Raum K. Cortical thinning and accumulation of large cortical pores in the tibia reflect local structural deterioration of the femoral neck. Bone 2020; 137:115446. [PMID: 32450342 DOI: 10.1016/j.bone.2020.115446] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 05/03/2020] [Accepted: 05/19/2020] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Cortical bone thinning and a rarefaction of the trabecular architecture represent possible causes of increased femoral neck (FN) fracture risk. Due to X-ray exposure limits, the bone microstructure is rarely measurable in the FN of subjects but can be assessed at the tibia. Here, we studied whether changes of the tibial cortical microstructure, which were previously reported to be associated with femur strength, are also associated with structural deteriorations of the femoral neck. METHODS The cortical and trabecular architectures in the FN of 19 humans were analyzed ex vivo on 3D microcomputed tomography images with 30.3 μm voxel size. Cortical thickness (Ct.Thtibia), porosity (Ct.Potibia) and pore size distribution in the tibiae of the same subjects were measured using scanning acoustic microscopy (12 μm pixel size). Femur strength during sideways falls was simulated with homogenized voxel finite element models. RESULTS Femur strength was associated with the total (vBMDtot; R2 = 0.23, p < 0.01) and trabecular (vBMDtrab; R2 = 0.26, p < 0.01) volumetric bone mineral density (vBMD), with the cortical thickness (Ct.ThFN; R2 = 0.29, p < 0.001) and with the trabecular bone volume fraction (Tb.BV/TVFN; R2 = 0.34, p < 0.001), separation (Tb.SpFN; R2 = 0.25, p < 0.01) and number (Tb.NFN; R2 = 0.32, p < 0.001) of the femoral neck. Moreover, smaller Ct.Thtibia was associated with smaller Ct.ThFN (R2 = 0.31, p < 0.05), lower Tb.BV/TVFN (R2 = 0.29, p < 0.05), higher Tb.SpFN (R2 = 0.33, p < 0.05) and lower Tb.NFN (R2 = 0.42, p < 0.01). A higher prevalence of pores with diameter > 100 μm in tibial cortical bone (relCt.Po100μm-tibia) indicated higher Tb.SpFN (R2 = 0.36, p < 0.01) and lower Tb.NFN (R2 = 0.45, p < 0.01). CONCLUSION Bone resorption and structural decline of the femoral neck may be identified in vivo by measuring cortical bone thickness and large pores in the tibia.
Collapse
Affiliation(s)
- Gianluca Iori
- Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Johannes Schneider
- Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Andreas Reisinger
- Division Biomechanics, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Frans Heyer
- Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands; Department of Internal Medicine, VieCuri Medical Center, Venlo, the Netherlands
| | - Laura Peralta
- Laboratoire d'Imagerie Biomédicale, Sorbonne Universités, INSERM UMR S 1146, CNRS UMR 7371, Paris, France; Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Caroline Wyers
- Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands; Department of Internal Medicine, VieCuri Medical Center, Venlo, the Netherlands
| | - Claus C Glüer
- Sektion Biomedizinische Bildgebung, Klinik für Radiologie und Neuroradiologie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - J P van den Bergh
- Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands; Department of Internal Medicine, VieCuri Medical Center, Venlo, the Netherlands
| | - Dieter Pahr
- Division Biomechanics, Karl Landsteiner University of Health Sciences, Krems, Austria; Institute for Lightweight Design and Structural Biomechanics, TU Wien, Vienna, Austria
| | - Kay Raum
- Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
2
|
Karbalaeisadegh Y, Yousefian O, Iori G, Raum K, Muller M. Acoustic diffusion constant of cortical bone: Numerical simulation study of the effect of pore size and pore density on multiple scattering. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:1015. [PMID: 31472561 PMCID: PMC6687498 DOI: 10.1121/1.5121010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/15/2019] [Accepted: 07/20/2019] [Indexed: 06/01/2023]
Abstract
While osteoporosis assessment has long focused on the characterization of trabecular bone, the cortical bone micro-structure also provides relevant information on bone strength. This numerical study takes advantage of ultrasound multiple scattering in cortical bone to investigate the effect of pore size and pore density on the acoustic diffusion constant. Finite-difference time-domain simulations were conducted in cortical microstructures that were derived from acoustic microscopy images of human proximal femur cross sections and modified by controlling the density (Ct.Po.Dn) ∈[5-25] pore/mm2 and size (Ct.Po.Dm) ∈[30-100] μm of the pores. Gaussian pulses were transmitted through the medium and the backscattered signals were recorded to obtain the backscattered intensity. The incoherent contribution of the backscattered intensity was extracted to give access to the diffusion constant D. At 8 MHz, significant differences in the diffusion constant were observed in media with different porous micro-architectures. The diffusion constant was monotonously influenced by either pore diameter or pore density. An increase in pore size and pore density resulted in a decrease in the diffusion constant (D =285.9Ct.Po.Dm-1.49, R2=0.989 , p=4.96×10-5,RMSE=0.06; D=6.91Ct.Po.Dn-1.01, R2=0.94, p=2.8×10-3 , RMSE=0.09), suggesting the potential of the proposed technique for the characterization of the cortical microarchitecture.
