1
|
Grasso V, Raymond JL, Willumeit-Römer R, Joseph J, Jose J. Development of a morphologically realistic mouse phantom for pre-clinical photoacoustic imaging. Med Phys 2023; 50:5757-5771. [PMID: 37535898 DOI: 10.1002/mp.16651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/10/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Characterizations based on anatomically realistic phantoms are highly effective to perform accurate technical validation of imaging systems. Specifically for photoacoustic imaging (PAI), although a variety of phantom models with simplified geometries are reported, an unmet need still exists to establish morphologically realistic heterogeneous pre-clinical phantoms. So the development of a mouse-mimicking phantom can reduce the use of animals for the validation and standardization studies of pre-clinical PAI systems and thus eventually translate the PAI technology to clinical research. PURPOSE Here we designed, developed, and fabricated a stable phantom that mimics the detailed morphology of a mouse, to be used as a realistic tool for PAI. METHODS The mouse phantom, has been designed by using a combination of image modeling and 3D-printing techniques. As a tissue-mimicking material, we have used copolymer-in-oil-based material that was recently proposed by the International Photoacoustic Standardization Consortium (IPASC). In particular, the anatomically realistic phantom has been modeled by using the real atlas of a mouse as a reference. The mouse phantom includes a 3D-printed skeleton and the main abdominal organs such as the liver, spleen, and kidneys obtained by using doped copolymer-in-oil material with 3D-printed molds. In addition, the acoustic and optical properties of the tissue-mimicking material and the long-term stability have been broadly characterized. RESULTS Furthermore, our studies showed that the phantom is durable and stable for more than 200 days, under normal storage and repeated use. Fabrication protocol is easy to reproduce. As a result, the proposed morphologically realistic mouse phantom offers durability, material compatibility, and an unprecedented realistic resemblance to the actual rodents' anatomy in PAI. CONCLUSION This durable morphologically realistic mouse phantom would minimize the animal experiments in compliance with the 3R principle of Replacement, Reduction, and Refinement. To our knowledge, this is the first time an anatomically realistic heterogeneous mouse phantom has been proposed for PAI in pre-clinical animal imaging and tested its durability over 200 days.
Collapse
Affiliation(s)
- Valeria Grasso
- FUJIFILM VisualSonics, Amsterdam, The Netherlands
- Institute for Materials Science, Faculty of Engineering, Christian-Albrecht University of Kiel, Kiel, Germany
| | - Jason L Raymond
- Department of Engineering Science, University of Oxford, Oxford, UK
| | - Regine Willumeit-Römer
- Institute for Materials Science, Faculty of Engineering, Christian-Albrecht University of Kiel, Kiel, Germany
- Institute of Materials Research, Division Metallic Biomaterials, Helmholtz-Zentrum Hereon GmbH, Geesthacht, Germany
| | - James Joseph
- School of Science and Engineering, University of Dundee, Dundee, UK
- Centre for Medical Engineering and Technology, University of Dundee, Dundee, UK
| | - Jithin Jose
- FUJIFILM VisualSonics, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Antoniou A, Nikolaou A, Georgiou A, Evripidou N, Damianou C. Development of an US, MRI, and CT imaging compatible realistic mouse phantom for thermal ablation and focused ultrasound evaluation. ULTRASONICS 2023; 131:106955. [PMID: 36854247 DOI: 10.1016/j.ultras.2023.106955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/09/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Tissue mimicking phantoms (TMPs) play an essential role in modern biomedical research as cost-effective quality assurance and training tools, simultaneously contributing to the reduction of animal use. Herein, we present the development and evaluation of an anatomically accurate mouse phantom intended for image-guided thermal ablation and Focused Ultrasound (FUS) applications. The proposed mouse model consists of skeletal and soft tissue mimics, whose design was based on the Computed tomography (CT) scans data of a live mouse. Advantageously, it is compatible with US, CT, and Magnetic Resonance Imaging (MRI). The compatibility assessment was focused on the radiological behavior of the phantom due to the lack of relevant literature. The X-ray linear attenuation coefficient of candidate materials was estimated to assess the one that matches best the radiological behavior of living tissues. The bone part was manufactured by Fused Deposition Modeling (FDM) printing using Acrylonitrile styrene acrylate (ASA) material. For the soft-tissue mimic, a special mold was 3D printed having a cavity with the unique shape of the mouse body and filled with an agar-based silica-doped gel. The mouse phantom accurately matched the size and reproduced the body surface of the imaged mouse. Tissue-equivalency in terms of X-ray attenuation was demonstrated for the agar-based soft-tissue mimic. The phantom demonstrated excellent MRI visibility of the skeletal and soft-tissue mimics. Good radiological contrast between the skeletal and soft-tissue models was also observed in the CT scans. The model was also able to reproduce realistic behavior during trans-skull sonication as proved by thermocouple measurements. Overall, the proposed phantom is inexpensive, ergonomic, and realistic. It could constitute a powerful tool for image-guided thermal ablation and FUS studies in terms of testing and optimizing the performance of relevant equipment and protocols. It also possess great potential for use in transcranial FUS applications, including the emerging topic of FUS-mediated blood brain barrier (BBB) disruption.
Collapse
Affiliation(s)
- Anastasia Antoniou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus.
| | - Anastasia Nikolaou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus.
| | - Andreas Georgiou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus.
| | - Nikolas Evripidou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus.
| | - Christakis Damianou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus.
| |
Collapse
|
3
|
Ivory AM, De Melo Baesso R, Durando G, Rajagopal S, Miloro P. Development and testing of a system for controlled ultrasound hyperthermia treatment with a phantom device. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; PP:266-275. [PMID: 37018591 DOI: 10.1109/tuffc.2023.3235453] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Hyperthermia is the process of raising tissue temperatures in the range 40 - 45 °C for a prolonged time (up to hours). Unlike in ablation therapy, raising the temperature to such levels does not cause necrosis of the tissue but has been postulated to sensitize the tissue for radiotherapy. The ability to maintain a certain temperature in a target region is key to a hyperthermia delivery system. The aim of this work was to design and characterize a heat delivery system for ultrasound hyperthermia able to generate a uniform power deposition pattern in the target region with a closed-loop control which would maintain the defined temperature over a defined period. The hyperthermia delivery system presented herein is a flexible design with the ability to strictly control the induced temperature rise with a feedback loop. The system can be reproduced elsewhere with relative ease and is adaptable for various tumor sizes/locations and for other temperature elevation applications, such as ablation therapy. The system was fully characterized and tested on a newly-designed custom-built phantom with controlled acoustic and thermal properties and containing embedded thermocouples. Additionally, a layer of thermochromic material was fixed above the thermocouples and the recorded temperature increase was compared to the RGB (red, green, and blue) color-change in the material. The transducer characterization allowed for input voltage to output power curves to be generated, thus allowing for comparison of power deposition to temperature increase in the phantom. Additionally, the transducer characterization generated a field map of the symmetric field. The system was capable of increasing the temperature of the target area by 6 °C above body temperature and maintain the temperature to within ±0.5 °C over a defined period. The increase in temperature correlated with the RGB image analysis of the thermochromic material. The results of this work have the potential to contribute towards increasing confidence in the delivery of hyperthermia treatment to superficial tumors. The developed system could potentially be used for phantom or small animal proof-of-principle studies. The developed phantom test device may be used for testing other hyperthermia systems.
