1
|
Quan M, Zhang H, Han X, Ba Y, Cui X, Bi Y, Yi L, Li B. Single-Cell RNA Sequencing Reveals Transcriptional Landscape of Neutrophils and Highlights the Role of TREM-1 in EAE. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200278. [PMID: 38954781 PMCID: PMC11221915 DOI: 10.1212/nxi.0000000000200278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 05/06/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND AND OBJECTIVES Neutrophils, underestimated in multiple sclerosis (MS), are gaining increased attention for their significant functions in patients with MS and the experimental autoimmune encephalomyelitis (EAE) animal model. However, the precise role of neutrophils in cervical lymph nodes (CLNs), the primary CNS-draining lymph nodes where the autoimmune response is initiated during the progression of EAE, remains poorly understood. METHODS Applying single-cell RNA sequencing (scRNA-seq), we constructed a comprehensive immune cell atlas of CLNs during development of EAE. Through this atlas, we concentrated on and uncovered the transcriptional landscape, phenotypic and functional heterogeneity of neutrophils, and their crosstalk with immune cells within CLNs in the neuroinflammatory processes in EAE. RESULTS Notably, we observed a substantial increase in the neutrophil population in EAE mice, with a particular emphasis on the significant rise within the CLNs. Neutrophils in CLNs were categorized into 3 subtypes, and we explored the specific roles and developmental trajectories of each distinct neutrophil subtype. Neutrophils were found to engage in extensive interactions with other immune cells, playing crucial roles in T-cell activation. Moreover, our findings highlighted the strong migratory ability of neutrophils to CLNs, partly regulated by triggering the receptor expressed on myeloid cells 1 (TREM-1). Inhibiting TREM1 with LR12 prevents neutrophil migration both in vivo and in vitro. In addition, in patients with MS, we confirmed an increase in peripheral neutrophils with an upregulation of TREM-1. DISCUSSION Our research provides a comprehensive and precise single-cell atlas of CLNs in EAE, highlighting the role of neutrophils in regulating the periphery immune response. In addition, TREM-1 emerged as an essential regulator of neutrophil migration to CLNs, holding promise as a potential therapeutic target in MS.
Collapse
Affiliation(s)
- Moyuan Quan
- From the Department of Neurology (M.Q., H.Z., L.Y., B.L.), The Second Hospital of Hebei Medical University; the Key Laboratory of Hebei Neurology, Hebei Medical University, Ministry of Education, (M.Q., H.Z., L.Y., B.L.); and the Key Laboratory of Neurology of Hebei Province, (M.Q., H.Z., L.Y., B.L.), Shijiazhuang, Hebei, China; Department of Neurology (X.H.), Zhongshan People's Hospital, China; OE Biotech Co. (Yongbing Ba), Ltd. Shanghai, China; and School of Basic Medicine (X.C., Yanwei Bi), Hebei Medical University, Shijiazhuang, China
| | - Huining Zhang
- From the Department of Neurology (M.Q., H.Z., L.Y., B.L.), The Second Hospital of Hebei Medical University; the Key Laboratory of Hebei Neurology, Hebei Medical University, Ministry of Education, (M.Q., H.Z., L.Y., B.L.); and the Key Laboratory of Neurology of Hebei Province, (M.Q., H.Z., L.Y., B.L.), Shijiazhuang, Hebei, China; Department of Neurology (X.H.), Zhongshan People's Hospital, China; OE Biotech Co. (Yongbing Ba), Ltd. Shanghai, China; and School of Basic Medicine (X.C., Yanwei Bi), Hebei Medical University, Shijiazhuang, China
| | - Xianxian Han
- From the Department of Neurology (M.Q., H.Z., L.Y., B.L.), The Second Hospital of Hebei Medical University; the Key Laboratory of Hebei Neurology, Hebei Medical University, Ministry of Education, (M.Q., H.Z., L.Y., B.L.); and the Key Laboratory of Neurology of Hebei Province, (M.Q., H.Z., L.Y., B.L.), Shijiazhuang, Hebei, China; Department of Neurology (X.H.), Zhongshan People's Hospital, China; OE Biotech Co. (Yongbing Ba), Ltd. Shanghai, China; and School of Basic Medicine (X.C., Yanwei Bi), Hebei Medical University, Shijiazhuang, China
| | - Yongbing Ba
- From the Department of Neurology (M.Q., H.Z., L.Y., B.L.), The Second Hospital of Hebei Medical University; the Key Laboratory of Hebei Neurology, Hebei Medical University, Ministry of Education, (M.Q., H.Z., L.Y., B.L.); and the Key Laboratory of Neurology of Hebei Province, (M.Q., H.Z., L.Y., B.L.), Shijiazhuang, Hebei, China; Department of Neurology (X.H.), Zhongshan People's Hospital, China; OE Biotech Co. (Yongbing Ba), Ltd. Shanghai, China; and School of Basic Medicine (X.C., Yanwei Bi), Hebei Medical University, Shijiazhuang, China
| | - Xiaoyang Cui
- From the Department of Neurology (M.Q., H.Z., L.Y., B.L.), The Second Hospital of Hebei Medical University; the Key Laboratory of Hebei Neurology, Hebei Medical University, Ministry of Education, (M.Q., H.Z., L.Y., B.L.); and the Key Laboratory of Neurology of Hebei Province, (M.Q., H.Z., L.Y., B.L.), Shijiazhuang, Hebei, China; Department of Neurology (X.H.), Zhongshan People's Hospital, China; OE Biotech Co. (Yongbing Ba), Ltd. Shanghai, China; and School of Basic Medicine (X.C., Yanwei Bi), Hebei Medical University, Shijiazhuang, China
| | - Yanwei Bi
- From the Department of Neurology (M.Q., H.Z., L.Y., B.L.), The Second Hospital of Hebei Medical University; the Key Laboratory of Hebei Neurology, Hebei Medical University, Ministry of Education, (M.Q., H.Z., L.Y., B.L.); and the Key Laboratory of Neurology of Hebei Province, (M.Q., H.Z., L.Y., B.L.), Shijiazhuang, Hebei, China; Department of Neurology (X.H.), Zhongshan People's Hospital, China; OE Biotech Co. (Yongbing Ba), Ltd. Shanghai, China; and School of Basic Medicine (X.C., Yanwei Bi), Hebei Medical University, Shijiazhuang, China
