1
|
Vaddamanu SK, Alhamoudi FH, Vyas R, Gurumurthy V, Siurkel Y, Cicciù M, Minervini G. Attenuation of orthodontically induced inflammatory root resorption by using low-intensity pulsed ultrasound as a therapeutic modality- a systematic review. BMC Oral Health 2024; 24:67. [PMID: 38200481 PMCID: PMC10782536 DOI: 10.1186/s12903-023-03741-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024] Open
Abstract
Ultrasound is an effective tool for both diagnostic and therapeutic applications. As an imaging tool, ultrasound has mostly been used for real-time noninvasive diagnostic imaging. As ultrasound propagates through a material, a reflected radio-frequency (RF) signal is generated when encountering a mismatch in acoustic impedance. While traditionally recognized for its diagnostic imaging capabilities, the application of ultrasound has broadened to encompass therapeutic interventions, most notably in the form of Low-Intensity Pulsed Ultrasound (LIPUS). Low-Intensity Pulsed Ultrasound (LIPUS) is a form of mechanical energy transmitted transcutaneously by high-frequency acoustic pressure waves. The intensity of LIPUS (30 mW/cm2) is within the range of ultrasound intensities used for diagnostic purposes (1-50 mW/cm2) and is regarded as non-thermal, non-destructive, permeating living tissues and triggering a cascade of biochemical responses at the cellular level. The LIPUS device produces a 200 µs burst of 1.5 MHz acoustic sine waves, that repeats at a modulation frequency of 1 kHz and provides a peak pressure of 30 mW/cm2. Low-intensity pulsed ultrasound (LIPUS) forms one of the currently available non-invasive healing-enhancing devices besides electro-stimulation (pulsed electro-magnetic field, PEMF). This modality has been leveraged to enhance drug delivery, expedite injury recovery, improve muscle mobility, alleviate joint stiffness and muscle pain, and enhance bone fracture healing. Although LIPUS has been embraced within various medical disciplines, its integration into standard dental practices is still in its nascent stages, signifying an unexplored frontier with potentially transformative implications. Low-intensity pulsed ultrasound (LIPUS) has emerged as an attractive adjuvant therapy in various dental procedures, such as orthodontic treatment and maxillary sinus augmentation. Its appeal lies in its simplicity and non-invasive nature, positioning LIPUS as a promising avenue for clinical innovation. One particular area of interest is orthodontically induced inflammatory root resorption (OIIRR), an oftenunavoidable outcome of the orthodontic intervention, resulting in the permanent loss of root structure. Notably, OIIRR is the second most common form of root resorption (RR), surpassed only by root resorption related to pulpal infection. Given the high prevalence and potential long-term consequences of OIIRR, this literature review seeks to evaluate the efficacy of LIPUS as a therapeutic approach, with an emphasis on assessing its capacity to reduce the severity of OIIRR to a level of clinical significance. To conduct this systematic review, a comprehensive automated literature search was executed across multiple databases, including MEDLINE, Embase, PsycINFO, Web of Knowledge, Scopus, CINAHL, LILACS, SciELO, Cochrane, PubMed, trials registries, 3ie, and Google Scholar. Both forward and backward citation tracking was employed, encompassing studies published from database inception through January 2009 to April 2023. The review focused on randomized controlled trials (RCTs) that specifically evaluated the effects of low-intensity pulsed ultrasound therapy on orthodontically induced inflammatory root resorption (OIIRR), without restrictions of publication date. A stringent selection criterion was applied, and only studies demonstrating high levels of statistical significance were included. Ultimately, fourteen studies met the inclusion criteria and were subjected to further analysis. The overall quality of the included randomized controlled trials (RCTs) was rigorously assessed utilizing the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach. This analysis revealed certain methodological limitations that posed challenges in drawing definitive conclusions from the available evidence. Despite these constraints, the review offers invaluable insights that can inform and guide future research. Specifically, it delineates recommendations for targeted populations, necessary interventions, appropriate outcome measures, suitable study designs, and essential infrastructure to facilitate further investigations. The synthesis of these insights aims to enhance the development and application of low-intensity pulsed ultrasound therapy within the field of dentistry, thereby contributing to improved patient outcomes.