Collapse
|
4
|
Sarno D, Baker C, Curtis S, Hodnett M, Zeqiri B. In Vivo Measurements of the Bulk Ultrasonic Attenuation Coefficient of Breast Tissue Using a Novel Phase-Insensitive Receiver. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:2943-2954. [PMID: 35976833 DOI: 10.1109/tuffc.2022.3198815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study describes the first in vivo acoustic attenuation measurements of breast tissue undertaken using a novel phase-insensitive detection technique employing a differential pyroelectric sensor. The operation of the sensor is thermal in nature, with its output signal being dictated by the acoustic power integrated over its surface. The particularly novel feature of the sensor lies in its differential principle of operation, which significantly enhances its immunity to background acoustic and vibration noise. A large area variant of the sensor was used to detect ultrasonic energy generated by an array of 14 discrete 3.2-MHz plane piston transducers, transmitted through pendent breasts in water. The transduction and reception capability represent key parts of a prototype Quantitative Ultrasound Computed Tomography Test Facility developed at the National Physical Laboratory to study the efficacy of phase-insensitive ultrasound computed tomography of breast phantoms containing a range of appropriate inclusions, in particular, the measurement uncertainties associated with quantitative reconstructions of the acoustic attenuation coefficient. For this study, attenuation coefficient measurements were made using 1-D projections on 12 nominally healthy study volunteers, whose age ranged from 19 to 65 years. Averaged or bulk attenuation coefficient values were generated in the range 1.7-4.6 dBcm -1 at 3.2 MHz and have been compared with existing literature, derived from in vivo and ex vivo studies. Results are encouraging and indicate that the relatively simple technique could be applied as a robust method for assessing the properties of breast tissue, particularly the balance of fatty (adipose) and fibroglandular components.
Collapse
|
5
|
Moran CM, Arthur C, Quaia E. A Comparison of the Sensitivity of Contrast-Specific Imaging Modes on Clinical and Preclinical Ultrasound Scanners. Tomography 2022; 8:2285-2297. [PMID: 36136887 PMCID: PMC9498646 DOI: 10.3390/tomography8050191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Ultrasonic contrast agents are used routinely to aid clinical diagnosis. All premium- and mid-range scanners utilise contrast-specific imaging techniques to preferentially isolate and display the nonlinear signals generated from the microbubbles when insonated with a series of ultrasound pulses. In this manuscript the abilities of four premium ultrasound scanners to detect and display the ultrasound signal from two commercially available contrast agents—SonoVue and DEFINITY®—are compared. A flow phantom was built using tubes with internal diameters of 1.6 mm and 3.2 mm, suspended at depths of 1, 5 and 8 cm and embedded in tissue-mimicking material. Dilute solutions of SonoVue and DEFINITY® were pumped through the phantom at 0.25 mL/s and 1.5 mL/s. Four transducers were used to scan the tubes—a GE Logiq E9 (C2-9) curvilinear probe, a Philips iU22 L9-3 linear array probe, an Esaote MyLab Twice linear array LA523 (4–13 MHz) and a Fujifilm VisualSonics Vevo3100 MX250 (15–30 MHz) linear array probe. We defined a new parameter to compare the ability of the ultrasound scanners to display the contrast enhancement. This was defined as the ratio of grey-scale intensity ratio in contrast-specific imaging mode relative to the B-mode intensity from the same region-of-interest within the corresponding B-mode image. The study demonstrated that the flow rates used in this study had no effect on the contrast-specific imaging mode to B-mode (CSIM-BM) ratio for the three clinical scanners studied, with SonoVue demonstrating broadly similar CSIM-BM ratios across all 3 clinical scanners. DEFINITY® also displayed similar results to SonoVue except when insonated with the Esaote MyLab Twice LA523 transducer, where it demonstrated significantly higher CSIM-BM ratios at superficial depths.
Collapse
Affiliation(s)
- Carmel M. Moran
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Charles Arthur
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Emilio Quaia
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
- Department of Radiology, University of Padua, 35128 Padua, Italy
- Correspondence: ; Tel.: +39-049-8212375
| |
Collapse
|
6
|
Filippou A, Damianou C. Evaluation of ultrasonic scattering in agar-based phantoms using 3D printed scattering molds. J Ultrasound 2022; 25:597-609. [PMID: 34997563 PMCID: PMC9402872 DOI: 10.1007/s40477-021-00630-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/30/2021] [Indexed: 10/19/2022] Open
Abstract
PURPOSE Acoustic characterization of tissue mimicking materials in terms of attenuation, absorption, scattering and propagation velocity is essential for their utilisation in experiments, thus sparing the need for living tissues or cadavers. Although there is a vast literature regarding the acoustic characterization of such materials in terms of attenuation or propagation velocity, there is limited data regarding the quantification of the scattering coefficient. Herein stimulated the utilisation of four agar-based phantoms featuring different sizes of scattering agar-structures on one of their surfaces so as to provide experimental evaluation of the magnitude of scattering. METHODS The agar-based phantoms were developed with 6% w/v agar and 4% w/v silica and featured scatterers of sizes of 0-1 mm. The acoustic properties of propagation speed, impedance, insertion loss and attenuation were evaluated utilising the pulse-echo and through-transmission techniques. Scattering was deduced from the data. RESULTS The propagation speed measured at 2.7 MHz was in the range of 1531.23-1542.97 m/s. Respectively the attenuation as measured at 1.1 MHz was in the range of 1.216-1.546 dB/cm increasing with increased scatterer size. Respectively the scattering coefficient was in the range of 0.078-0.324 dB/cm. Moreover, the scattering coefficient was linearly dependent on frequency in the range of 0.8-2.1 MHz indicating a 6-23% effect of the total attenuation. CONCLUSIONS The experimental results demonstrate the utilisation of the procedure for quantification of the scattering coefficient of tissue mimicking materials thus improving the diagnostic and therapeutic uses of ultrasound.
Collapse
Affiliation(s)
- Antria Filippou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, 30 Archbishop Kyprianou Street, 3036, Limassol, Cyprus
| | - Christakis Damianou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, 30 Archbishop Kyprianou Street, 3036, Limassol, Cyprus.
| |
Collapse
|
7
|
Thomson H, Yang S, Cochran S. Machine learning-enabled quantitative ultrasound techniques for tissue differentiation. J Med Ultrason (2001) 2022; 49:517-528. [PMID: 35840774 DOI: 10.1007/s10396-022-01230-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 04/18/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE Quantitative ultrasound (QUS) infers properties about tissue microstructure from backscattered radio-frequency ultrasound data. This paper describes how to implement the most practical QUS parameters using an ultrasound research system for tissue differentiation. METHODS This study first validated chicken liver and gizzard muscle as suitable acoustic phantoms for human brain and brain tumour tissues via measurement of the speed of sound and acoustic attenuation. A total of thirteen QUS parameters were estimated from twelve samples, each using data obtained with a transducer with a frequency of 5-11 MHz. Spectral parameters, i.e., effective scatterer diameter and acoustic concentration, were calculated from the backscattered power spectrum of the tissue, and echo envelope statistics were estimated by modelling the scattering inside the tissue as a homodyned K-distribution, yielding the scatterer clustering parameter α and the structure parameter κ. Standard deviation and higher-order moments were calculated from the echogenicity value assigned in conventional B-mode images. RESULTS The k-nearest neighbours algorithm was used to combine those parameters, which achieved 94.5% accuracy and 0.933 F1-score. CONCLUSION We were able to generate classification parametric images in near-real-time speed as a potential diagnostic tool in the operating room for the possible use for human brain tissue characterisation.