Collapse
Affiliation(s)
- Yasamin Karbalaeisadegh
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695-8212, USA
| | - Omid Yousefian
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695-8212, USA
| | - Gianluca Iori
- Center for Regenerative Therapies, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Kay Raum
- Center for Regenerative Therapies, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Marie Muller
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695-8212, USA
| |
Collapse
|
3
|
Iori G, Heyer F, Kilappa V, Wyers C, Varga P, Schneider J, Gräsel M, Wendlandt R, Barkmann R, van den Bergh JP, Raum K. BMD-based assessment of local porosity in human femoral cortical bone. Bone 2018; 114:50-61. [PMID: 29860154 DOI: 10.1016/j.bone.2018.05.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 05/09/2018] [Accepted: 05/25/2018] [Indexed: 10/14/2022]
Abstract
Cortical pores are determinants of the elastic properties and of the ultimate strength of bone tissue. An increase of the overall cortical porosity (Ct.Po) as well as the local coalescence of large pores cause an impairment of the mechanical competence of bone. Therefore, Ct.Po represents a relevant target for identifying patients with high fracture risk. However, given their small size, the in vivo imaging of cortical pores remains challenging. The advent of modern high-resolution peripheral quantitative computed tomography (HR-pQCT) triggered new methods for the clinical assessment of Ct.Po at the peripheral skeleton, either by pore segmentation or by exploiting local bone mineral density (BMD). In this work, we compared BMD-based Ct.Po estimates with high-resolution reference values measured by scanning acoustic microscopy. A calibration rule to estimate local Ct.Po from BMD as assessed by HR-pQCT was derived experimentally. Within areas of interest smaller than 0.5 mm2, our model was able to estimate the local Ct.Po with an error of 3.4%. The incorporation of the BMD inhomogeneity and of one parameter from the BMD distribution of the entire scan volume led to a relative reduction of the estimate error of 30%, if compared to an estimate based on the average BMD. When applied to the assessment of Ct.Po within entire cortical bone cross-sections, the proposed BMD-based method had better accuracy than measurements performed with a conventional threshold-based approach.
Collapse
Affiliation(s)
- Gianluca Iori
- Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Germany
| | - Frans Heyer
- Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands; Department of Internal Medicine, VieCuri Medical Center, Venlo, The Netherlands
| | | | - Caroline Wyers
- Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands; Department of Internal Medicine, VieCuri Medical Center, Venlo, The Netherlands
| | - Peter Varga
- AO Research Institute Davos, Davos, Switzerland
| | - Johannes Schneider
- Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Germany
| | - Melanie Gräsel
- Sektion Biomedizinische Bildgebung, Klinik für Radiologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Germany
| | | | - Reinhard Barkmann
- Sektion Biomedizinische Bildgebung, Klinik für Radiologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Germany
| | - J P van den Bergh
- Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands; Department of Internal Medicine, VieCuri Medical Center, Venlo, The Netherlands
| | - Kay Raum
- Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Germany.
