1
|
Delattre V, Cambronero S, Chen Y, Haar GT, Rivens I, Polton G, Lafon C, Melodelima D. In vivo exposure of the bladder using a non-invasive high intensity focused ultrasound toroidal transducer. ULTRASONICS 2024; 138:107239. [PMID: 38211366 DOI: 10.1016/j.ultras.2024.107239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/15/2023] [Accepted: 01/01/2024] [Indexed: 01/13/2024]
Abstract
A toroidal high-intensity focused ultrasound (HIFU) transducer was used to expose normal bladder wall tissues non-invasively in vivo in a porcine model in order to investigate the potential to treat bladder tumors. The transducer was divided into 32 concentric rings with equal surface areas, operating at 2.5 MHz. Eight animals were split into two groups of 4. In the first group, post-mortem evaluation was performed immediately after ultrasound exposure. In the second group, animals survived for up to seven days before post-mortem evaluation. The ultrasound imaging guided HIFU device was hand-held during the procedure using optical tracking to ensure correct targeting. One thermal lesion in each animal was created using a 40 s exposure at 80 acoustic Watts (free-field) in the trigone region of the bladder wall. The average (±Standard Deviation) abdominal wall and bladder wall thicknesses were 10.3 ± 1.4 mm and 1.1 ± 0.4 mm respectively. The longest and shortest axes of the HIFU ablations were 7.7 ± 2.9 mm and 6.0 ± 1.8 mm, respectively, resulting in an ablation of the whole thickness of the bladder wall in most cases. Ablation were performed at an average depth (distance from the skin surface to the centre of the HIFU lesion) of 42.5 ± 3.8 mm and extended throughout the thickness of the bladder. There were two cases of injury to tissues immediately adjacent to the bladder wall but without signs of perforation, as confirmed by histological analysis. Non-invasive HIFU ablation using a hand-held toroidal transducer was successfully performed to destroy regions of the bladder wall in vivo.
Collapse
Affiliation(s)
- Victor Delattre
- LabTAU, INSERM, Centre Léon Bérard, Université Claude Bernard Lyon 1, F-69003, Lyon, France.
| | - Sophie Cambronero
- LabTAU, INSERM, Centre Léon Bérard, Université Claude Bernard Lyon 1, F-69003, Lyon, France
| | - Yao Chen
- LabTAU, INSERM, Centre Léon Bérard, Université Claude Bernard Lyon 1, F-69003, Lyon, France
| | - Gail Ter Haar
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden Hospital NHS Trust, Sutton, Surrey, UK
| | - Ian Rivens
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden Hospital NHS Trust, Sutton, Surrey, UK
| | - Gerry Polton
- North Downs Specialist Referrals, Bletchingley, Surrey, UK
| | - Cyril Lafon
- LabTAU, INSERM, Centre Léon Bérard, Université Claude Bernard Lyon 1, F-69003, Lyon, France; Joint Department of Physics, Institute of Cancer Research and Royal Marsden Hospital NHS Trust, Sutton, Surrey, UK
| | - David Melodelima
- LabTAU, INSERM, Centre Léon Bérard, Université Claude Bernard Lyon 1, F-69003, Lyon, France
| |
Collapse
|
2
|
Stocker GE, Lundt JE, Sukovich JR, Miller RM, Duryea AP, Hall TL, Xu Z. A Modular, Kerf-Minimizing Approach for Therapeutic Ultrasound Phased Array Construction. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:2766-2775. [PMID: 35617178 PMCID: PMC9594968 DOI: 10.1109/tuffc.2022.3178291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A novel method for fabricating a modular, kerf-minimizing histotripsy phased array was developed and tested. The method utilizes arbitrarily shaped elements, 3-D printing, water jet cutting, and a thin, 125- [Formula: see text] electrically insulating epoxy coating to maximize aperture utilization while allowing for replacement of individual transducer modules. The method was used to fabricate a 750-kHz truncated circular aperture array (165 mm ×234 mm) transducer with a focal length of 142 mm. The aperture was segmented into 260 arc-shaped modular elements, each approximately 11.5 mm ×11.5 mm, arranged in concentric rings. The resulting aperture utilization was 92%. The full-width-half-maximum (FWHM) focal zone of the array was measured to be 1.6 mm ×1.1 mm ×4.5 mm, and the FWHM electrical steering range was measured to be 38.5 mm ×33 mm 40 mm. The array was estimated to be capable of generating approximately 120-MPa peak negative pressure at the geometric focus. In addition, the array was used to ablate a 5-cm3 volume of tissue with electric focal steering.
