1
|
Sanderson J, Tuttle N, Box R, Reul-Hirche H, Laakso EL. Pitting Is Not Only a Measure of Oedema Presence: Using High-Frequency Ultrasound to Guide Pitting Test Standardisation for Assessment of Lymphoedema. Diagnostics (Basel) 2024; 14:1645. [PMID: 39125521 PMCID: PMC11311625 DOI: 10.3390/diagnostics14151645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
The pitting qualities of lymphoedema tissue change with disease progression. However, little is known about the underlying tissue response to the pitting test or the tissue characteristics that enhance or resist indentation. The pitting test is currently unstandardised, and the influence of test technique on pitting outcomes is unknown. Understanding how tissue reacts to applied pressure will build evidence for the standardisation of the pitting test. Ninety pitting test sites from fifteen women with unilateral breast cancer-related lymphoedema were evaluated using high-frequency ultrasound (HFUS), bioelectrical impedance spectroscopy (BIS), and limb volume measures. Three sites on each lymphoedema and non-lymphoedema arm were subject to a 60-s (s) staged pitting test, with changes in tissue features captured with ultrasound imaging before, throughout, and after the pitting test. Pitting qualities of tissues varied greatly, with lymphoedema sites pitting more frequently (p < 0.001) with greater depth (p < 0.001) and requiring a longer recovery time (p = 0.002) than contralateral unaffected tissue. Pitting is not solely attributable to oedema volume. Non-structural and structural characteristics of dermal and subcutaneous layers also influence tissue responses to sustained pressure. To enhance the validity and reliability of pitting assessment, a 60 s staged pitting test with an observation of tissue recovery is recommended for lymphoedema presentations.
Collapse
Affiliation(s)
- Jennifer Sanderson
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4215, Australia;
- School of Health Sciences and Social Work, Griffith University, Brisbane, QLD 4111, Australia; (N.T.); (H.R.-H.)
| | - Neil Tuttle
- School of Health Sciences and Social Work, Griffith University, Brisbane, QLD 4111, Australia; (N.T.); (H.R.-H.)
| | - Robyn Box
- QLD Lymphoedema and Breast Oncology Physiotherapy, Brisbane, QLD 4051, Australia
| | - Hildegard Reul-Hirche
- School of Health Sciences and Social Work, Griffith University, Brisbane, QLD 4111, Australia; (N.T.); (H.R.-H.)
- Royal Brisbane and Women’s Hospital, Brisbane, QLD 4029, Australia
| | - E-Liisa Laakso
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4215, Australia;
- Mater Research Institute, University of Queensland, South Brisbane, QLD 4101, Australia
| |
Collapse
|
2
|
Sanderson J, Tuttle N, Laakso L. Acoustic Radiation Force Impulse Elastography Assessment of Lymphoedema Tissue: An Insight into Tissue Stiffness. Cancers (Basel) 2022; 14:5281. [PMID: 36358699 PMCID: PMC9656697 DOI: 10.3390/cancers14215281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
Palpation remains essential for evaluating lymphoedema to detect subtle changes that may indicate progression. As palpation sense is not quantifiable, this study investigates the utility of ultrasound elastography to quantify stiffness of lymphoedema tissue and explore the influence of the pitting test on tissue stiffness. Fifteen women with unilateral arm lymphoedema were scanned using a Siemens S3000 Acuson ultrasound (Siemens, Germany) with 18 MHz and 9 MHz linear transducers to assess tissue structure and tissue stiffness with Acoustic Radiation Force Impulse elastography. Ninety sites were assessed, three on each of the lymphoedema-affected and contralateral unaffected arms. A subgroup of seven lymphoedema-affected sites included additional elastography imaging after a 60-s pitting test. Dermal tissue stiffness was greater than subcutaneous tissue stiffness regardless of the presence of pathology (p < 0.001). Lymphoedematous tissue exhibited a higher dermal to subcutaneous tissue stiffness ratio than contralateral sites (p = 0.005). Subgroup analysis indicated that the pitting test reduces dermal tissue stiffness (p = 0.018) and may alter the stiffness of the subcutaneous tissue layer. Elastography demonstrates potential as a complement to lymphoedema palpation assessment. The novel pre-test and post-pitting elastography imaging protocol yielded information representative of lymphoedema tissue characteristics that could not be ascertained from pre-test elastography images alone.