| |
Collapse
|
4
|
Rohrbach D, Grimal Q, Varga P, Peyrin F, Langer M, Laugier P, Raum K. Distribution of mesoscale elastic properties and mass density in the human femoral shaft. Connect Tissue Res 2015; 56:120-32. [PMID: 25738522 DOI: 10.3109/03008207.2015.1013627] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cortical bone properties are determined by tissue composition and structure at several hierarchical length scales. In this study, the spatial distribution of micro- and mesoscale elastic properties within a human femoral shaft has been investigated. Microscale tissue degree of mineralization (DMB), cortical vascular porosity Ct.Po and the average transverse isotropic stiffness tensor C(Micro) of cylindrical-shaped samples (diameter: 4.4 mm, N = 56) were obtained from cortical regions between 20 and 85% of the total femur length and around the periphery (anterior, medial, posterior and lateral quadrants) by means of synchrotron radiation µCT (SRµCT) and 50-MHz scanning acoustic microscopy (SAM). Within each cylinder, the volumetric bone mineral density (vBMD) and the mesoscale stiffness tensor C(Meso) were derived using a numerical homogenization approach. Moreover, microelastic maps of the axial elastic coefficient c33 measured by SAM at distinct cross-sectional locations along the femur were used to construct a 3-D multiscale elastic model of the femoral shaft. Variations of vBMD (6.1%) were much lower than the variations of mesoscale elastic coefficients (11.1-21.3%). The variation of DMB was only a minor predictor for variations of the mesoscale elastic properties (0.05 ≤ R(2) ≤ 0.34). Instead, variations of the mesoscale elastic properties could be explained by variations of cortical porosity and microscale elastic properties. These data were suitable inputs for numerical evaluations and may help to unravel the relations between structure and composition on the elastic function in cortical bone.
Collapse
Affiliation(s)
- Daniel Rohrbach
- Julius-Wolff-Institute & Berlin Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin , Berlin , Germany
| | | | | | | | | | | | | |
Collapse
|
5
|
Casanova M, Schindeler A, Little D, Müller R, Schneider P. Quantitative phenotyping of bone fracture repair: a review. BONEKEY REPORTS 2014; 3:550. [PMID: 25120907 DOI: 10.1038/bonekey.2014.45] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 05/09/2014] [Indexed: 12/28/2022]
Abstract
Fracture repair is a complex process that involves the interaction of numerous molecular factors, cell lineages and tissue types. These biological processes allow for an impressive feat of engineering: an elastic soft callus is progressively replaced by a more rigid and mineralized callus. During this reparative phase, the healing bone is exposed to a risk of re-fracture. Bone volume and bone quality are the two major factors determining the strength of the callus. Although both factors are important, often only bone volume is analyzed and reported in preclinical studies. Recent developments in techniques for examining bone quality in the callus will enable the rapid and detailed analysis of its material properties and its microstructure. This review aims to give an overview of the methods available for quantitatively phenotyping the bone callus in preclinical studies such as Raman spectroscopy, nanoindentation, scanning acoustic microscopy, in vivo micro-computed tomography (micro-CT) and high-resolution micro-CT. Consolidated and emerging experimental methods are described with a focus on their applicability, and with examples of their utilization.