Collapse
Affiliation(s)
- Greyson E. Stocker
- Department of Biomedical Engineering at the University of Michigan, Ann Arbor, MI 48109
| | | | - Jonathan R. Sukovich
- Department of Biomedical Engineering at the University of Michigan, Ann Arbor, MI 48109
| | | | | | - Timothy L. Hall
- Department of Biomedical Engineering at the University of Michigan, Ann Arbor, MI 48109
| | - Zhen Xu
- Department of Biomedical Engineering at the University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
3
|
Cilleros C, Dupré A, Chen Y, Vincenot J, Rivoire M, Melodelima D. Intraoperative HIFU Ablation of the Pancreas Using a Toroidal Transducer in a Porcine Model. The First Step towards a Clinical Treatment of Locally Advanced Pancreatic Cancer. Cancers (Basel) 2021; 13:6381. [PMID: 34945001 PMCID: PMC8699564 DOI: 10.3390/cancers13246381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 12/20/2022] Open
Abstract
Apart from palliative chemotherapy, no other therapy has been proven effective for the treatment of locally advanced pancreatic tumors. In this study, an intraoperative high-intensity focused ultrasound (HIFU) device was tested in vivo to demonstrate the feasibility of treating the pancreatic parenchyma and tissues surrounding the superior mesenteric vessels prior to clinical translation of this technique. Twenty pigs were included and treated using a HIFU device equipped with a toroidal transducer and an integrated ultrasound imaging probe. Treatments were performed with energy escalation (from 30 kJ to 52 kJ). All treatments resulted in visible (macroscopically and in ultrasound images) homogeneous thermal damage, which was confirmed by histology. The dimensions of thermal lesions measured in ultrasound images and those measured macroscopically were correlated (r = 0.82, p < 0.05). No arterial spasms or occlusion were observed at the lowest energy setting. Temporary spasm of the peripancreatic artery was observed when using an energy setting greater than 30 kJ. The possibility of treating the pancreas and tissues around mesenteric vessels without vascular thrombosis holds great promise for the treatment of locally advanced pancreatic cancers. If clinically successful, chemotherapy followed by HIFU treatment could rapidly become a novel treatment option for locally advanced pancreatic cancer.
Collapse
Affiliation(s)
- Celia Cilleros
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003 Lyon, France; (C.C.); (A.D.); (Y.C.); (M.R.)
- EDAP TMS, 4 Rue du Dauphiné, F-69120 Vaulx-en-Velin, France;
| | - Aurélien Dupré
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003 Lyon, France; (C.C.); (A.D.); (Y.C.); (M.R.)
| | - Yao Chen
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003 Lyon, France; (C.C.); (A.D.); (Y.C.); (M.R.)
| | - Jeremy Vincenot
- EDAP TMS, 4 Rue du Dauphiné, F-69120 Vaulx-en-Velin, France;
| | - Michel Rivoire
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003 Lyon, France; (C.C.); (A.D.); (Y.C.); (M.R.)
| | - David Melodelima
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003 Lyon, France; (C.C.); (A.D.); (Y.C.); (M.R.)
| |
Collapse
|
4
|
Zhou Y, Cunitz BW, Dunmire B, Wang YN, Karl SG, Warren C, Mitchell S, Hwang JH. Characterization and Ex Vivo evaluation of an extracorporeal high-intensity focused ultrasound (HIFU) system. J Appl Clin Med Phys 2021; 22:345-359. [PMID: 34346559 PMCID: PMC8425942 DOI: 10.1002/acm2.13074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/15/2020] [Accepted: 02/19/2020] [Indexed: 12/26/2022] Open
Abstract
Background High‐intensity focused ultrasound (HIFU) has been in clinical use for a variety of solid tumors and cancers. Accurate and reliable calibration is in a great need for clinical applications. An extracorporeal clinical HIFU system applied for the investigational device exemption (IDE) to the Food and Drug Administration (FDA) so that evaluation of its characteristics, performance, and safety was required. Methods The acoustic pressure and power output was characterized by a fiber optic probe and a radiation force balance, respectively, with the electrical power up to 2000 W. An in situ acoustic energy was established as the clinical protocol at the electrical power up to 500 W. Temperature elevation inside the tissue sample was measured by a thermocouple array. Generated lesion volume at different in situ acoustic energies and pathological examination of the lesions was evaluated ex vivo. Results Acoustic pressure mapping showed the insignificant presence of side/grating lobes and pre‐ or post‐focal peaks (≤−12 dB). Although distorted acoustic pressure waveform was found in the free field, the nonlinearity was reduced significantly after the beam propagating through tissue samples (i.e., the second harmonic of −11.8 dB at 500 W). Temperature elevation was <10°C at a distance of 10 mm away from a 20‐mm target, which suggests the well‐controlled HIFU energy deposition and no damage to the surrounding tissue. An acoustic energy in the range of 750–1250 J resulted in discrete lesions with an interval space of 5 mm between the treatment spots. Histology confirmed that the lesions represented a region of permanently damaged cells by heat fixation, without causing cell lysis by either cavitation or boiling. Conclusions Our characterization and ex vivo evaluation protocol met the IDE requirement. The in‐situ acoustic energy model will be used in clinical trials to deliver almost consistent energy to the various targets.