Collapse
Affiliation(s)
- Jennifer Sanderson
- School of Allied Health and Social Work, Griffith University, Gold Coast, QLD 4215, Australia
| | - Neil Tuttle
- School of Allied Health and Social Work, Griffith University, Gold Coast, QLD 4215, Australia
- School of Health Sciences, University of Tasmania, Newham, TAS 7005, Australia
| | - Liisa Laakso
- School of Allied Health and Social Work, Griffith University, Gold Coast, QLD 4215, Australia
- Mater Research Institute, The University of Queensland, South Brisbane, QLD 4101, Australia
| |
Collapse
|
3
|
Majumder S, Islam MT, Righetti R. Estimation of Mechanical and Transport Parameters in Cancers Using Short Time Poroelastography. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2022; 10:1900411. [PMID: 36147877 PMCID: PMC9484738 DOI: 10.1109/jtehm.2022.3198316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/03/2022] [Accepted: 07/21/2022] [Indexed: 05/20/2023]
Abstract
Mechanical and transport properties of cancers such as Young's modulus (YM), Poisson's ratio (PR), and vascular permeability (VP) have great clinical importance in cancer diagnosis, prognosis, and treatment. However, non-invasive estimation of these parameters in vivo is challenged by many practical factors. Elasticity imaging methods, such as "poroelastography", require prolonged data acquisition, which can limit their clinical applicability. In this paper, we investigate a new method to perform poroelastography experiments, which results in shorter temporal acquisition windows. This method is referred to as "short-time poroelastography" (STPE). Finite element (FE) and ultrasound simulations demonstrate that, using STPE, it is possible to accurately estimate YM, PR (within 10% error) using windows of observation (WoOs) of length as short as 1 underlying strain Time Constant (TC). The error was found to be almost negligible (< 3%) when using WoOs longer than 2 strain TCs. In the case of VP estimation, WoOs of at least 2 strain TCs are required to obtain an error < 8% (in simulations). The stricter requirement for the estimation of VP with respect to YM and PR is due its reliance on the transient strain behavior while YM and PR depend on the steady state strain values only. In vivo experimental data are used as a proof-of-principle of the potential applicability of the proposed methodology in vivo. The use of STPE may provide a means to efficiently perform poroelastography experiments without compromising the accuracy of the estimated tissue properties.
Collapse
Affiliation(s)
- Sharmin Majumder
- Department of Electrical and Computer EngineeringTexas A&M University College Station TX 77843 USA
| | - Md Tauhidul Islam
- Department of Radiation OncologyStanford University Stanford CA 94305 USA
| | - Raffaella Righetti
- Department of Electrical and Computer EngineeringTexas A&M University College Station TX 77843 USA
| |
Collapse
|
4
|
Islam MT, Tasciotti E, Righetti R. Estimation of Vascular Permeability in Irregularly Shaped Cancers Using Ultrasound Poroelastography. IEEE Trans Biomed Eng 2019; 67:1083-1096. [PMID: 31331877 DOI: 10.1109/tbme.2019.2929134] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Vascular permeability (VP) is a mechanical parameter which plays an important role in cancer initiation, metastasis, and progression. To date, there are only a few non-invasive methods that can be used to image VP in solid tumors. Most of these methods require the use of contrast agents and are expensive, limiting widespread use. METHODS In this paper, we propose a new method to image VP in tumors, which is based on the use of ultrasound poroelastography. Estimation of VP by poroelastography requires knowledge of the Young's modulus (YM), Poisson's ratio (PR), and strain time constant (TC) in the tumors. In our method, we find the ellipse which best fits the tumor (regardless of its shape) using an eigen-system-based fitting technique and estimate the YM and PR using Eshelby's elliptic inclusion formulation. A Fourier method is used to estimate the axial strain TC, which does not require any initial guess and is highly robust to noise. RESULTS It is demonstrated that the proposed method can estimate VP in irregularly shaped tumors with an accuracy of above [Formula: see text] using ultrasound simulation data with signal-to-noise ratio of 20 dB or higher. In vivo feasibility of the proposed technique is demonstrated in an orthotopic mouse model of breast cancer. CONCLUSION The proposed imaging method can provide accurate and localized estimation of VP in cancers non-invasively and cost-effectively. SIGNIFICANCE Accurate and non-invasive assessment of VP can have a significant impact on diagnosis, prognosis, and treatment of cancers.
Collapse
|
5
|
Islam MT, Righetti R. Estimation of mechanical parameters in cancers by empirical orthogonal function analysis of poroelastography data. Comput Biol Med 2019; 111:103343. [PMID: 31279980 DOI: 10.1016/j.compbiomed.2019.103343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 05/24/2019] [Accepted: 06/24/2019] [Indexed: 10/26/2022]
Abstract
Ultrasound poroelastography is a non-invasive imaging modality that has been shown to be capable of estimating mechanical parameters such as Young's modulus (YM), Poisson's ratio (PR) and vascular permeability (VP) in cancers. However, experimental poroelastographic data are inherently noisy because of the requirement of relatively long temporal data acquisitions often in hand-held mode conditions. In this paper, we propose a new method, which allows accurate estimation of YM and PR from denoised steady state axial and lateral strains by empirical orthogonal function (EOF) analysis of poroelastographic data. The method also allows estimation of VP from the time constant (TC) of the first expansion coefficient (EC) of the temporal axial strain, which has larger dynamic range and lower noise in comparison to the actual temporal axial strain curve. We validated our technique through finite element (FE) and ultrasound simulations and tested the in vivo feasibility in experimental data obtained from a cancer animal model. The percent relative errors (PRE) in the estimation of YM, PR and VP using the EOF analysis as applied to ultrasound simulation data were 3.27%, 3.10%, 14.22%, respectively (at SNR of 20 dB). Based on the high level of accuracy by EOF analysis, the proposed technique may become a useful signal processing technique for applications focusing on the estimation of the mechanical behavior of cancers.