Collapse
Affiliation(s)
- Michele Casanova
- Institute for Biomechanics, Department of Health Sciences and Technology, ETH Zurich , Zurich, Switzerland ; Orthopaedic Research and Biotechnology, The Children's Hospital at Westmead , Westmead, New South Wales, Australia
| | - Aaron Schindeler
- Orthopaedic Research and Biotechnology, The Children's Hospital at Westmead , Westmead, New South Wales, Australia ; Paediatrics and Child Health, University of Sydney , Camperdown, New South Wales, Australia
| | - David Little
- Orthopaedic Research and Biotechnology, The Children's Hospital at Westmead , Westmead, New South Wales, Australia ; Paediatrics and Child Health, University of Sydney , Camperdown, New South Wales, Australia
| | - Ralph Müller
- Institute for Biomechanics, Department of Health Sciences and Technology, ETH Zurich , Zurich, Switzerland
| | - Philipp Schneider
- Institute for Biomechanics, Department of Health Sciences and Technology, ETH Zurich , Zurich, Switzerland ; Bioengineering Science Research Group, Faculty of Engineering and the Environment, University of Southampton , Southampton, United Kingdom
| |
Collapse
|
6
|
Malo MKH, Rohrbach D, Isaksson H, Töyräs J, Jurvelin JS, Tamminen IS, Kröger H, Raum K. Longitudinal elastic properties and porosity of cortical bone tissue vary with age in human proximal femur. Bone 2013; 53:451-8. [PMID: 23334084 DOI: 10.1016/j.bone.2013.01.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 01/08/2013] [Accepted: 01/10/2013] [Indexed: 11/26/2022]
Abstract
Tissue level structural and mechanical properties are important determinants of bone strength. As an individual ages, microstructural changes occur in bone, e.g., trabeculae and cortex become thinner and porosity increases. However, it is not known how the elastic properties of bone change during aging. Bone tissue may lose its elasticity and become more brittle and prone to fractures as it ages. In the present study the age-dependent variation in the spatial distributions of microstructural and microelastic properties of the human femoral neck and shaft were evaluated by using acoustic microscopy. Although these properties may not be directly measured in vivo, there is a major interest to investigate their relationships with the linear elastic measurements obtained by diagnostic ultrasound at the most severe fracture sites, e.g., the femoral neck. However, before the validity of novel in vivo techniques can be established, it is essential to understand the age-dependent variation in tissue elastic properties and porosity at different skeletal sites. A total of 42 transverse cross-sectional bone samples were obtained from the femoral neck (Fn) and proximal femoral shaft (Ps) of 21 men (mean±SD age 47.1±17.8, range 17-82years). Samples were quantitatively imaged using a scanning acoustic microscope (SAM) equipped with a 50MHz ultrasound transducer. Distributions of the elastic coefficient (c33) of cortical (Ct) and trabecular (Tr) tissues and microstructure of cortex (cortical thickness Ct.Th and porosity Ct.Po) were determined. Variations in c33 were observed with respect to tissue type (c33Tr<c33Ct), location (c33(Ct.Ps)=37.7GPa>c33(Ct.Fn)=35.3GPa>c33(Tr.Ps)=33.8GPa>c33(Tr.Fn)=31.9GPa), and cadaver age (R(2)=0.28-0.46, p<0.05). Regional variations in porosity were found in the neck (superior 13.1%; inferior 6.1%; anterior 10.1%; posterior 8.6%) and in the shaft (medial 9.5%; lateral 7.7%; anterior 8.6%; posterior 12.0%). In conclusion, significant variations in elastic coefficients were detected between femoral neck and shaft as well as between the quadrants of the cross-sections of neck and shaft. Moreover, an age-related increase in cortical porosity and a stiffening of the bone tissue were observed. These findings may explain in part the increase in susceptibility to suffer low energy fractures during aging and highlight the potential of ultrasound in clinical osteoporosis diagnostics.
Collapse
Affiliation(s)
- M K H Malo
- Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211, Kuopio, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Nagashima LK, Rondon-Newby M, Zakhary IE, Nagy WW, Zapata U, Dechow PC, Opperman LA, Elsalanty ME. Bone regeneration and docking site healing after bone transport distraction osteogenesis in the canine mandible. J Oral Maxillofac Surg 2011; 70:429-39. [PMID: 21601342 DOI: 10.1016/j.joms.2011.02.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 12/22/2010] [Accepted: 02/01/2011] [Indexed: 11/28/2022]
Abstract
PURPOSE Bone transport distraction osteogenesis provides a promising alternative to traditional grafting techniques. However, existing bone transport distraction osteogenesis devices have many limitations. The purpose of this research was to test a new device, the mandibular bone transport reconstruction plate, in an animal model with comparable mandible size to humans and to histologically and mechanically examine the regenerate bone. MATERIALS AND METHODS Eleven adult foxhounds were divided into an unreconstructed control group of 5 animals and an experimental group of 6 animals. In each animal, a 34-mm segmental defect was created in the mandible. The defect was reconstructed with a bone transport reconstruction plate. Histologic and biomechanical characteristics of the regenerate and unrepaired defect were analyzed and compared with bone on the contralateral side of the mandible after 4 weeks of consolidation. RESULTS The reconstructed defect was bridged with new bone, with little bone in the control defect. Regenerate density and microhardness were 22.3% and 42.6%, respectively, lower than the contralateral normal bone. Likewise, the anisotropy of the experimental group was statistically lower than in the contralateral bone. Half the experimental animals showed nonunion at the docking site. CONCLUSION The device was very stable and easy to install and activate. After 1 month of consolidation, the defect was bridged with new bone, with evidence of active bone formation. Regenerate bone was less mature than the control bone. Studies are underway to identify when the regenerate properties compare with normal bone and to identify methods to augment bone union at the docking site.