Collapse
Affiliation(s)
- Yufeng Zhou
- School of Mechanical Engineering, Northwestern Ploytechnical University, Xi'an, China
| | - Bryan W Cunitz
- Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Barbrina Dunmire
- Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Yak-Nam Wang
- Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Steven G Karl
- Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Cinderella Warren
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| | - Stuart Mitchell
- Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Joo Ha Hwang
- Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA, USA.,Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| |
Collapse
|
5
|
Sanchez M, Barrere V, Treilleux I, Chopin N, Melodelima D. Development of a noninvasive HIFU treatment for breast adenocarcinomas using a toroidal transducer based on preliminary attenuation measurements. ULTRASONICS 2021; 115:106459. [PMID: 33990009 DOI: 10.1016/j.ultras.2021.106459] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/21/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
Breast cancer is the most commonly diagnosed type of cancer among women. For the last fifteen years, treatments that are less invasive than lumpectomy, such as high-intensity focused ultrasound (HIFU) therapy, have been developed, with encouraging results. In this study, a toroidal HIFU transducer was used to create lesions of at least 2 cm in diameter within less than one minute of treatment. The toroidal HIFU transducer created two focal zones that led to large, fast and homogeneous ablations (10.5 cc/min). The experiments were conducted in 30 human samples of normal breast tissues recovered from mastectomies to measure acoustic attenuation (N = 30), and then, HIFU lesions were created (N = 15). Eight HIFU ablations were performed to evaluate the reproducibility of the lesions. HIFU lesions were created in 45 s with a toroidal HIFU transducer working at 2.5 MHz. The longest and shortest axes of the HIFU lesions were 21.7 ± 3.1 mm and 23.5 ± 3.3 mm respectively, corresponding to an average volume of 7.3 ± 1.4 cm3. These HIFU lesions were performed at an average depth of 19.0 ± 1.5 mm, while the integrity of the skin was preserved. The HIFU-treated breast tissues had a higher level of attenuation (0.57 ± 0.11 Np.cm-1.MHz-1) when compared to the untreated tissues (0.21 ± 0.04 Np.cm-1.MHz-1). This study shows the feasibility of a fast and fully noninvasive treatment using a toroidal transducer for breast tumors measuring up to 15 mm in diameter.
Collapse
Affiliation(s)
- M Sanchez
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003 Lyon, France
| | - V Barrere
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003 Lyon, France
| | | | - N Chopin
- Centre Léon Bérard, F-69008 Lyon, France
| | - D Melodelima
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003 Lyon, France.
| |
Collapse
|
6
|
Barrere V, Sanchez M, Cambronero S, Dupré A, Rivoire M, Melodelima D. Evaluation of Ultrasonic Attenuation in Primary and Secondary Human Liver Tumors and Its Potential Effect on High-Intensity Focused Ultrasound Treatment. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:1761-1774. [PMID: 33895037 DOI: 10.1016/j.ultrasmedbio.2021.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Primary and secondary liver tumors are completely different diseases but are usually treated similarly using high-intensity focused ultrasound (HIFU). However, the acoustic parameters of these tissues are not well documented. In this study, attenuation coefficients were evaluated in fresh primary (N = 8) and secondary (N = 13) human liver tumor samples recovered by hepatectomy. The average attenuation coefficients of the primary and secondary liver tumors were 0.10 ± 0.03 and 0.20 ± 0.04 Np/cm/MHz, respectively. The average attenuation coefficients of the liver tissue surrounding the primary and secondary tumors were 0.16 ± 0.07 and 0.07 ± 0.02 Np/cm/MHz, respectively. Numerical simulations performed using these values revealed that completely different HIFU ablation patterns were created in primary and secondary liver tumors using the same exposure parameters. The dimensions of a typical HIFU lesion were two times larger in secondary liver tumors than in primary tumors. HIFU treatment parameters should be set properly according to the acoustic properties of the diseased liver tissue.