Collapse
Affiliation(s)
- Md Tauhidul Islam
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77840, USA
| | - Raffaella Righetti
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77840, USA.
| |
Collapse
|
6
|
Chiocchini ALC, Sportoletti C, Comai G, Brocchi S, Capelli I, Baraldi O, Bruno P, Conti F, Serra C, Meola M, Zompatori M, La Manna G. Correlation Between Renal Cortical Stiffness and Histological Determinants by Point Shear-Wave Elastography in Patients With Kidney Transplantation. Prog Transplant 2019; 27:346-353. [PMID: 29187134 DOI: 10.1177/1526924817731882] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Renal allograft biopsy is the gold standard for the detection of histological lesions of chronic allograft dysfunction. The identification of a noninvasive routine test would be desirable. Elastosonography is used to assess tissue stiffness according to viscosity, and no data are available on the use of point quantification shear-wave elastography (ElastPQ) for the evaluation of renal chronic lesions. RESEARCH QUESTION To evaluate the feasibility of ElastPQ to assess cortical allograft stiffness and to determine the correlation of clinical, biological, and pathological factors with the diagnostic accuracy of kidney stiffness values in patients with histological lesions. DESIGN Forty-two patients underwent kidney transplant biopsy and 10 valid measurements of ElastPQ, blindly performed by 2 operators. The interobserver reproducibility was assessed according to intraclass correlation coefficient. The ElastPQ measurements and the clinical data were compared using the Spearman correlation analysis. RESULTS 97.6% reliable measurements were obtained using ElastPQ, with an excellent interobserver agreement. The kidney stiffness was significantly higher in the patients with a time since transplantation >12 months and was correlated with chronic lesions (interstitial fibrosis, tubular atrophy transplant glomerulopathy, and mesangial matrix), with the interstitial fibrosis/tubular atrophy, score and with the sum of the scores of the chronic lesions. Mesangial matrix increase is the only independent determinant of kidney stiffness. DISCUSSION ElastPQ is a noninvasive, reproducible, and sensitive diagnostic tool able to detect moderate/severe chronic lesions. Its routine use during follow-up can identify patients eligible for biopsy, which remains the gold standard exam for detecting chronic allograft dysfunction.
Collapse
Affiliation(s)
- A L Croci Chiocchini
- 1 Department of Experimental, Diagnostic and Specialty Medicine (DIMES) - Nephrology, Dialysis and Transplantation Unit, St. Orsola Hospital, University of Bologna, Bologna, Italy
| | - C Sportoletti
- 2 Department of Experimental, Diagnostic and Specialty Medicine (DIMES)-Radiology Unit, St. Orsola Hospital, University of Bologna, Bologna, Italy
| | - G Comai
- 1 Department of Experimental, Diagnostic and Specialty Medicine (DIMES) - Nephrology, Dialysis and Transplantation Unit, St. Orsola Hospital, University of Bologna, Bologna, Italy
| | - S Brocchi
- 2 Department of Experimental, Diagnostic and Specialty Medicine (DIMES)-Radiology Unit, St. Orsola Hospital, University of Bologna, Bologna, Italy
| | - I Capelli
- 1 Department of Experimental, Diagnostic and Specialty Medicine (DIMES) - Nephrology, Dialysis and Transplantation Unit, St. Orsola Hospital, University of Bologna, Bologna, Italy
| | - O Baraldi
- 1 Department of Experimental, Diagnostic and Specialty Medicine (DIMES) - Nephrology, Dialysis and Transplantation Unit, St. Orsola Hospital, University of Bologna, Bologna, Italy
| | - P Bruno
- 1 Department of Experimental, Diagnostic and Specialty Medicine (DIMES) - Nephrology, Dialysis and Transplantation Unit, St. Orsola Hospital, University of Bologna, Bologna, Italy
| | - F Conti
- 3 Department of Surgical and Medical Sciences, St. Orsola Hospital, University of Bologna, Bologna, Italy
| | - C Serra
- 4 Department of Organ Dysfunction and Transplants-Internal Medicine, St. Orsola Hospital, University of Bologna, Bologna, Italy
| | - M Meola
- 5 Nephrology Division, Department of Internal and Experimental Medicine, University of Pisa, S. Anna School of Advanced Studies, Pisa, Italy
| | - M Zompatori
- 2 Department of Experimental, Diagnostic and Specialty Medicine (DIMES)-Radiology Unit, St. Orsola Hospital, University of Bologna, Bologna, Italy
| | - G La Manna
- 1 Department of Experimental, Diagnostic and Specialty Medicine (DIMES) - Nephrology, Dialysis and Transplantation Unit, St. Orsola Hospital, University of Bologna, Bologna, Italy