Collapse
Affiliation(s)
- Sunil Kumar Vaddamanu
- Department of Dental Technology, College of Applied Medical Sciences, King Khalid University, Abha, 62529, Saudi Arabia.
| | - Fahad Hussain Alhamoudi
- Department of Dental Technology, College of Applied Medical Sciences, King Khalid University, Abha, 62529, Saudi Arabia
| | - Rajesh Vyas
- Department of Dental Technology, College of Applied Medical Sciences, King Khalid University, Abha, 62529, Saudi Arabia
| | - Vishwanath Gurumurthy
- Department of Dental Technology, College of Applied Medical Sciences, King Khalid University, Abha, 62529, Saudi Arabia
| | - Yulia Siurkel
- International European University School of Medicine, Akademika Hlushkova Ave, 42В, Kyiv, 03187, Ukraine.
| | - Marco Cicciù
- Department of Biomedical and Surgical and Biomedical Sciences, Catania University, Catania, 95123, Italy
| | - Giuseppe Minervini
- Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India.
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, Caserta, 81100, Italy.
| |
Collapse
|
2
|
Westover L, Faulkner G, Flores-Mir C, Hodgetts W, Raboud D. Application of the advanced system for implant stability testing (ASIST) to natural teeth for noninvasive evaluation of the tooth root interface. J Biomech 2018; 69:129-137. [DOI: 10.1016/j.jbiomech.2018.01.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 01/09/2018] [Accepted: 01/14/2018] [Indexed: 11/28/2022]
|
3
|
Raza H, Major P, Dederich D, El-Bialy T. Effect of low-intensity pulsed ultrasound on orthodontically induced root resorption caused by torque: A prospective, double-blind, controlled clinical trial. Angle Orthod 2015; 86:550-7. [DOI: 10.2319/081915-554.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
ABSTRACT
Objectives:
To evaluate the effects of low-intensity pulsed ultrasound (LIPUS) on orthodontically induced tooth root resorption caused by torque in human subjects.
Materials and Methods:
Ten healthy patients (12–35 years of age) who required extraction of all first premolars as a part of their routine orthodontic treatment were recruited. A 15° twist was applied in the arch wire using 0.019 × 0.025-inch TMA in a 0.022-inch bracket system (Synergy R) that produced a buccal root torque of approximately 5 N/mm at the bracket level. Using a split mouth design, randomization, and blinding, one side of the arch received LIPUS for 20 minutes per day for 4 weeks at an incident intensity of 30 mW/cm2 of the transducers’ surface area. The other side served as a self-control, which received a sham transducer. After 4 weeks, all first premolars were extracted and micro–computed tomographic analysis was performed on these extracted teeth. A linear mixed-model statistical analysis was used.
Results:
LIPUS-treated teeth showed significantly less total volume of resorption lacunae compared to control teeth by a mean difference of (0.54 ± 0.09 mm3) (P < .001) and percentage of root resorption by a mean difference of (0.33 ± 0.05 mm3) (P < .001). In addition, significantly fewer resorption lacunae were found on all root surfaces in the LIPUS group compared to the control except in the instance of the distal surface.
Limitations:
This study was performed on limited number of cases during a 4-week period.
Conclusions:
LIPUS minimizes root resorption when applied during torque tooth movement over a 4-week period.
Collapse
Affiliation(s)
- Hasnain Raza
- Former Graduate Student, Department of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Paul Major
- Professor and Chair, School of Dentistry, Senior Associate Dean, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Douglas Dederich
- Professor of Periodontics, School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Tarek El-Bialy
- Associate Professor, Department of Orthodontics, School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|