Collapse
Affiliation(s)
- Victor Barrere
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, Lyon, France
| | - Marine Sanchez
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, Lyon, France
| | - Sophie Cambronero
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, Lyon, France
| | - Aurelien Dupré
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, Lyon, France
| | - Michel Rivoire
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, Lyon, France
| | - David Melodelima
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, Lyon, France.
| |
Collapse
|
7
|
Development of a Simple In Vitro Artery Model and an Evaluation of the Impact of Pulsed Flow on High-Intensity Focused Ultrasound Ablation. Ing Rech Biomed 2021. [DOI: 10.1016/j.irbm.2020.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Battais A, Barrère V, N'Djin WA, Dupré A, Rivoire M, Melodelima D. Fast and Selective Ablation of Liver Tumors by High-Intensity Focused Ultrasound Using a Toroidal Transducer Guided by Ultrasound Imaging: The Results of Animal Experiments. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:3286-3295. [PMID: 32891425 DOI: 10.1016/j.ultrasmedbio.2020.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
This study demonstrated that high-intensity focused ultrasound (HIFU) produced with an intra-operative toroidal-shaped transducer causes fast, selective liver tumor ablations in an animal model. The HIFU device is composed of 256 emitters working at 3 MHz. A 7.5 MHz ultrasound imaging probe centered on the HIFU transducer guided treatment. VX2 tumor segments (25 mg) were implanted into the right lateral liver lobes of 45 New Zealand rabbits. The animals were evenly divided into groups 1 (toroidal HIFU ablation), 2 (surgical resection) and 3 (untreated control). Therapeutic responses were evaluated with gross pathology and histology 11 d post-treatment. Toroidal transducer-produced HIFU ablation (average ablation rate 10.5 cc/min) allowed fast and homogeneous tumor treatment. Sonograms showed all ablations. VX2 tumors were completely coagulated and surrounded by safety margins without surrounding-organ secondary HIFU lesions. HIFU group tumor volumes at autopsy (39 mm3) were significantly lower than control group volumes (2610 mm3, p < 0.0001). HIFU group tumor metastasis (27%) was lower than resected (33%) and control (67%) group metastasis. Ultrasound imaging, gross pathology and histology results supported these outcomes. HIFU procedures had no complications. Rabbit liver tumor ablation using a toroidal HIFU transducer under ultrasound imaging guidance might therefore be an effective intra-operative treatment for localized liver metastases.
Collapse
Affiliation(s)
- Amélie Battais
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003, Lyon, France
| | - Victor Barrère
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003, Lyon, France
| | - W Apoutou N'Djin
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003, Lyon, France
| | - Aurélien Dupré
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003, Lyon, France
| | - Michel Rivoire
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003, Lyon, France
| | - David Melodelima
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003, Lyon, France.
| |
Collapse
|
9
|
Cao R, Huang Z, Nabi G, Melzer A. Patient-Specific 3-Dimensional Model for High-Intensity Focused Ultrasound Treatment Through the Rib Cage: A Preliminary Study. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2020; 39:883-899. [PMID: 31721248 DOI: 10.1002/jum.15170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 09/12/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVES The purpose of this study was to develop a patient-specific 3-dimensional model for high-intensity focused ultrasound (HIFU) treatment through the rib cage using patient data. METHODS Experimental testing to derive parameters used in defining the amount of energy and alteration needed in treatment protocols for upper abdominal disorders under the rib cage was performed. Reconstructed rib cage models based on patient data, tissue-mimicking material phantoms, and magnetic resonance imaging-guided HIFU using a multielement phased array transducer were used in the experiments. Changes in the focal temperature, acoustic power, and acoustic pressure distribution were investigated with and without the presence of the rib cage model. An ExAblate system (InSightec Ltd, Tirat Carmel, Israel) was used to sonicate phantoms by varying the target phantom or rib cage model location. RESULTS The effect of the rib cage on the acoustic pressure distribution and acoustic power was closely related to the anatomic structures of the ribs. Thermometry revealed that heating at the focus could be controlled by changing either the power or duration of HIFU application to improve the focal temperature change. The focal temperature change was found to be related to the distance between the rib cage model and focus and the shadow area on the transducer elements covered by the rib cage model in the beam path. CONCLUSIONS Experimental results suggest that the rib cage model is a valuable and useful tool that can provide realistic human anatomic structures and properties for evaluating the effects of the rib cage on ultrasound propagation.