Collapse
Affiliation(s)
- Hannah Thomson
- Centre for Medical and Industrial Ultrasonics, University of Glasgow, University Avenue, Glasgow, UK.
| | - Shufan Yang
- Centre for Medical and Industrial Ultrasonics, University of Glasgow, University Avenue, Glasgow, UK.,School of Computing, Edinburgh Napier University, Merchiston Campus, Edinburgh, UK
| | - Sandy Cochran
- Centre for Medical and Industrial Ultrasonics, University of Glasgow, University Avenue, Glasgow, UK
| |
Collapse
|
8
|
Monteiro Souza R, de Assis MKM, Pereira Barretto da Costa-Félix R, Victor Alvarenga A. Speed of sound in the IEC tissue-mimicking material and its maintenance solution as a function of temperature. ULTRASONICS 2022; 118:106564. [PMID: 34530395 DOI: 10.1016/j.ultras.2021.106564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Tissue-Mimicking Material (TMM) is defined on IEC International Standards and applied in assessing ultrasonic diagnostic and therapeutic equipment's basic safety and essential performance. One of the TMM that fits IEC standards specification has its recipe described at IEC 60601-2-37, and it is fabricated using glycerol (11.21 %), deionized water (82.95%), benzalkonium chloride (0.47 %), silicon carbide (0.53 %), aluminum oxide 0.3 μm (0.88%), aluminum oxide 3.0 μm (0.94 %), and agar (3.08 %). Glycerol is the component responsible for adjusting the TMM's speed of sound. Moreover, it is recommended to store TMM in a closed container immersed in a mixture of water (88.1 %)/glycerol (11.9 %) to prevent it from drying out and avoiding air contact. The literature points out TMM measurements underwater can alter the speed of sound property as TMM tends to lose glycerol. Herein, the authors proposed to assess the viability of measuring the TMM speed of sound in the water/glycerol maintenance solution. First, the authors characterized the maintenance solution's speed of sound for a temperature range of 20 °C to 45 °C. Then, the group velocity of a set of TMM was measured underwater and in the maintenance solution for the same temperature range. The respective group velocity expanded uncertainty was calculated. The results indicate it is feasible to measure TMM in the maintenance solution, achieving group velocity values with no statistical difference from the ones measured underwater in the temperature range of 20 °C to 40 °C.
Collapse
Affiliation(s)
- Raquel Monteiro Souza
- Laboratory of Ultrasound, National Institute of Metrology, Quality and Technology (Inmetro), Brazil
| | | | | | - Andre Victor Alvarenga
- Laboratory of Ultrasound, National Institute of Metrology, Quality and Technology (Inmetro), Brazil.
| |
Collapse
|
9
|
Ambrogio S, Baêsso RM, Bosio F, Fedele F, Ramnarine KV, Zeqiri B, Miloro P. A standard test phantom for the performance assessment of magnetic resonance guided high intensity focused ultrasound (MRgHIFU) thermal therapy devices. Int J Hyperthermia 2021; 39:57-68. [PMID: 34936852 DOI: 10.1080/02656736.2021.2017023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Purpose: Test objects for High Intensity Focused Ultrasound (HIFU) are required for the standardization and definition of treatment, Quality Assurance (QA), comparison of results between centers and calibration of devices. This study describes a HIFU test object which provides temperature measurement as a function of time, in a reference material compatible with Magnetic Resonance (MR) and ultrasound.Materials and methods: T-Type fine wire thermocouples were used as sensors and 5 correction methods for viscous heating artifacts were assessed. The phantom was tested in a MR-HIFU Philips Sonalleve device over a period of 12 months, demonstrating stability and validity to evaluate the performance of the device.Results: The study furnished useful information regarding the MR-HIFU sessions and highlighted potential limitations of the existing QA and monitoring methods. The importance of temperature monitoring along the whole acoustic path was demonstrated as MR Thermometry readings differed in the three MR plane views (coronal, sagittal, transverse), in particular when the focus was near a soft-tissue/bone interface, where there can be an MR signal loss with significant temperature and thermal dose underestimation (138% variation between the three plane views).Conclusions: The test object was easy to use and has potential as a valid tool for training, QA, research and development for MR guided HIFU and potentially ultrasound guided devices.
Collapse
Affiliation(s)
- S Ambrogio
- Medical Physics Department, Guy's and St Thomas' NHS Foundation Trust, London, UK.,Ultrasound and Underwater Acoustics Division, National Physical Laboratory, Teddington, UK
| | - R M Baêsso
- Ultrasound and Underwater Acoustics Division, National Physical Laboratory, Teddington, UK
| | - F Bosio
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - F Fedele
- Medical Physics Department, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - K V Ramnarine
- Medical Physics Department, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - B Zeqiri
- Ultrasound and Underwater Acoustics Division, National Physical Laboratory, Teddington, UK
| | - P Miloro
- Ultrasound and Underwater Acoustics Division, National Physical Laboratory, Teddington, UK
| |
Collapse
|
10
|
Shiao JC, Santoso A, Stuhr K, Bennett SJ, Gao D, Holt DE, Robin T, Fisher CM. Gynecologic interstitial brachytherapy curriculum using a low-cost phantom with ultrasound workshop and a treatment planning workshop is effective. Brachytherapy 2021; 21:110-119. [PMID: 34876360 DOI: 10.1016/j.brachy.2021.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 11/19/2022]
Abstract
PURPOSE/OBJECTIVE(S) Standardized simulation training geared towards interstitial brachytherapy (IS BT) for gynecologic malignancies is lacking in radiation oncology resident education. We developed and implemented a curriculum for IS BT training with (1) lecture on equipment, workflow, and guidelines, (2) hands-on ultrasound-guided IS BT workshop, and (3) treatment planning workshop. METHODS AND MATERIAL The cost in materials of each phantom was approximately $66. After a lecture, two alternating workshops were performed. The first session consisted of a hands-on ultrasound-guided IS BT workshop with one resident imaging the phantom with a transabdominal ultrasound probe and the other resident implanting the phantom with needles. A second session consisted of a hands-on treatment planning workshop using BrachyVision and an l-Q spreadsheet with the following objectives: coverage goal, meeting D2cc constraints, and minimizing V200. The primary outcome was improvement in knowledge assessed with Likert-style questions and objective knowledge-based questions (KBQs). RESULTS Four of the seven medical residents that participated in this curriculum had prior IS BT experience. Residents reported significantly improved knowledge regarding gynecologic IS BT equipment and procedure, evaluating gynecologic anatomy using ultrasound, CT simulation, contouring, and plan review (overall median pre-session subjective score 2 (1) -(3) versus post-session score 4 (3) -(4, p < 0.01). Residents demonstrated improvement in answering KBQs correctly from 44% correct at baseline to 88% after completion of the curriculum (p < 0.01). All residents "Agree" and "Strongly Agree" the session was an effective learning experience. CONCLUSIONS Residents participating in phantom training with an ultrasound curriculum and a treatment planning session is effective for improving knowledge and skills in IS BT for radiation oncology residents.