| |
Collapse
|
7
|
Hashemi HS, Fallone S, Boily M, Towers A, Kilgour RD, Rivaz H. Assessment of Mechanical Properties of Tissue in Breast Cancer-Related Lymphedema Using Ultrasound Elastography. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:541-550. [PMID: 30334756 DOI: 10.1109/tuffc.2018.2876056] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Breast cancer-related lymphedema is a consequence of a malfunctioning lymphatic drainage system resulting from surgery or some other form of treatment. In the initial stages, minor and reversible increases in the fluid volume of the arm are evident. As the stages progress over time, the underlying pathophysiology dramatically changes with an irreversible increase in arm volume most likely due to a chronic local inflammation leading to adipose tissue hypertrophy and fibrosis. Clinicians have subjective ways to stage the degree and severity such as the pitting test which entails manually comparing the elasticity of the affected and unaffected arms. Several imaging modalities can be used but ultrasound appears to be the most preferred because it is affordable, safe, and portable. Unfortunately, ultrasonography is not typically used for staging lymphedema, because the appearance of the affected and unaffected arms is similar in B-mode ultrasound images. However, novel ultrasound techniques have emerged, such as elastography, which may be able to identify changes in mechanical properties of the tissue related to detection and staging of lymphedema. This paper presents a novel technique to compare the mechanical properties of the affected and unaffected arms using quasi-static ultrasound elastography to provide an objective alternative to the current subjective assessment. Elastography is based on time delay estimation (TDE) from ultrasound images to infer displacement and mechanical properties of the tissue. We further introduce a novel method for TDE by incorporating higher order derivatives of the ultrasound data into a cost function and propose a novel optimization approach to efficiently minimize the cost function. This method works reliably with our challenging patient data. We collected radio frequency ultrasound data from both arms of seven patients with stage 2 lymphedema, at six different locations in each arm. The ratio of strain in skin, subcutaneous fat, and skeletal muscle divided by strain in the standoff gel pad was calculated in the unaffected and affected arms. The p -values using a Wilcoxon sign-rank test for the skin, subcutaneous fat, and skeletal muscle were 1.24×10-5 , 1.77×10-8 , and 8.11×10-7 respectively, showing differences between the unaffected and affected arms with a very high level of significance.
Collapse
|
8
|
Huang PC, Pande P, Shelton RL, Joa F, Moore D, Gillman E, Kidd K, Nolan RM, Odio M, Carr A, Boppart SA. Quantitative characterization of mechanically indented in vivo human skin in adults and infants using optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:34001. [PMID: 28246675 PMCID: PMC5379064 DOI: 10.1117/1.jbo.22.3.034001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/09/2017] [Indexed: 05/03/2023]
Abstract
Influenced by both the intrinsic viscoelasticity of the tissue constituents and the time-evolved redistribution of fluid within the tissue, the biomechanical response of skin can reflect not only localized pathology but also systemic physiology of an individual. While clinical diagnosis of skin pathologies typically relies on visual inspection and manual palpation, a more objective and quantitative approach for tissue characterization is highly desirable. Optical coherence tomography (OCT) is an interferometry-based imaging modality that enables in vivo assessment of cross-sectional tissue morphology with micron-scale resolution, which surpasses those of most standard clinical imaging tools, such as ultrasound imaging and magnetic resonance imaging. This pilot study investigates the feasibility of characterizing the biomechanical response of in vivo human skin using OCT. OCT-based quantitative metrics were developed and demonstrated on the human subject data, where a significant difference between deformed and nondeformed skin was revealed. Additionally, the quantified postindentation recovery results revealed differences between aged (adult) and young (infant) skin. These suggest that OCT has the potential to quantitatively assess the mechanically perturbed skin as well as distinguish different physiological conditions of the skin, such as changes with age or disease.