Collapse
Affiliation(s)
- Rui Cao
- Tianjin Key Laboratory of Integrated Design and On-line Monitoring for Light Industry & Food Machinery and Equipment, College of Mechanical Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Zhihong Huang
- School of Science and Engineering, University of Dundee, Dundee, UK
| | - Ghulam Nabi
- School of Medicine, Ninewells Hospital, Dundee, UK
| | - Andreas Melzer
- Institute for Medical Science and Technology, Dundee, UK
| |
Collapse
|
10
|
Abbass MA, Ahmad SA, Mahalingam N, Krothapalli KS, Masterson JA, Rao MB, Barthe PG, Mast TD. In vivo ultrasound thermal ablation control using echo decorrelation imaging in rabbit liver and VX2 tumor. PLoS One 2019; 14:e0226001. [PMID: 31805129 PMCID: PMC6894854 DOI: 10.1371/journal.pone.0226001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 11/18/2019] [Indexed: 12/21/2022] Open
Abstract
The utility of echo decorrelation imaging feedback for real-time control of in vivo ultrasound thermal ablation was assessed in rabbit liver with VX2 tumor. High-intensity focused ultrasound (HIFU) and unfocused (bulk) ablation were performed using 5 MHz linear image-ablate arrays. Treatments comprised up to nine lower-power sonications, followed by up to nine higher-power sonications, ceasing when the average cumulative echo decorrelation within a control region of interest exceeded a predefined threshold (- 2.3, log10-scaled echo decorrelation per millisecond, corresponding to 90% specificity for tumor ablation prediction in previous in vivo experiments). This threshold was exceeded in all cases for both HIFU (N = 12) and bulk (N = 8) ablation. Controlled HIFU trials achieved a significantly higher average ablation rate compared to comparable ablation trials without image-based control, reported previously. Both controlled HIFU and bulk ablation trials required significantly less treatment time than these previous uncontrolled trials. Prediction of local liver and VX2 tumor ablation using echo decorrelation was tested using receiver operator characteristic curve analysis, showing prediction capability statistically equivalent to uncontrolled trials. Compared to uncontrolled trials, controlled trials resulted in smaller thermal ablation regions and higher contrast between echo decorrelation in treated vs. untreated regions. These results indicate that control using echo decorrelation imaging may reduce treatment duration and increase treatment reliability for in vivo thermal ablation.
Collapse
Affiliation(s)
- Mohamed A. Abbass
- Dept of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Syed A. Ahmad
- Dept of Surgery, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Neeraja Mahalingam
- Dept of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - K. Sameer Krothapalli
- Dept of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Jack A. Masterson
- Dept of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Marepalli B. Rao
- Dept of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, United States of America
- Dept of Environmental Health, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Peter G. Barthe
- Guided Therapy Systems/Ardent Sound, Mesa, Arizona, United States of America
| | - T. Douglas Mast
- Dept of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, United States of America
| |
Collapse
|
11
|
Caloone J, Barrere V, Sanchez M, Cambronero S, Huissoud C, Melodelima D. High-Intensity Focused Ultrasound Using a Toroidal Transducer as an Adjuvant Treatment for Placenta Accreta: A Preliminary Ex Vivo Study. Ing Rech Biomed 2019. [DOI: 10.1016/j.irbm.2019.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Abbass MA, Garbo AJ, Mahalingam N, Killin JK, Mast TD. Optimized Echo Decorrelation Imaging Feedback for Bulk Ultrasound Ablation Control. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:1743-1755. [PMID: 29994657 PMCID: PMC6294441 DOI: 10.1109/tuffc.2018.2847599] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Feasibility of controlling bulk ultrasound (US) thermal ablation using echo decorrelation imaging was investigated in ex vivo bovine liver. The first of two ablation and control procedures used a sequence of constant-intensity sonication cycles, ceased when the minimum echo decorrelation within a control region of interest (ROI) exceeded a predetermined threshold. The second procedure used a variable-intensity sonication sequence, with spatially averaged decorrelation as the stopping criterion. US exposures and echo decorrelation imaging were performed by a linear image-ablate array. Based on preliminary experiments, control ROIs and thresholds for the minimum-decorrelation and average-decorrelation criteria were specified. Controlled trials for the minimum-decorrelation and average-decorrelation criteria were compared with uncontrolled trials employing 9 or 18 cycles of matching sonication sequences. Lesion dimensions, treatment times, ablation rates, and areas under receiver operating characteristic curves were statistically compared. Successfully controlled trials using both criteria required significantly shorter treatment times than corresponding 18-cycle treatments, with better ablation prediction performance than uncontrolled 9-cycle and 18-cycle treatments. Either control approach resulted in greater ablation rate than corresponding 9-cycle or 18-cycle uncontrolled approaches. A post hoc analysis studied the effect of exchanging control criteria between the two series of controlled experiments. For either group, the average time needed to exceed the alternative decorrelation threshold approximately matched the average duration of successfully controlled experimental trials. These results indicate that either approach, using minimum-decorrelation or average-decorrelation criteria, is feasible for control of bulk US ablation. In addition, use of a variable-intensity sonication sequence for bulk US thermal ablation can result in larger ablated regions compared to constant-intensity sonication sequences.