Collapse
Affiliation(s)
- Jay C Shiao
- Department of Radiation Oncology, University of Colorado Cancer Center, Aurora, CO
| | - Andrew Santoso
- Department of Radiation Oncology, University of Colorado Cancer Center, Aurora, CO
| | - Kelly Stuhr
- Department of Radiation Oncology, University of Colorado Cancer Center, Aurora, CO
| | | | - Dexiang Gao
- Department of Statistics, University of Colorado Cancer Center, Aurora, CO
| | - Douglas E Holt
- Department of Radiation Oncology, University of Colorado Cancer Center, Aurora, CO
| | - Tyler Robin
- Department of Radiation Oncology, University of Colorado Cancer Center, Aurora, CO
| | - Christine M Fisher
- Department of Radiation Oncology, University of Colorado Cancer Center, Aurora, CO.
| |
Collapse
|
11
|
Hacker L, Joseph J, Ivory AM, Saed MO, Zeqiri B, Rajagopal S, Bohndiek SE. A Copolymer-in-Oil Tissue-Mimicking Material With Tuneable Acoustic and Optical Characteristics for Photoacoustic Imaging Phantoms. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:3593-3603. [PMID: 34152979 DOI: 10.1109/tmi.2021.3090857] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Photoacoustic imaging (PAI) standardisation demands a stable, highly reproducible physical phantom to enable routine quality control and robust performance evaluation. To address this need, we have optimised a low-cost copolymer-in-oil tissue-mimickingmaterial formulation. The base material consists of mineral oil, copolymer and stabiliser with defined Chemical Abstract Service numbers. Speed of sound c(f) and acoustic attenuation coefficient α (f) were characterised over 2-10 MHz; optical absorption μa ( λ ) and reduced scattering μs '( λ ) coefficients over 450-900 nm. Acoustic properties were optimised by modifying base component ratios and optical properties were adjusted using additives. The temporal, thermomechanical and photo-stabilitywere studied, alongwith intra-laboratory fabrication and field-testing. c(f) could be tuned up to (1516±0.6) [Formula: see text] and α (f) to (17.4±0.3)dB · cm -1 at 5 MHz. The base material exhibited negligible μa ( λ ) and μs '( λ ), which could be independently tuned by addition of Nigrosin or TiO2 respectively. These properties were stable over almost a year and were minimally affected by recasting. The material showed high intra-laboratory reproducibility (coefficient of variation <4% for c ( f ), α ( f ), optical transmittance and reflectance), and good photo- and mechanical-stability in the relevant working range (20-40°C). The optimised copolymer-in-oil material represents an excellent candidate for widespread application in PAI phantoms, with properties suitable for broader use in biophotonics and ultrasound imaging standardisation efforts.
Collapse
|
12
|
Bakaric M, Miloro P, Javaherian A, Cox BT, Treeby BE, Brown MD. Measurement of the ultrasound attenuation and dispersion in 3D-printed photopolymer materials from 1 to 3.5 MHz. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 150:2798. [PMID: 34717448 DOI: 10.1121/10.0006668] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Over the past decade, the range of applications in biomedical ultrasound exploiting 3D printing has rapidly expanded. For wavefront shaping specifically, 3D printing has enabled a diverse range of new, low-cost approaches for controlling acoustic fields. These methods rely on accurate knowledge of the bulk acoustic properties of the materials; however, to date, robust knowledge of these parameters is lacking for many materials that are commonly used. In this work, the acoustic properties of eight 3D-printed photopolymer materials were characterised over a frequency range from 1 to 3.5 MHz. The properties measured were the frequency-dependent phase velocity and attenuation, group velocity, signal velocity, and mass density. The materials were fabricated using two separate techniques [PolyJet and stereolithograph (SLA)], and included Agilus30, FLXA9960, FLXA9995, Formlabs Clear, RGDA8625, RGDA8630, VeroClear, and VeroWhite. The range of measured density values across all eight materials was 1120-1180 kg · m-3, while the sound speed values were between 2020 to 2630 m · s-1, and attenuation values typically in the range 3-9 dB · MHz-1· cm-1.
Collapse
Affiliation(s)
- Marina Bakaric
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Piero Miloro
- Ultrasound and Underwater Acoustics, National Physical Laboratory, Hampton Road, Teddington TW11 0LW, United Kingdom
| | - Ashkan Javaherian
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Ben T Cox
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Bradley E Treeby
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Michael D Brown
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
13
|
Maia TQS, Alvarenga AV, Souza RM, Costa-Félix RPB. Feasibility of Reference Material Certification for Speed of Sound and Attenuation Coefficient Based on Standard Tissue-Mimicking Material. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:1904-1919. [PMID: 33896678 DOI: 10.1016/j.ultrasmedbio.2021.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Speed of sound and attenuation are essential for characterizing reference materials such as biological tissue-mimicking materials (TMMs) used in ultrasonic applications. There are many publications on the manufacture of TMMs and the measurement of their properties. However, no studies in the literature have applied the metrological approach of International Organization for Standardization (ISO) Guide 35 to certify biological ultrasound TMMs as candidates for reference materials (RMs). The work described here was aimed at studying the process for manufacturing fat, muscle and aorta artery TMMs, including the study of the homogeneity, stability, trend and characterization of TMMs. The properties of interest were the speed of sound (SoS) and attenuation coefficient (AttC) at 7.5 MHz, with target expanded uncertainty of 40 m/s and 0.3 dB/cm, respectively. The short-term stability study was 2 mo at 4°C and 40°C (simulating possible transportation conditions). The long-term stability study lasted an additional 4 mo with the TMM at 22°C (simulating possible storage conditions). Homogeneity was evaluated before the stability study. Uncertainties associated with homogeneity, stability, characterization and trend were duly calculated. No trend was observed in this study, but the AttC spread widely during the stability test, substantially enlarging the final uncertainty. Therefore, this property could not be used to certify TMM candidates as RMs. However, the SoSs for most TMMs lay within the target uncertainty, disclosing viability to certify TMMs as RMs for this property. Assigned values for SoS were 1560 m/s for aorta TMM with an average expanded uncertainty for certificate validity of 12 mo (Ue;12=20 m/s), 1552 m/s for muscle TMM (Ue;12=20 m/s) and 1494 m/s for fat TMM (Ue;12=11 m/s). Thus, TMMs were proved suitable to be certified as RMs for SoS.