Collapse
Affiliation(s)
- Pin-Chieh Huang
- University of Illinois at Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States
- University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
| | - Paritosh Pande
- University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
| | - Ryan L. Shelton
- University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
| | - Frank Joa
- The Procter and Gamble Company, Cincinnati, Ohio, United States
| | - Dave Moore
- The Procter and Gamble Company, Cincinnati, Ohio, United States
| | - Elisa Gillman
- The Procter and Gamble Company, Cincinnati, Ohio, United States
| | - Kimberly Kidd
- The Procter and Gamble Company, Cincinnati, Ohio, United States
| | - Ryan M. Nolan
- University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
| | - Mauricio Odio
- The Procter and Gamble Company, Cincinnati, Ohio, United States
| | - Andrew Carr
- The Procter and Gamble Company, Cincinnati, Ohio, United States
| | - Stephen A. Boppart
- University of Illinois at Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States
- University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois at Urbana-Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States
- University of Illinois at Urbana-Champaign, Department of Internal Medicine, Urbana, Illinois, United States
- Address all correspondence to: Stephen A. Boppart, E-mail:
| |
Collapse
|
9
|
Pitre JJ, Koziol LB, Kruger GH, Vollmer A, Ophir J, Ammann JJ, Weitzel WF, Bull JL. Design and Testing of a Single-Element Ultrasound Viscoelastography System for Point-of-Care Edema Quantification. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:2209-2219. [PMID: 27222246 PMCID: PMC4983502 DOI: 10.1016/j.ultrasmedbio.2016.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 03/08/2016] [Accepted: 04/18/2016] [Indexed: 06/05/2023]
Abstract
Management of fluid overload in patients with end-stage renal disease represents a unique challenge to clinical practice because of the lack of accurate and objective measurement methods. Currently, peripheral edema is subjectively assessed by palpation of the patient's extremities, ostensibly a qualitative indication of tissue viscoelastic properties. New robust quantitative estimates of tissue fluid content would allow clinicians to better guide treatment, minimizing reactive treatment decision making. Ultrasound viscoelastography (UVE) can be used to estimate strain in viscoelastic tissue, deriving material properties that can help guide treatment. We are developing and testing a simple, low-cost UVE system using a single-element imaging transducer that is simpler and less computationally demanding than array-based systems. This benchtop validation study tested the feasibility of using the UVE system by measuring the mechanical properties of a tissue-mimicking material under large strains. We generated depth-dependent creep curves and viscoelastic parameter maps of time constants and elastic moduli for the Kelvin model of viscoelasticity. During testing, the UVE system performed well, with mean UVE-measured strain matching standard mechanical testing with maximum absolute errors ≤4%. Motion tracking revealed high correlation and signal-to-noise ratios, indicating that the system is reliable.
Collapse
Affiliation(s)
- John J Pitre
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Leo B Koziol
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA; Department of Veterans Affairs Medical Center, Ann Arbor, Michigan, USA
| | - Grant H Kruger
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA; Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA; Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Alan Vollmer
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA; Department of Veterans Affairs Medical Center, Ann Arbor, Michigan, USA
| | - Jonathan Ophir
- Ultrasonics Laboratory, Department of Diagnostic and Interventional Imaging, University of Texas Medical School, Houston, Texas, USA
| | - Jean-Jacques Ammann
- Department of Physics, Universidad de Santiago, Santiago, Chile; G.E.A. Universitas SpA, Santiago, Chile
| | - William F Weitzel
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA; Department of Veterans Affairs Medical Center, Ann Arbor, Michigan, USA
| | - Joseph L Bull
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
10
|
O'Shea T, Bamber J, Fontanarosa D, van der Meer S, Verhaegen F, Harris E. Review of ultrasound image guidance in external beam radiotherapy part II: intra-fraction motion management and novel applications. Phys Med Biol 2016; 61:R90-137. [PMID: 27002558 DOI: 10.1088/0031-9155/61/8/r90] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Imaging has become an essential tool in modern radiotherapy (RT), being used to plan dose delivery prior to treatment and verify target position before and during treatment. Ultrasound (US) imaging is cost-effective in providing excellent contrast at high resolution for depicting soft tissue targets apart from those shielded by the lungs or cranium. As a result, it is increasingly used in RT setup verification for the measurement of inter-fraction motion, the subject of Part I of this review (Fontanarosa et al 2015 Phys. Med. Biol. 60 R77-114). The combination of rapid imaging and zero ionising radiation dose makes US highly suitable for estimating intra-fraction motion. The current paper (Part II of the review) covers this topic. The basic technology for US motion estimation, and its current clinical application to the prostate, is described here, along with recent developments in robust motion-estimation algorithms, and three dimensional (3D) imaging. Together, these are likely to drive an increase in the number of future clinical studies and the range of cancer sites in which US motion management is applied. Also reviewed are selections of existing and proposed novel applications of US imaging to RT. These are driven by exciting developments in structural, functional and molecular US imaging and analytical techniques such as backscatter tissue analysis, elastography, photoacoustography, contrast-specific imaging, dynamic contrast analysis, microvascular and super-resolution imaging, and targeted microbubbles. Such techniques show promise for predicting and measuring the outcome of RT, quantifying normal tissue toxicity, improving tumour definition and defining a biological target volume that describes radiation sensitive regions of the tumour. US offers easy, low cost and efficient integration of these techniques into the RT workflow. US contrast technology also has potential to be used actively to assist RT by manipulating the tumour cell environment and by improving the delivery of radiosensitising agents. Finally, US imaging offers various ways to measure dose in 3D. If technical problems can be overcome, these hold potential for wide-dissemination of cost-effective pre-treatment dose verification and in vivo dose monitoring methods. It is concluded that US imaging could eventually contribute to all aspects of the RT workflow.