Collapse
|
13
|
Thermal Ablation of the Pancreas With Intraoperative High-Intensity Focused Ultrasound: Safety and Efficacy in a Porcine Model. Pancreas 2017; 46:219-224. [PMID: 27841792 DOI: 10.1097/mpa.0000000000000720] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE New focal destruction technologies such as high-intensity focused ultrasound (HIFU) may improve the prognosis of pancreatic ductal adenocarcinoma. Our objectives were to demonstrate the safety and efficacy of intraoperative pancreatic HIFU ablation in a porcine model. METHODS In a porcine model (N = 12), a single HIFU ablation was performed in either the body or tail of the pancreas, distant to superior mesenteric vessels. All animals were sacrificed on the eighth day. The primary objective was to obtain an HIFU ablation measuring at least 1 cm without premature death. RESULTS In total, 12 HIFU ablations were carried out. These ablations were performed within 160 seconds and on average measured 20 (15-27) × 16 (8-26) mm. The primary objective was fulfilled in all but 1 pig. There were no premature deaths or severe complications. High-intensity focused ultrasound treatment was associated with a transitory increase in amylase and lipase levels, and pseudocysts were observed in half of the pigs without being clinically apparent. All ablations were well delimited at both gross and histological examinations. CONCLUSIONS Intraoperative thermal destruction of porcine pancreas with HIFU is feasible. Reproducibility and safety have to be confirmed when applied close to mesenteric vessels and in long-term preclinical studies.
Collapse
|
14
|
Vincenot J, Kocot A, Vignot A, Chavrier F, Blanc E, Dupré A, Rivoire M, Chapelon J, Melodelima D. Toroidal Transducer for Intraoperative Thermal Ablation of Pancreatic Tumours by High-Intensity Focused Ultrasound. First In Vitro Experiments. Ing Rech Biomed 2016. [DOI: 10.1016/j.irbm.2016.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Ellens N, Hynynen K. Frequency considerations for deep ablation with high-intensity focused ultrasound: A simulation study. Med Phys 2016; 42:4896-10. [PMID: 26233216 DOI: 10.1118/1.4927060] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE The objective of this study was to explore frequency considerations for large-volume, deep thermal ablations with focused ultrasound. Though focal patterns, focal steering rate, and the size of focal clusters have all been explored in this context, frequency studies have generally explored shallower depths and hyperthermia applications. This study examines both treatment efficiency and near-field heating rate as functions of frequency and depth. METHODS Flat, 150 mm transducer arrays were simulated to operate at frequencies of 250, 500, 750, 1000, 1250, and 1500 kHz. Each array had λ2 interelement spacing yielding arrays of 2000-70 000 piston-shaped elements arranged in concentric rings. Depths of 50, 100, and 150 mm were explored, with attenuation (α) values of 2.5-10 (Np/m)/MHz. Ultrasound propagation was simulated with the Rayleigh-Sommerfeld integral over a volume of homogeneous simulated tissue. Absorbed power density was determined from the acoustic pressure which, in turn, was modeled with the Pennes bioheat transfer equation. Using this knowledge of temperature over time, thermal dose function of Sapareto and Dewey was used to model the resulting bioeffect of each simulated sonication. Initially, single foci at each depth, frequency, and α were examined with either fixed peak temperatures or fixed powers. Based on the size of the resulting, single foci lesions, larger compound sonications were designed with foci packed together in multiple layers and rings. For each depth, focal patterns were chosen to produce a similar total ablated volume for each frequency. These compound sonications were performed with a fixed peak temperature at each focus. The resulting energy efficiency (volume ablated per acoustic energy applied), near-field heating rate (temperature increase in the anterior third of the simulation space per unit volume ablated), and near- and far-field margins were assessed. RESULTS Lesions of comparable volume were created with different frequencies at different depths. The results reflect the interconnected nature of frequency as it effects focal size (decreasing with frequency), peak pressure (generally increasing with frequency), and attenuation (also increasing with frequency). The ablation efficiency was the highest for α = 5 (Np/m)/MHz at a frequency of 750 kHz at each depth. For α = 10 (Np/m)/MHz, efficiency was the highest at 750 kHz for a depth of 50 mm, and 500 kHz at depths of 100 and 150 mm. At all sonication depths, near-field heating was minimized with lower frequencies of 250 and 500 kHz. CONCLUSIONS Large-volume ablations are most efficient at frequencies of 500-750 kHz at depths of 100-150 mm. When one considers that near-field heat accumulation tends to be the rate limiting factor in large-volume ablations like uterine fibroid surgery, the results show that frequencies as low as 500 kHz are favored for their ability to reduce heating in the near-field.