Collapse
Affiliation(s)
- Taynara Q S Maia
- Laboratory of Ultrasound, Directory of Scientific and Industrial Metrology, National Institute of Metrology, Quality, and Technology (Inmetro), Duque de Caxias, Rio de Janeiro, Brazil
| | - André V Alvarenga
- Laboratory of Ultrasound, Directory of Scientific and Industrial Metrology, National Institute of Metrology, Quality, and Technology (Inmetro), Duque de Caxias, Rio de Janeiro, Brazil
| | - Raquel M Souza
- Laboratory of Ultrasound, Directory of Scientific and Industrial Metrology, National Institute of Metrology, Quality, and Technology (Inmetro), Duque de Caxias, Rio de Janeiro, Brazil
| | - Rodrigo P B Costa-Félix
- Laboratory of Ultrasound, Directory of Scientific and Industrial Metrology, National Institute of Metrology, Quality, and Technology (Inmetro), Duque de Caxias, Rio de Janeiro, Brazil.
| |
Collapse
|
14
|
Smith SF, Miloro P, Axell R, ter Haar G, Lees C. In vitro characterisation of ultrasound-induced heating effects in the mother and fetus: A clinical perspective. ULTRASOUND (LEEDS, ENGLAND) 2021; 29:73-82. [PMID: 33995553 PMCID: PMC8083135 DOI: 10.1177/1742271x20953197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION The quantification of heating effects during exposure to ultrasound is usually based on laboratory experiments in water and is assessed using extrapolated parameters such as the thermal index. In our study, we have measured the temperature increase directly in a simulator of the maternal-fetal environment, the 'ISUOG Phantom', using clinically relevant ultrasound scanners, transducers and exposure conditions. METHODS The study was carried out using an instrumented phantom designed to represent the pregnant maternal abdomen and which enabled temperature recordings at positions in tissue mimics which represented the skin surface, sub-surface, amniotic fluid and fetal bone interface. We tested four different transducers on a commercial diagnostic scanner. The effects of scan duration, presence of a circulating fluid, pre-set and power were recorded. RESULTS The highest temperature increase was always at the transducer-skin interface, where temperature increases between 1.4°C and 9.5°C were observed; lower temperature rises, between 0.1°C and 1.0°C, were observed deeper in tissue and at the bone interface. Doppler modes generated the highest temperature increases. Most of the heating occurred in the first 3 minutes of exposure, with the presence of a circulating fluid having a limited effect. The power setting affected the maximum temperature increase proportionally, with peak temperature increasing from 4.3°C to 6.7°C when power was increased from 63% to 100%. CONCLUSIONS Although this phantom provides a crude mimic of the in vivo conditions, the overall results showed good repeatability and agreement with previously published experiments. All studies showed that the temperature rises observed fell within the recommendations of international regulatory bodies. However, it is important that the operator should be aware of factors affecting the temperature increase.
Collapse
Affiliation(s)
| | - Piero Miloro
- Ultrasound and Underwater Acoustics, National Physical Laboratory, UK
| | - Richard Axell
- Medical Physics and Bioengineering, University College Hospital NHS Foundation Trust, UK
- Queen Square Institute of Neurology, University College London, UK
| | - Gail ter Haar
- Therapeutic Ultrasound, Division of Radiotherapy and Imaging, Joint Department of Physics, Institute of Cancer Research, Royal Marsden NHS Foundation Trust, UK
| | - Christoph Lees
- Centre for Fetal Care, Queen Charlotte’s & Chelsea Hospital, Imperial College Healthcare NHS Trust, UK
| |
Collapse
|
15
|
Ambrogio S, Baêsso RDM, Gomis A, Rivens I, Haar GT, Zeqiri B, Ramnarine KV, Fedele F, Miloro P. A Polyvinyl Alcohol-Based Thermochromic Material for Ultrasound Therapy Phantoms. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:3135-3144. [PMID: 32873445 DOI: 10.1016/j.ultrasmedbio.2020.07.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/27/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
Temperature estimation is a fundamental step in assessment of the efficacy of thermal therapy. A thermochromic material sensitive within the temperature range 52.5°C-75°C has been developed. The material is based on polyvinyl alcohol cryogel with the addition of a commercial thermochromic ink. It is simple to manufacture, low cost, non-toxic and versatile. The thermal response of the material was evaluated using multiple methods, including immersion in a temperature-controlled water bath, a temperature-controlled heated needle and high-intensity focused ultrasound (HIFU) sonication. Changes in colour were evaluated using both RGB (red, green, blue) maps and pixel intensities. Acoustic and thermal properties of the material were measured. Thermo-acoustic simulations were run with an open-source software, and results were compared with the HIFU experiments, showing good agreement. The material has good potential for the development of ultrasound therapy phantoms.
Collapse
Affiliation(s)
- Simone Ambrogio
- Medical Physics Department, Guy's & St Thomas' NHS Foundation Trust, London, United Kingdom; Ultrasound and Underwater Acoustics, National Physical Laboratory, Hampton Road, Teddington, United Kingdom.
| | - Raphaela de Melo Baêsso
- Ultrasound and Underwater Acoustics, National Physical Laboratory, Hampton Road, Teddington, United Kingdom
| | - Alberto Gomis
- Ultrasound and Underwater Acoustics, National Physical Laboratory, Hampton Road, Teddington, United Kingdom; Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Ian Rivens
- Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Gail Ter Haar
- Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Bajram Zeqiri
- Ultrasound and Underwater Acoustics, National Physical Laboratory, Hampton Road, Teddington, United Kingdom
| | - Kumar V Ramnarine
- Medical Physics Department, Guy's & St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Fiammetta Fedele
- Medical Physics Department, Guy's & St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Piero Miloro
- Ultrasound and Underwater Acoustics, National Physical Laboratory, Hampton Road, Teddington, United Kingdom
| |
Collapse
|
16
|
Bakaric M, Miloro P, Zeqiri B, Cox BT, Treeby BE. The Effect of Curing Temperature and Time on the Acoustic and Optical Properties of PVCP. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:505-512. [PMID: 31613754 DOI: 10.1109/tuffc.2019.2947341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Polyvinyl chloride plastisol (PVCP) has been increasingly used as a phantom material for photoacoustic and ultrasound imaging. As one of the most useful polymeric materials for industrial applications, its mechanical properties and behavior are well-known. Although the acoustic and optical properties of several formulations have previously been investigated, it is still unknown how these are affected by varying the fabrication method. Here, an improved and straightforward fabrication method is presented, and the effect of curing temperature and curing time on the PVCP acoustic and optical properties, as well as their stability over time, is investigated. The speed of sound and attenuation were determined over a frequency range from 2 to 15 MHz, while the optical attenuation spectra of samples were measured over a wavelength range from 500 to 2200 nm. The results indicate that the optimum properties are achieved at curing temperatures between 160 °C and 180 °C, while the required curing time decreases with increasing temperature. The properties of the fabricated phantoms were highly repeatable, meaning that the phantoms are not sensitive to the manufacturing conditions provided that the curing temperature and time are within the range of complete gelation-fusion (samples are optically clear) and below the limit of thermal degradation (indicated by the yellowish appearance of the sample). The samples' long-term stability was assessed over 16 weeks, and no significant change was observed in the measured acoustic and optical properties.