Collapse
Affiliation(s)
- Tuathan O'Shea
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Sutton, London SM2 5NG, UK
| | | | | | | | | | | |
Collapse
|
11
|
Coutts LV, Miller NR, Mortimer PS, Bamber JC. Investigation of In Vivo skin stiffness anisotropy in breast cancer related lymphoedema. J Biomech 2016; 49:94-99. [PMID: 26684433 DOI: 10.1016/j.jbiomech.2015.11.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 11/16/2015] [Accepted: 11/21/2015] [Indexed: 10/22/2022]
Abstract
There is a limited range of suitable measurement techniques for detecting and assessing breast cancer related lymphoedema (BCRL). This study investigated the suitability of using skin stiffness measurements, with a particular focus on the variation in stiffness with measurement direction (known as anisotropy). In addition to comparing affected tissue with the unaffected tissue on the corresponding site on the opposite limb, volunteers without BCRL were tested to establish the normal variability in stiffness anisotropy between these two corresponding regions of skin on each opposite limb. Multi-directional stiffness was measured with an Extensometer, within the higher stiffness region that skin typically displays at high applied strains, using a previously established protocol developed by the authors. Healthy volunteers showed no significant difference in anisotropy between regions of skin on opposite limbs (mean decrease of 4.7 +/-2.5% between non-dominant and dominant arms), whereas BCRL sufferers showed a significant difference between limbs (mean decrease of 51.0+/-16.3% between unaffected and affected arms). A large difference in anisotropy was apparent even for those with recent onset of the condition, indicating that the technique may have potential to be useful for early detection. This difference also appeared to increase with duration since onset. Therefore, measurement of stiffness anisotropy has potential value for the clinical assessment and diagnosis of skin conditions such as BCRL. The promising results justify a larger study with a larger number of participants.
Collapse
Affiliation(s)
- L V Coutts
- Institute of Cancer Research, Joint Department of Physics, Surrey, England, United Kingdom.
| | - N R Miller
- Institute of Cancer Research, Joint Department of Physics, Surrey, England, United Kingdom
| | - P S Mortimer
- Institute of Cardiovascular and Cell Sciences (Dermatology Unit), St George׳s Hospital, University of London, London, United Kingdom
| | - J C Bamber
- Institute of Cancer Research, Joint Department of Physics, Surrey, England, United Kingdom
| |
Collapse
|
12
|
Nair S, Varghese J, Chaudhry A, Righetti R. Effect of temporal acquisition parameters on image quality of strain time constant elastography. ULTRASONIC IMAGING 2015; 37:87-100. [PMID: 24942645 DOI: 10.1177/0161734614539665] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Ultrasound methods to image the time constant (TC) of elastographic tissue parameters have been recently developed. Elastographic TC images from creep or stress relaxation tests have been shown to provide information on the viscoelastic and poroelastic behavior of tissues. However, the effect of temporal ultrasonic acquisition parameters and input noise on the image quality of the resultant strain TC elastograms has not been fully investigated yet. Understanding such effects could have important implications for clinical applications of these novel techniques. This work reports a simulation study aimed at investigating the effects of varying windows of observation, acquisition frame rate, and strain signal-to-noise ratio (SNR) on the image quality of elastographic TC estimates. A pilot experimental study was used to corroborate the simulation results in specific testing conditions. The results of this work suggest that the total acquisition time necessary for accurate strain TC estimates has a linear dependence to the underlying strain TC (as estimated from the theoretical strain-vs.-time curve). The results also indicate that it might be possible to make accurate estimates of the elastographic TC (within 10% error) using windows of observation as small as 20% of the underlying TC, provided sufficiently fast acquisition rates (>100 Hz for typical acquisition depths). The limited experimental data reported in this study statistically confirm the simulation trends, proving that the proposed model can be used as upper bound guidance for the correct execution of the experiments.
Collapse
Affiliation(s)
- Sanjay Nair
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Joshua Varghese
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Anuj Chaudhry
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Raffaella Righetti
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| |
Collapse
|
13
|
Gao J, He W, Cheng LG, Li XY, Zhang XR, Juluru K, Al Khori N, Coya A, Min R. Ultrasound strain elastography in assessment of cortical mechanical behavior in acute renal vein occlusion: in vivo animal model. Clin Imaging 2014; 39:613-8. [PMID: 25481219 DOI: 10.1016/j.clinimag.2014.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/11/2014] [Indexed: 10/24/2022]
Abstract
To assess the correlation of quantitative ultrasound strain parameters with the severity of cortical edema in renal vein occlusion, we prospectively performed ultrasound strain elastography on a canine acute renal vein occlusion model prior to and following 10, 20, and 40min of renal vein ligation. Strain and strain relaxation time representing the deformation and relaxation of the renal cortices and reference soft tissue were produced by the external compression with the ultrasound transducer and estimated using commercially available 2-D speckle tracking software. Cortical thickness was additionally measured. Repeated-measures analysis of variance was used to examine the difference in cortical thickness, strain ratio (mean cortical strain divided by mean reference tissue strain), and strain relaxation time ratio (cortical relaxation time divided by reference tissue relaxation time) prior to and after renal vein ligation. Pearson's correlation coefficient was applied to test the relationship between strain parameters and the time of the renal vein ligation. There was a strong positive correlation between the duration of renal vein ligation and strain (R(2)=0.97) and strain relaxation time (R(2)=0.98) ratios. Significant differences in strain and strain relaxation time ratios were found at all measured timepoints (all P≪.001). Cortical thickness, however, showed no significant difference between timepoints (P=.065). Our result suggest that strain and strain relaxation time ratios may be used as quantitative markers for the assessment of the renal cortical mechanical behavior in subclinical acute renal vein occlusion.