Collapse
Affiliation(s)
- Nicholas Ellens
- Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Kullervo Hynynen
- Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
16
|
Abstract
High intensity focused ultrasound (HIFU) is rapidly gaining clinical acceptance as a technique capable of providing non-invasive heating and ablation for a wide range of applications. Usually requiring only a single session, treatments are often conducted as day case procedures, with the patient either fully conscious, lightly sedated or under light general anesthesia. HIFU scores over other thermal ablation techniques because of the lack of necessity for the transcutaneous insertion of probes into the target tissue. Sources placed either outside the body (for treatment of tumors or abnormalities of the liver, kidney, breast, uterus, pancreas brain and bone), or in the rectum (for treatment of the prostate), provide rapid heating of a target tissue volume, the highly focused nature of the field leaving tissue in the ultrasound propagation path relatively unaffected. Numerous extra-corporeal, transrectal and interstitial devices have been designed to optimize application-specific treatment delivery for the wide-ranging areas of application that are now being explored with HIFU. Their principle of operation is described here, and an overview of their design principles is given.
Collapse
Affiliation(s)
- Gail Ter Haar
- Joint Department of Physics, The Institute of Cancer Research, Sutton, London, UK.
| |
Collapse
|
17
|
Low-intensity continuous ultrasound triggers effective bisphosphonate anticancer activity in breast cancer. Sci Rep 2015; 5:16354. [PMID: 26578234 PMCID: PMC4649676 DOI: 10.1038/srep16354] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 09/14/2015] [Indexed: 01/30/2023] Open
Abstract
Ultrasound (US) is a non-ionizing pressure wave that can produce mechanical and thermal effects. Bisphosphonates have demonstrated clinical utility in bone metastases treatment. Preclinical studies suggest that bisphosphonates have anticancer activity. However, bisphosphonates exhibit a high affinity for bone mineral, which reduces their bioavailibity for tumor cells. Ultrasound has been shown to be effective for drug delivery but in interaction with gas bubbles or encapsulated drugs. We examined the effects of a clinically relevant dose of bisphosphonate zoledronate (ZOL) in combination with US. In a bone metastasis model, mice treated with ZOL+US had osteolytic lesions that were 58% smaller than those of ZOL-treated animals as well as a reduced skeletal tumor burden. In a model of primary tumors, ZOL+US treatment reduced by 42% the tumor volume, compared with ZOL-treated animals. Using a fluorescent bisphosphonate, we demonstrated that US forced the release of bisphosphonate from the bone surface, enabling a continuous impregnation of the bone marrow. Additionally, US forced the penetration of ZOL within tumors, as demonstrated by the intratumoral accumulation of unprenylated Rap1A, a surrogate marker of ZOL antitumor activity. Our findings made US a promising modality to trigger bisphosphonate anticancer activity in bone metastases and in primary tumors.
Collapse
|
18
|
An Ultrasound Image-Based Dynamic Fusion Modeling Method for Predicting the Quantitative Impact of In Vivo Liver Motion on Intraoperative HIFU Therapies: Investigations in a Porcine Model. PLoS One 2015; 10:e0137317. [PMID: 26398366 PMCID: PMC4580572 DOI: 10.1371/journal.pone.0137317] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 08/15/2015] [Indexed: 11/19/2022] Open
Abstract
Organ motion is a key component in the treatment of abdominal tumors by High Intensity Focused Ultrasound (HIFU), since it may influence the safety, efficacy and treatment time. Here we report the development in a porcine model of an Ultrasound (US) image-based dynamic fusion modeling method for predicting the effect of in vivo motion on intraoperative HIFU treatments performed in the liver in conjunction with surgery. A speckle tracking method was used on US images to quantify in vivo liver motions occurring intraoperatively during breathing and apnea. A fusion modeling of HIFU treatments was implemented by merging dynamic in vivo motion data in a numerical modeling of HIFU treatments. Two HIFU strategies were studied: a spherical focusing delivering 49 juxtapositions of 5-second HIFU exposures and a toroidal focusing using 1 single 40-second HIFU exposure. Liver motions during breathing were spatially homogenous and could be approximated to a rigid motion mainly encountered in the cranial-caudal direction (f = 0.20 Hz, magnitude > 13 mm). Elastic liver motions due to cardiovascular activity, although negligible, were detectable near millimeter-wide sus-hepatic veins (f = 0.96 Hz, magnitude < 1 mm). The fusion modeling quantified the deleterious effects of respiratory motions on the size and homogeneity of a standard "cigar-shaped" millimetric lesion usually predicted after a 5-second single spherical HIFU exposure in stationary tissues (Dice Similarity Coefficient: DSC < 45%). This method assessed the ability to enlarge HIFU ablations during respiration, either by juxtaposing "cigar-shaped" lesions with spherical HIFU exposures, or by generating one large single lesion with toroidal HIFU exposures (DSC > 75%). Fusion modeling predictions were preliminarily validated in vivo and showed the potential of using a long-duration toroidal HIFU exposure to accelerate the ablation process during breathing (from 0.5 to 6 cm3 · min(-1)). To improve HIFU treatment control, dynamic fusion modeling may be interesting for assessing numerically focusing strategies and motion compensation techniques in more realistic conditions.