Collapse
|
17
|
Baker C, Sarno D, Eckersley RJ, Zeqiri B. Ring Artifact Correction for Phase-Insensitive Ultrasound Computed Tomography. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:513-525. [PMID: 31634829 DOI: 10.1109/tuffc.2019.2948429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An algorithm was developed for the correction of ring artifacts in phase-insensitive ultrasound computed tomography attenuation images. Differences in the measurement sensitivity between the ultrasound transducer array elements cause discontinuities in the sinogram which manifest as rings and arcs in the reconstructed image. The magnitudes of the discontinuities are potentially time-varying and dependent on the attenuation being measured. The algorithm dynamically determines the measurement sensitivity of each transducer in the array during the scan by comparison with both the elements to its left and the elements to its right. Elements at either end of the array are corrected, assuming a zero-attenuation path. The two estimates of sensitivity are combined using a weighted mean similar to a Kalman filter. The algorithm was tested on simulated and experimentally acquired data. It was demonstrated to reduce the root-mean-square error (RMSE) of simulated images against ground-truth images by up to a factor of 50 compared with uncorrected images and to visibly reduce artifacts on images reconstructed from the experimentally acquired data.
Collapse
|
18
|
McLeod C, Moran CM, McBride KA, Pye SD. Evaluation of Intravascular Ultrasound Catheter-Based Transducers Using the Resolution Integral. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:2802-2812. [PMID: 30146091 DOI: 10.1016/j.ultrasmedbio.2018.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 07/06/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
Intravascular ultrasound (IVUS) catheters are a specialist imaging modality used in the assessment of cardiovascular disease. The ultrasound transducer may either be of single-element mechanical or phased-array design. Because of their design and operating frequencies (10-45 MHz), evaluation of the imaging performance is not possible with commercially available ultrasound test objects. An existing test object, the Edinburgh Pipe Phantom, was modified to allow measurement of resolution integral (R), depth of field (Lr) and characteristic resolution (Dr) of IVUS catheters. In total, seven IVUS catheters, from two manufacturers and of both single-element mechanical and phased-array design, were tested to provide a measure of performance over different frequencies and technologies. Measurements of R for the tested IVUS catheters ranged from 11.9 to 18.8. The modified Edinburgh Pipe Phantom therefore allows catheter-based ultrasound probes to be evaluated scientifically and their performance to be seen in relation to other similar ultrasound technologies such as pre-clinical ultrasound and endoscopic ultrasound.
Collapse
Affiliation(s)
- Christopher McLeod
- Medical Physics, NHS Lothian, Edinburgh Royal Infirmary, Edinburgh, United Kingdom.
| | - Carmel M Moran
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Karne A McBride
- Medical Physics, NHS Lothian, Edinburgh Royal Infirmary, Edinburgh, United Kingdom
| | - Stephen D Pye
- Medical Physics, NHS Lothian, Edinburgh Royal Infirmary, Edinburgh, United Kingdom
| |
Collapse
|
19
|
Rabell-Montiel A, Anderson T, Pye SD, Moran CM. Attenuation Coefficients of the Individual Components of the International Electrotechnical Commission Agar Tissue-Mimicking Material. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:2371-2378. [PMID: 30076033 DOI: 10.1016/j.ultrasmedbio.2018.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 05/18/2018] [Accepted: 06/06/2018] [Indexed: 06/08/2023]
Abstract
Tissue-mimicking materials (TMMs) are widely used in quality assurance (QA) phantoms to assess the performance of ultrasound scanners. The International Electrotechnical Commission (IEC) defines the acoustic parameters of up to 10MHz. To manufacture a TMM that closely mimics the acoustical properties of small animal soft tissue at high frequencies, the acoustic properties of each of the individual component ingredients used in the IEC agar-TMM recipe need to be quantified. This study was aimed at evaluating whether the overall attenuation coefficient of the IEC agar-TMM is the linear sum of the attenuation coefficients of each of its ingredients. Eight batches of agar-based materials were manufactured with different combinations of ingredients from the IEC agar-TMM recipe. The percentage concentration of each ingredient used in the individual mixes was identical to that specified in the IEC recipe. The attenuation of each of these batches was measured over the ultrasound frequency range 12-50MHz, and the attenuation value of the agar component was subtracted from the attenuation values of the other batches. Batch attenuation values, representing the attenuation of individual components within the IEC agar-TMM, were then summated and yielded attenuation values that accurately reproduced the attenuation of the IEC agar-TMM. This information forms a valuable resource for the future development of TMMs with acoustic properties similar to those of soft tissue at high frequencies.
Collapse
Affiliation(s)
- Adela Rabell-Montiel
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom.
| | - Tom Anderson
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Steve D Pye
- Medical Physics, NHS Lothian, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Carmel M Moran
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
20
|
Johnson SL, Christensen DA, Dillon CR, Payne A. Validation of hybrid angular spectrum acoustic and thermal modelling in phantoms. Int J Hyperthermia 2018; 35:578-590. [PMID: 30320518 PMCID: PMC6365205 DOI: 10.1080/02656736.2018.1513168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 08/03/2018] [Accepted: 08/13/2018] [Indexed: 12/15/2022] Open
Abstract
In focused ultrasound (FUS) thermal ablation of diseased tissue, acoustic beam and thermal simulations enable treatment planning and optimization. In this study, a treatment-planning methodology that uses the hybrid angular spectrum (HAS) method and the Pennes' bioheat equation (PBHE) is experimentally validated in homogeneous tissue-mimicking phantoms. Simulated three-dimensional temperature profiles are compared to volumetric MR thermometry imaging (MRTI) of FUS sonications in the phantoms, whose acoustic and thermal properties are independently measured. Additionally, Monte Carlo (MC) uncertainty analysis is performed to quantify the effect of tissue property uncertainties on simulation results. The mean error between simulated and experimental spatiotemporal peak temperature rise was +0.33°C (+6.9%). Despite this error, the experimental temperature rise fell within the expected uncertainty of the simulation, as determined by the MC analysis. The average errors of the simulated transverse and longitudinal full width half maximum (FWHM) of the profiles were -1.9% and 7.5%, respectively. A linear regression and local sensitivity analysis revealed that simulated temperature amplitude is more sensitive to uncertainties in simulation inputs than in the profile width and shape. Acoustic power, acoustic attenuation and thermal conductivity had the greatest impact on peak temperature rise uncertainty; thermal conductivity and volumetric heat capacity had the greatest impact on FWHM uncertainty. This study validates that using the HAS and PBHE method can adequately predict temperature profiles from single sonications in homogeneous media. Further, it informs the need to accurately measure or predict patient-specific properties for improved treatment planning of ablative FUS surgeries.