Collapse
Affiliation(s)
- Jing Gao
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| | - Wen He
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Ling-Gang Cheng
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiao-Ya Li
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiou-Ru Zhang
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Krishna Juluru
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| | - Noor Al Khori
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| | - Adrienne Coya
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| | - Robert Min
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
14
|
Gao J, Rubin JM. Ultrasound strain zero-crossing elasticity measurement in assessment of renal allograft cortical hardness: a preliminary observation. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:2048-2057. [PMID: 25109692 DOI: 10.1016/j.ultrasmedbio.2014.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 03/25/2014] [Accepted: 04/04/2014] [Indexed: 06/03/2023]
Abstract
To determine whether ultrasound strain zero-crossing elasticity measurement can be used to discriminate moderate cortical fibrosis or inflammation in renal allografts, we prospectively assessed cortical hardness with quasi-static ultrasound elastography in 38 renal transplant patients who underwent kidney biopsy from January 2013 to June 2013. With the Banff score criteria for renal cortical fibrosis as gold standard, 38 subjects were divided into two groups: group 1 (n = 18) with ≤25% cortical fibrosis and group 2 (n = 20) with >26% cortical fibrosis. We then divided this population again into group 3 (n = 20) with ≤ 25% inflammation and group 4 (n = 18) with >26% inflammation based on the Banff score for renal parenchyma inflammation. To estimate renal cortical hardness in both population divisions, we propose an ultrasound strain relative zero-crossing elasticity measurement (ZC) method. In this technique, the relative return to baseline, that is zero strain, of strain in the renal cortex is compared with that of strain in reference soft tissue (between the abdominal wall and pelvic muscles). Using the ZC point on the reference strain decompression slope as standard, we determined when cortical strain crossed zero during decompression. ZC was negative when cortical strain did not return or returned after the reference, whereas ZC was positive when cortical strain returned ahead of the reference. Fisher's exact test was used to examine the significance of differences in ZC between groups 1 and 2 and between groups 3 and 4. The accuracy of ZC in determining moderate cortical fibrosis and moderate inflammation was examined by receiver operating characteristic analysis. The intra-class correlation coefficient and analysis of variance were used to test inter-rater reliability and reproducibility. ZC had good inter-observer agreement (ICC = 0.912) and reproducibility (p = 0.979). ZCs were negative in 18 of 18 cases in group 1 and positive in 19 of 20 cases in group 2 (p ≪ 0.001), and were positive in 18 of 20 cases in group 3 and negative in 17 of 18 cases in group 4 (p ≪ 0.001). The area under the receiver operating characteristic curve was 0.992 ± 0.010 for fibrosis and 0.988 ± 0.021 for inflammation. ZC had 100% sensitivity and 95% specificity when zero strain was used as the cutoff value to determine moderate cortical fibrosis and 94% sensitivity and 90% specificity for inflammation. ZC is a new strain marker that could be straightforward to interpret and perform, making it a potentially practical approach for monitoring progression of cortical fibrosis or inflammation in renal allografts.
Collapse
Affiliation(s)
- Jing Gao
- Department of Radiology, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, New York, USA.
| | - Jonathan M Rubin
- Department of Radiology, University of Michigan Health System, Ann Arbor, Michigan, USA
| |
Collapse
|
15
|
Chaudhry A, Unnikrishnan G, Reddy JN, Krouskop TA, Righetti R. Effect of permeability on the performance of elastographic imaging techniques. IEEE TRANSACTIONS ON MEDICAL IMAGING 2013; 32:189-199. [PMID: 23033327 DOI: 10.1109/tmi.2012.2219317] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Elastography is a well-established imaging modality. While a number of studies aimed at evaluating the performance of elastographic techniques are retrievable in the literature, very little information is available on the effects that the presence of an underlying permeability contrast in the tissue may have on the resulting elastograms. Permeability is a fundamental tissue parameter, which characterizes the ease with which fluid can move within a tissue. This parameter plays a central role both biomechanically in the description of the temporal behavior of fluid-filled tissues and clinically in the development of a number of diagnostic and therapeutic modalities. In this paper, we present a simulation study that investigates selected elastographic image quality factors in nonhomogeneous materials, modeled as poroelastic media with different geometries and permeability contrasts. The results of this study indicate that the presence of an underlying permeability contrast may create a new contrast mechanism in the spatial and temporal distributions of the axial strains and the effective Poisson's ratios experienced by the tissue and as imaged by the corresponding elastograms. The effect of permeability on the elastographic image quality factors analyzed in this study was found to be a nonsymmetric function of the underlying mechanical contrast between background and target, the geometry of the material and the boundary conditions.