Collapse
Affiliation(s)
- Lucy K Nagashima
- Department of Prosthodontics, Baylor College of Dentistry, Texas A&M University System, Dallas, TX, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Preininger B, Checa S, Molnar FL, Fratzl P, Duda GN, Raum K. Spatial-temporal mapping of bone structural and elastic properties in a sheep model following osteotomy. ULTRASOUND IN MEDICINE & BIOLOGY 2011; 37:474-483. [PMID: 21256668 DOI: 10.1016/j.ultrasmedbio.2010.12.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 12/06/2010] [Accepted: 12/08/2010] [Indexed: 05/30/2023]
Abstract
The course of bone healing in animal models is conventionally monitored by morphologic approaches, which do not allow the determination of the material properties of the tissues involved. Mechanical characterization techniques are either dedicated to the macroscopic evaluation of the entire organ or to the microscopic evaluation of the tissue matrix. The latter provides insight to regionally specific alterations at the tissue level in the course of healing. In this study, quantitative scanning acoustic microscopy was used at 50 MHz to investigate microstructural and elastic alterations of mineralized callus and cortical tissue after transverse osteotomy in sheep tibiae. Analyses were performed after 2, 3, 6 and 9 weeks of consolidation with stabilization by either a rigid or a semi-rigid external fixator. Increased stiffness and decreased porosity were observed in the callus tissue over the course of the healing process, which was dependent on the fixator type. In the adjacent cortical tissue, stiffness decreased during the first 3 weeks. Cortical porosity increased over time but the time-dependence was different between the two fixator types. The changes of stiffness of cortical and callus tissues were measured with respect to the distance to the periosteal cortex-callus boundary. Stiffness of cortex and callus tissue smoothly decreased as a function of the distance from the inner cortical region. The data obtained in this study can help to understand the processes involved in tissue maturation during endogenous bone healing.
Collapse
Affiliation(s)
- Bernd Preininger
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
9
|
Rupin F, Bossis D, Vico L, Peyrin F, Raum K, Laugier P, Saïed A. Adaptive remodeling of trabecular bone core cultured in 3-D bioreactor providing cyclic loading: an acoustic microscopy study. ULTRASOUND IN MEDICINE & BIOLOGY 2010; 36:999-1007. [PMID: 20510189 DOI: 10.1016/j.ultrasmedbio.2010.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 03/03/2010] [Accepted: 03/03/2010] [Indexed: 05/29/2023]
Abstract
Scanning acoustic microscopy (SAM) provides high-resolution mapping of acoustic impedance related to tissue stiffness. This study investigates changes in tissue acoustic impedance resulting from mechanical loading in trabecular bone cores cultured in 3-D bioreactor. Trabecular bone cores were extracted from bovine sternum (n = 15) and ulna metaphysis (n = 15). From each bone, the samples were divided in three groups. The basal control (BC) group was fixed post-extraction, the control (C) and loaded (L) groups were maintained as viable in a controlled culture-loading cell over three weeks. Samples of L group underwent a dynamic compressive strain, whereas C samples were left free from loading. After three weeks, L and C samples were embedded in polymethylmethacrylate and all samples were explored with a 200-MHz SAM. For each specimen, the acoustic impedance distribution was obtained over flat and polished section of bone blocks prepared parallel to the loading axis. Our results showed that in basal controls, the acoustic impedance varied with bone anatomical location and was 15% higher in weight-bearing ulna compared with nonweight-bearing sternum. The comparison between loaded and nonloaded groups showed that sternum-only exhibited significant change in acoustic impedance (L vs. C sternum: +9%). This result suggests that when the applied load is comparable with the stress naturally experienced by a weight-bearing bone (ulna), the tissue material properties (manifested by acoustic impedance) remained unchanged. In conclusion, SAM is a potentially relevant tool for the assessment of subtle changes in intrinsic microelastic properties of bone induced by adaptive remodeling process in response to mechanical loading.