Collapse
Affiliation(s)
- Sara L. Johnson
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| | - Douglas A. Christensen
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
- Department of Computer and Electrical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Christopher R. Dillon
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Allison Payne
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
21
|
Maruvada S, Liu Y, Gammell P, Wear K. Broadband characterization of plastic and high intensity therapeutic ultrasound phantoms using time delay spectrometry-With validation using Kramers-Kronig relations. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 143:3365. [PMID: 29960483 PMCID: PMC6095459 DOI: 10.1121/1.5040482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Time delay spectrometry (TDS) is extended for broadband characterization of plastics (low-density polyethylene, LDPE) and tissue-mimicking material (TMM). The results suggest that TDS and the conventional broadband pulse method give comparable measurements for frequency-dependent attenuation coefficient and phase velocity near the center frequency, where signal-to-noise ratio is high. However, TDS measurements show enhanced bandwidth for attenuation coefficient of 30%-40% (LDPE) and 89%-100% (TMM) and for phase velocity of 43% (LDPE) and 36% (TMM) for a single transmitter/receiver pair. In addition, TDS provides measurements of dispersion that are consistent with predictions based on the Kramers-Kronig relations to within 5 m/s over the band from 2 to 12 MHz in LDPE and to within 1 m/s in TMM over the band from 0.5 to 29 MHz.
Collapse
Affiliation(s)
- Subha Maruvada
- Food and Drug Administration, Center for Devices and Radiological Health, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993, USA
| | - Yunbo Liu
- Food and Drug Administration, Center for Devices and Radiological Health, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993, USA
| | - Paul Gammell
- Gammell Applied Technologies, Exmore, Virginia 23350, USA
| | - Keith Wear
- Food and Drug Administration, Center for Devices and Radiological Health, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993, USA
| |
Collapse
|
22
|
Rabell-Montiel A, Thomson AJ, Anderson TA, Pye SD, Moran CM. Acoustic Properties of Small Animal Soft Tissue in the Frequency Range 12-32 MHz. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:702-713. [PMID: 29277451 DOI: 10.1016/j.ultrasmedbio.2017.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/16/2017] [Accepted: 11/07/2017] [Indexed: 06/07/2023]
Abstract
Quality assurance phantoms are made of tissue-mimicking materials (TMMs) the acoustic properties of which mimic those of soft tissue. However, the acoustic properties of many soft tissue types have not been measured at ultrasonic frequencies >9 MHz. With the increasing use of high-frequency ultrasound for both clinical and pre-clinical applications, it is of increasing interest to ensure that TMMs accurately reflect the acoustic properties of soft tissue at these higher frequencies. In this study, the acoustic properties of ex vivo brain, liver and kidney samples from 50 mice were assessed in the frequency range 12-32 MHz. Measurements were performed within 6 min of euthanasia in a phosphate-buffered saline solution maintained at 37.2 ± 0.2 °C. The measured mean values for the speed of sound for all organs were found to be higher than the International Electrotechnical Commission guideline recommended value for TMMs. The attenuation coefficients measured for brain, liver and kidney samples were compared with the results of previous studies at lower frequencies. Only the measured kidney attenuation coefficient was found to be in good agreement with the International Electrotechnical Commission guideline. The information provided in this study can be used as a baseline on which to manufacture a TMM suitable for high-frequency applications.
Collapse
Affiliation(s)
- Adela Rabell-Montiel
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom.
| | - Adrian J Thomson
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Tom A Anderson
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Stephen D Pye
- Medical Physics, NHS Lothian, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Carmel M Moran
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
23
|
Haller J, Wilkens V, Shaw A. Determination of Acoustic Cavitation Probabilities and Thresholds Using a Single Focusing Transducer to Induce and Detect Acoustic Cavitation Events: I. Method and Terminology. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:377-396. [PMID: 29195754 DOI: 10.1016/j.ultrasmedbio.2017.08.1946] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 07/30/2017] [Accepted: 08/09/2017] [Indexed: 06/07/2023]
Abstract
A method to determine acoustic cavitation probabilities in tissue-mimicking materials (TMMs) is described that uses a high-intensity focused ultrasound (HIFU) transducer for both inducing and detecting the acoustic cavitation events. The method was evaluated by studying acoustic cavitation probabilities in agar-based TMMs with and without scatterers and for different sonication modes like continuous wave, single pulses (microseconds to milliseconds) and repeated burst signals. Acoustic cavitation thresholds (defined here as the peak rarefactional in situ pressure at which the acoustic cavitation probability reaches 50%) at a frequency of 1.06 MHz were observed between 1.1 MPa (for 1 s of continuous wave sonication) and 4.6 MPa (for 1 s of a repeated burst signal with 25-cycle burst length and 10-ms burst period) in a 3% (by weight) agar phantom without scatterers. The method and its evaluation are described, and general terminology useful for standardizing the description of insonation conditions and comparing results is provided. In the accompanying second part, the presented method is used to systematically study the acoustic cavitation thresholds in the same material for a range of sonication modes.
Collapse
Affiliation(s)
- Julian Haller
- Physikalisch-Technische Bundesanstalt, Braunschweig, Germany
| | - Volker Wilkens
- Physikalisch-Technische Bundesanstalt, Braunschweig, Germany.
| | - Adam Shaw
- National Physical Laboratory, Teddington, Middlesex, United Kingdom
| |
Collapse
|
24
|
Rabell Montiel A, Browne JE, Pye SD, Anderson TA, Moran CM. Broadband Acoustic Measurement of an Agar-Based Tissue-Mimicking-Material: A Longitudinal Study. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:1494-1505. [PMID: 28450032 DOI: 10.1016/j.ultrasmedbio.2017.02.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 02/27/2017] [Accepted: 02/27/2017] [Indexed: 06/07/2023]
Abstract
Commercially available ultrasound quality assurance test phantoms rely on the long-term acoustic stability of the tissue-mimicking-material (TMM). Measurement of the acoustic properties of the TMM can be technically challenging, and it is important to ensure its stability. The standard technique is to film-wrap samples of TMM and to measure the acoustic properties in a water bath. In this study, a modified technique was proposed whereby the samples of TMM are measured in a preserving fluid that is intended to maintain their characteristics. The acoustic properties were evaluated using a broadband pulse-echo substitution technique over the frequency range 4.5-50 MHz at 0, 6 and 12 months using both techniques. For both techniques, the measured mean values for the speed of sound and attenuation were very similar and within the International Electrotechnical Commission-recommended value. However, the results obtained using the proposed modified technique exhibited greater stability over the 1-y period compared with the results acquired using the standard technique.