Collapse
|
19
|
Hooi FM, Nagle A, Subramanian S, Douglas Mast T. Analysis of tissue changes, measurement system effects, and motion artifacts in echo decorrelation imaging. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2015; 137:585-97. [PMID: 25697993 PMCID: PMC4336259 DOI: 10.1121/1.4906580] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Echo decorrelation imaging, a method for mapping ablation-induced ultrasound echo changes, is analyzed. Local echo decorrelation is shown to approximate the decoherence spectrum of tissue reflectivity. Effects of the ultrasound measurement system, echo signal windowing, electronic noise, and tissue motion on echo decorrelation images are determined theoretically, leading to a method for reduction of motion and noise artifacts. Theoretical analysis is validated by simulations and experiments. Simulated decoherence of the scattering medium was recovered with root-mean-square error less than 10% with accuracy dependent on the correlation window size. Motion-induced decorrelation measured in an ex vivo pubovisceral muscle model showed similar trends to theoretical motion-induced decorrelation for a 2.1 MHz curvilinear array with decorrelation approaching unity for 3-4 mm elevational displacement or 1-1.6 mm range displacement. For in vivo imaging of porcine liver by a 7 MHz linear array, theoretical decorrelation computed using image-based motion estimates correlated significantly with measured decorrelation (r = 0.931, N = 10). Echo decorrelation artifacts incurred during in vivo radiofrequency ablation in the same porcine liver were effectively compensated based on the theoretical echo decorrelation model and measured pre-treatment decorrelation. These results demonstrate the potential of echo decorrelation imaging for quantification of heat-induced changes to the scattering tissue medium during thermal ablation.
Collapse
Affiliation(s)
- Fong Ming Hooi
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio 45267-0586
| | - Anna Nagle
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio 45267-0586
| | - Swetha Subramanian
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio 45267-0586
| | - T Douglas Mast
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio 45267-0586
| |
Collapse
|
20
|
Petrusca L, Viallon M, Breguet R, Terraz S, Manasseh G, Auboiroux V, Goget T, Baboi L, Gross P, Sekins KM, Becker CD, Salomir R. An experimental model to investigate the targeting accuracy of MR-guided focused ultrasound ablation in liver. J Transl Med 2014; 12:12. [PMID: 24433332 PMCID: PMC3901025 DOI: 10.1186/1479-5876-12-12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 01/03/2014] [Indexed: 11/10/2022] Open
Abstract
Background Magnetic Resonance-guided High Intensity Focused Ultrasound (MRgHIFU) is a hybrid technology that aims to offer non-invasive thermal ablation of targeted tumors or other pathological tissues. Acoustic aberrations and non-linear wave propagating effects may shift the focal point significantly away from the prescribed (or, theoretical) position. It is therefore mandatory to evaluate the spatial accuracy of ablation for a given HIFU protocol and/or device. We describe here a method for producing a user-defined ballistic target as an absolute reference marker for MRgHIFU ablations. Methods The investigated method is based on trapping a mixture of MR contrast agent and histology stain using radiofrequency (RF) ablation causing cell death and coagulation. A dedicated RF-electrode was used for the marker fixation as follows: a RF coagulation (4 W, 15 seconds) and injection of the mixture followed by a second RF coagulation. As a result, the contrast agent/stain is encapsulated in the intercellular space. Ultrasonography imaging was performed during the procedure, while high resolution T1w 3D VIBE MR acquisition was used right after to identify the position of the ballistic marker and hence the target tissue. For some cases, after the marker fixation procedure, HIFU volumetric ablations were produced by a phased-array HIFU platform. First ex vivo experiments were followed by in vivo investigation on four rabbits in thigh muscle and six pigs in liver, with follow-up at Day 7. Results At the end of the procedure, no ultrasound indication of the marker’s presence could be observed, while it was clearly visible under MR and could be conveniently used to prescribe the HIFU ablation, centered on the so-created target. The marker was identified at Day 7 after treatment, immediately after animal sacrifice, after 3 weeks of post-mortem formalin fixation and during histology analysis. Its size ranged between 2.5 and 4 mm. Conclusions Experimental validation of this new ballistic marker method was performed for liver MRgHIFU ablation, free of any side effects (e.g. no edema around the marker, no infection, no bleeding). The study suggests that the absolute reference marker had ultrasound conspicuity below the detection threshold, was irreversible, MR-compatible and MR-detectable, while also being a well-established histology staining technique.
Collapse
Affiliation(s)
- Lorena Petrusca
- Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|