Collapse
|
10
|
Bernstein A, Mayr HO, Hube R. Can bone healing in distraction osteogenesis be accelerated by local application of IGF-1 and TGF-beta1? J Biomed Mater Res B Appl Biomater 2010; 92:215-25. [PMID: 19810114 DOI: 10.1002/jbm.b.31508] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Because complications of distraction osteogenesis are largely related to the long duration of therapy, increasing efforts were reached to shorten treatment by using osteoconductive replacement materials incorporating bioactive molecules such as IGF-1 and TGF-beta1. The controlled release of IGF-1 and TGF-beta1 from coated biodegradable poly(D,L-lactide) implants could stimulate fracture healing locally. We investigated the effect of locally applied IGF-1 and TGF-beta1 from IGF-1/TGF-beta1-enriched polylactide membranes on fracture healing in a sheep model of delayed callus formation. Twenty-eight sheep were used for this study. Callus distraction of 1 mm/day by means of a unilateral fixator was continued for 30 days. At the beginning of the subsequent consolidation phase, either growth factors were applied locally or the defect was packed with cancellous bone, or both. The groups treated with growth factors were compared to a control group. The consolidation phase lasted for 60 days and both tibiae were dissected for histological and histomorphometric analyses. This investigation found a reduced absolute callus area in the lengthening zone in all treatment groups. The two treatment groups that received a membrane coated with growth factors showed distinctly higher relative bone areas than the groups treated with an uncoated membrane or packing of the osteotomy defect with cancellous bone. The differences in bone areas were not statistically significant. Application of the growth factors accelerated bone healing and achieved results comparable with those of established treatment methods (packing with autologous cancellous bone). The best results were achieved with a combination of both methods.
Collapse
Affiliation(s)
- Anke Bernstein
- Department of Orthopedics, Martin Luther University of Halle-Wittenberg, Halle 06097, Germany.
| | | | | |
Collapse
|
11
|
Bildgebung und Bildverarbeitung. BIOMED ENG-BIOMED TE 2010. [DOI: 10.1515/bmt.2010.701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Raum K. Microelastic imaging of bone. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2008; 55:1417-1431. [PMID: 18986931 DOI: 10.1109/tuffc.2008.817] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Several high-frequency ultrasound techniques have been developed during the last decade with the intention of assessing elastic properties of bone at the tissue level. The basic measurement principles can be divided into: 1) measurement of the compressional wave velocity in thin tissue sections; 2) measurement of surface acoustic wave velocities in thick sections; and 3) derivation of the acoustic impedance from the confocal reflection amplitude in thick sections. In this paper, the 3 principles are described with example measurements given in the frequency range from 50 MHz to 1.2 GHz. The measurements were made with 2 microscopes operating in the pulse-echo mode, either with frequencies up to 200 MHz and time-resolved detection or between 100 MHz and 2 GHz and amplitude detection. The methods are compared and their application potentials and limitations are discussed with respect to the hierarchical structure of cortical bone. Mapping of the confocal reflection amplitude has superior capabilities for deriving quantitative elastic and structural parameters in the heterogeneous bone material. Even at low frequencies (50 MHz), the mineralized tissue matrix can be separated from the larger pores (Haversian canals), and the elastic coefficient in the probing direction can be measured in 2 dimensions. Depending on the type of sample surface preparation (flat or cylindrically shaped), local distribution of a single elastic coefficient or the average transverse isotropic stiffness tensor can be derived. With frequencies in the GHz range, the lamellar bone structure can be analyzed. However, at one GHz, the acoustic wavelength is still one order of magnitude larger than the individual mineralized collagen fibrils. Although the thickness of a lamellar unit can easily be assessed from the acoustic image, the derivation of the anisotropic elastic properties of the mineralized collagen fibrils as well as the detailed structure of a lamella can only be accomplished with further model assumptions.
Collapse
Affiliation(s)
- K Raum
- Dept. of Orthopedics, Martin Luther Univ. of Halle-Wittenberg, Halle, Germany.
| |
Collapse
|