Collapse
Affiliation(s)
| | - Jacinta E Browne
- School of Physics & IEO, FOCAS, Dublin Institute of Technology, Dublin, Ireland
| | - Stephen D Pye
- Medical Physics, NHS Lothian, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Tom A Anderson
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Carmel M Moran
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
25
|
Füzesi K, Gyöngy M. Comparison of Two Inexpensive Rapid Prototyping Methods for Manufacturing Filament Target Ultrasound Phantoms. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:712-720. [PMID: 28034541 DOI: 10.1016/j.ultrasmedbio.2016.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 11/09/2016] [Accepted: 11/10/2016] [Indexed: 06/06/2023]
Abstract
Current use of 3-D printers to manufacture ultrasound phantoms is limited to relatively expensive photopolymer jetting printers. The present work investigates the feasibility of using two common and inexpensive 3-D printer technologies, fused deposition modeling (FDM) and digital light processing (DLP), to print custom filament target phantoms. Acoustic characteristics obtained from printed solid blocks indicated that the printing materials-acrylonitrile butadiene styrene and polylactic acid for FDM and a photopolymer for DLP printing-were appropriate for use as scatterers. A regular grid of filaments was printed to study printing accuracy. As a proof of concept of the phantom manufacturing process, a complex pattern of filament targets was placed in de-ionized water to create a phantom, which was then imaged using an ultrasound imager. The pattern was clearly identifiable, although multiple reflections were observed, which underscores the importance of future work to enhance printing resolution. This goal is deemed possible using improvement of the DLP printing setup.
Collapse
Affiliation(s)
- Krisztián Füzesi
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary.
| | - Miklós Gyöngy
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| |
Collapse
|
26
|
Santos TQ, Alvarenga AV, Oliveira DP, Costa-Felix RPB. Metrological Validation of a Measurement Procedure for the Characterization of a Biological Ultrasound Tissue-Mimicking Material. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:323-331. [PMID: 27756496 DOI: 10.1016/j.ultrasmedbio.2016.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/06/2016] [Accepted: 09/06/2016] [Indexed: 06/06/2023]
Abstract
The speed of sound and attenuation are important properties for characterizing reference materials such as biological phantoms used in ultrasound applications. There are many publications on the manufacture of ultrasonic phantoms and the characterization of their properties. However, few studies have applied the principles of metrology, such as the expression of the uncertainty of measurement. The objective of this study is to validate a method for characterizing the speed of sound and the attenuation coefficient of tissue-mimicking material (TMM) based on the expression of the measurement of uncertainty. Six 60-mm-diameter TMMs were fabricated, three 10 mm thick and three 20 mm thick. The experimental setup comprised two ultrasonic transducers, acting as transmitter or receiver depending on the stage of the measurement protocol, both with a nominal center frequency of 5 MHz and an element diameter of 12.7 mm. A sine burst of 20 cycles and 20-V peak-to-peak amplitude at 5 MHz excited the transmitter transducer, producing a maximum pressure of 0.06 MPa. The measurement method was based on the through-transmission substitution immersion technique. The speed of sound measurement system was validated using a calibrated stainless-steel cylinder as reference material, and normalized errors were <0.8. The attenuation coefficient measurement method was validated using replicated measurements under repeatability conditions. The normalized error between the two measurement sets was <1. The proposed uncertainty models for the measurements of the speed of sound and the attenuation coefficient can help other laboratories develop their own uncertainty models. These validated measurement methods can be used to certify a TMM as a reference material for biotechnological applications.
Collapse
Affiliation(s)
- Taynara Q Santos
- Laboratory of Ultrasound, Directory of Scientific and Industrial Metrology, National Institute of Metrology, Quality and Technology, Rio de Janeiro, Brazil
| | - André V Alvarenga
- Laboratory of Ultrasound, Directory of Scientific and Industrial Metrology, National Institute of Metrology, Quality and Technology, Rio de Janeiro, Brazil.
| | - Débora P Oliveira
- Laboratory of Ultrasound, Directory of Scientific and Industrial Metrology, National Institute of Metrology, Quality and Technology, Rio de Janeiro, Brazil
| | - Rodrigo P B Costa-Felix
- Laboratory of Ultrasound, Directory of Scientific and Industrial Metrology, National Institute of Metrology, Quality and Technology, Rio de Janeiro, Brazil
| |
Collapse
|
27
|
Kenwright DA, Anderson T, Moran CM, Hoskins PR. Assessment of Spectral Doppler for an Array-Based Preclinical Ultrasound Scanner Using a Rotating Phantom. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:2232-2239. [PMID: 25957754 PMCID: PMC4510153 DOI: 10.1016/j.ultrasmedbio.2015.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 03/24/2015] [Accepted: 04/06/2015] [Indexed: 06/04/2023]
Abstract
Velocity measurement errors were investigated for an array-based preclinical ultrasound scanner (Vevo 2100, FUJIFILM VisualSonics, Toronto, ON, Canada). Using a small-size rotating phantom made from a tissue-mimicking material, errors in pulse-wave Doppler maximum velocity measurements were observed. The extent of these errors was dependent on the Doppler angle, gate length, gate depth, gate horizontal placement and phantom velocity. Errors were observed to be up to 172% at high beam-target angles. It was found that small gate lengths resulted in larger velocity errors than large gate lengths, a phenomenon that has not previously been reported (e.g., for a beam-target angle of 0°, the error was 27.8% with a 0.2-mm gate length and 5.4% with a 0.98-mm gate length). The error in the velocity measurement with sample volume depth changed depending on the operating frequency of the probe. Some edge effects were observed in the horizontal placement of the sample volume, indicating a change in the array aperture size. The error in the velocity measurements increased with increased phantom velocity, from 22% at 2.4 cm/s to 30% at 26.6 cm/s. To minimise the impact of these errors, an angle-dependent correction factor was derived based on a simple ray model of geometric spectral broadening. Use of this angle-dependent correction factor reduces the maximum velocity measurement errors to <25% in all instances, significantly improving the current estimation of maximum velocity from pulse-wave Doppler ultrasound.
Collapse
Affiliation(s)
- David A Kenwright
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom.
| | - Tom Anderson
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Carmel M Moran
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter R Hoskins
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
28
|
Kenwright DA, Sadhoo N, Rajagopal S, Anderson T, Moran CM, Hadoke PW, Gray GA, Zeqiri B, Hoskins PR. acoustic assessment of a konjac–carrageenan tissue-mimicking material aT 5–60 MHZ. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:2895-902. [PMID: 25438864 PMCID: PMC4259902 DOI: 10.1016/j.ultrasmedbio.2014.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 07/03/2014] [Accepted: 07/11/2014] [Indexed: 05/10/2023]
Abstract
The acoustic properties of a robust tissue-mimicking material based on konjac–carrageenan at ultrasound frequencies in the range 5–60 MHz are described. Acoustic properties were characterized using two methods: a broadband reflection substitution technique using a commercially available preclinical ultrasound scanner (Vevo 770, FUJIFILM VisualSonics, Toronto, ON, Canada), and a dedicated high-frequency ultrasound facility developed at the National Physical Laboratory (NPL, Teddington, UK), which employed a broadband through-transmission substitution technique. The mean speed of sound across the measured frequencies was found to be 1551.7 ± 12.7 and 1547.7 ± 3.3 m s21, respectively. The attenuation exhibited a non-linear dependence on frequency, f (MHz), in the form of a polynomial function: 0.009787f2 1 0.2671f and 0.01024f2 1 0.3639f, respectively. The characterization of this tissue-mimicking material will provide reference data for designing phantoms for preclinical systems, which may, in certain applications such as flow phantoms, require a physically more robust tissuemimicking material than is currently available.
Collapse
Affiliation(s)
- David A Kenwright
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|