Collapse
Affiliation(s)
- Anuj Chaudhry
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | |
Collapse
|
16
|
Klein J, McLaughlin J, Renzi D. Improving arrival time identification in transient elastography. Phys Med Biol 2012; 57:2151-68. [PMID: 22452966 DOI: 10.1088/0031-9155/57/8/2151] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
17
|
Wells PNT, Liang HD. Medical ultrasound: imaging of soft tissue strain and elasticity. J R Soc Interface 2011; 8:1521-49. [PMID: 21680780 PMCID: PMC3177611 DOI: 10.1098/rsif.2011.0054] [Citation(s) in RCA: 293] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Accepted: 05/23/2011] [Indexed: 02/06/2023] Open
Abstract
After X-radiography, ultrasound is now the most common of all the medical imaging technologies. For millennia, manual palpation has been used to assist in diagnosis, but it is subjective and restricted to larger and more superficial structures. Following an introduction to the subject of elasticity, the elasticity of biological soft tissues is discussed and published data are presented. The basic physical principles of pulse-echo and Doppler ultrasonic techniques are explained. The history of ultrasonic imaging of soft tissue strain and elasticity is summarized, together with a brief critique of previously published reviews. The relevant techniques-low-frequency vibration, step, freehand and physiological displacement, and radiation force (displacement, impulse, shear wave and acoustic emission)-are described. Tissue-mimicking materials are indispensible for the assessment of these techniques and their characteristics are reported. Emerging clinical applications in breast disease, cardiology, dermatology, gastroenterology, gynaecology, minimally invasive surgery, musculoskeletal studies, radiotherapy, tissue engineering, urology and vascular disease are critically discussed. It is concluded that ultrasonic imaging of soft tissue strain and elasticity is now sufficiently well developed to have clinical utility. The potential for further research is examined and it is anticipated that the technology will become a powerful mainstream investigative tool.
Collapse
Affiliation(s)
- Peter N T Wells
- School of Engineering, Cardiff University, Queen's Buildings, The Parade, Cardiff CF24 3AA, UK.
| | | |
Collapse
|
18
|
Palmeri ML, Nightingale KR. What challenges must be overcome before ultrasound elasticity imaging is ready for the clinic? IMAGING IN MEDICINE 2011; 3:433-444. [PMID: 22171226 PMCID: PMC3235674 DOI: 10.2217/iim.11.41] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Ultrasound elasticity imaging has been a research interest for the past 20 years with the goal of generating novel images of soft tissues based on their material properties (i.e., stiffness and viscosity). The motivation for such an imaging modality lies in the fact that many soft tissues can share similar ultrasonic echogenicities, but may have very different mechanical properties that can be used to clearly visualize normal anatomy and delineate diseased tissues and masses. Recently, elasticity imaging techniques have moved from the laboratory to the clinical setting, where clinicians are beginning to characterize tissue stiffness as a diagnostic metric and commercial implementations of ultrasonic elasticity imaging are beginning to appear on the market. This article provides a foundation for elasticity imaging, an overview of current research and commercial realizations of elasticity imaging technology and a perspective on the current successes, limitations and potential for improvement of these imaging technologies.
Collapse
Affiliation(s)
- Mark L Palmeri
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Department of Anesthesiology, Duke University, Durham, NC 27708, USA
| | | |
Collapse
|
19
|
Nair SP, Yang X, Krouskop TA, Righetti R. Performance analysis of a new real-time elastographic time constant estimator. IEEE TRANSACTIONS ON MEDICAL IMAGING 2011; 30:497-511. [PMID: 20952333 DOI: 10.1109/tmi.2010.2087344] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
New elastographic techniques such as poroelastography and viscoelasticity imaging aim at imaging the temporal mechanical behavior of tissues. These techniques usually involve the use of curve fitting methods being applied to noisy data to estimate new elastographic parameters. As of today, however, current elastographic implementations of poroelastography and viscoelasticity imaging methods are in general too slow and not optimized for clinical applications. Furthermore, image quality performance of these new elastographic techniques is still largely unknown due to a paucity of data and the lack of systematic studies that analyze their performance limitations. In this paper, we propose a new elastographic time constant (TC) estimator, which is based on the use of the least square error (LSE) curve-fitting method and the Levenberg-Marquardt (LM) optimization rule as applied to noisy elastographic data obtained from a material in a creep-type experiment. The algorithm is executed on a massively parallel general purpose graphics processing unit (GPGPU) to achieve real-time performance. The estimator's performance is analyzed using simulations. Experimental results obtained from poroelastic phantoms are presented as a proof of principle of the new estimator's technical applicability on real experimental data. The results of this study demonstrate that the newly proposed elastographic estimator can produce highly accurate and sensitive elastographic TC estimates in real-time and at high signal-to-noise ratios.
Collapse
Affiliation(s)
- Sanjay P Nair
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
| | | | | | | |
Collapse
|