| | - Le Yi
- From the Department of Neurology (M.Q., H.Z., L.Y., B.L.), The Second Hospital of Hebei Medical University; the Key Laboratory of Hebei Neurology, Hebei Medical University, Ministry of Education, (M.Q., H.Z., L.Y., B.L.); and the Key Laboratory of Neurology of Hebei Province, (M.Q., H.Z., L.Y., B.L.), Shijiazhuang, Hebei, China; Department of Neurology (X.H.), Zhongshan People's Hospital, China; OE Biotech Co. (Yongbing Ba), Ltd. Shanghai, China; and School of Basic Medicine (X.C., Yanwei Bi), Hebei Medical University, Shijiazhuang, China
| | - Bin Li
- From the Department of Neurology (M.Q., H.Z., L.Y., B.L.), The Second Hospital of Hebei Medical University; the Key Laboratory of Hebei Neurology, Hebei Medical University, Ministry of Education, (M.Q., H.Z., L.Y., B.L.); and the Key Laboratory of Neurology of Hebei Province, (M.Q., H.Z., L.Y., B.L.), Shijiazhuang, Hebei, China; Department of Neurology (X.H.), Zhongshan People's Hospital, China; OE Biotech Co. (Yongbing Ba), Ltd. Shanghai, China; and School of Basic Medicine (X.C., Yanwei Bi), Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
2
|
Tan LY, Cunliffe G, Hogan MP, Yeo XY, Oh C, Jin B, Kang J, Park J, Kwon MS, Kim M, Jung S. Emergence of the brain-border immune niches and their contribution to the development of neurodegenerative diseases. Front Immunol 2024; 15:1380063. [PMID: 38863704 PMCID: PMC11165048 DOI: 10.3389/fimmu.2024.1380063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/14/2024] [Indexed: 06/13/2024] Open
Abstract
Historically, the central nervous system (CNS) was regarded as 'immune-privileged', possessing its own distinct immune cell population. This immune privilege was thought to be established by a tight blood-brain barrier (BBB) and blood-cerebrospinal-fluid barrier (BCSFB), which prevented the crossing of peripheral immune cells and their secreted factors into the CNS parenchyma. However, recent studies have revealed the presence of peripheral immune cells in proximity to various brain-border niches such as the choroid plexus, cranial bone marrow (CBM), meninges, and perivascular spaces. Furthermore, emerging evidence suggests that peripheral immune cells may be able to infiltrate the brain through these sites and play significant roles in driving neuronal cell death and pathology progression in neurodegenerative disease. Thus, in this review, we explore how the brain-border immune niches may contribute to the pathogenesis of neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). We then discuss several emerging options for harnessing the neuroimmune potential of these niches to improve the prognosis and treatment of these debilitative disorders using novel insights from recent studies.
Collapse
Affiliation(s)
- Li Yang Tan
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Grace Cunliffe
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Michael Patrick Hogan
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Xin Yi Yeo
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chansik Oh
- Department of Medical Science, College of Medicine, CHA University, Seongnam, Republic of Korea
| | - Bohwan Jin
- Department of Medical Science, College of Medicine, CHA University, Seongnam, Republic of Korea
| | - Junmo Kang
- Department of Medical Science, College of Medicine, CHA University, Seongnam, Republic of Korea
| | - Junho Park
- Department of Pharmacology, Research Institute for Basic Medical Science, School of Medicine, CHA University, Seongnam, Republic of Korea
| | - Min-Soo Kwon
- Department of Pharmacology, Research Institute for Basic Medical Science, School of Medicine, CHA University, Seongnam, Republic of Korea
| | - MinYoung Kim
- Rehabilitation and Regeneration Research Center, CHA University School of Medicine, Seongnam, Republic of Korea
- Department of Biomedical Science, CHA University School of Medicine, Seongnam, Republic of Korea
- Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Sangyong Jung
- Department of Medical Science, College of Medicine, CHA University, Seongnam, Republic of Korea
| |
Collapse
|
3
|
Zhu L, Li H, Peng X, Li Z, Zhao S, Wu D, Chen J, Li S, Jia R, Li Z, Su W. Beneficial mechanisms of dimethyl fumarate in autoimmune uveitis: insights from single-cell RNA sequencing. J Neuroinflammation 2024; 21:112. [PMID: 38684986 PMCID: PMC11059727 DOI: 10.1186/s12974-024-03096-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/08/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Dimethyl fumarate (DMF) is a fumaric acid ester that exhibits immunoregulatory and anti-inflammatory properties. However, the function of DMF in autoimmune uveitis (AU) is incompletely understood, and studies comprehensively exploring the impact of DMF on immune cells are still lacking. METHODS To explore the function of DMF in uveitis and its underlying mechanisms, we conducted single-cell RNA sequencing (scRNA-seq) on the cervical draining lymph node (CDLN) cells of normal, experimental autoimmune uveitis (EAU), and DMF-treated EAU mice. Additionally, we integrated scRNA-seq data of the retina and CDLNs to identify the potential impact of DMF on ocular immune cell infiltration. Flow cytometry was conducted to verify the potential target molecules of DMF. RESULTS Our study showed that DMF treatment effectively ameliorated EAU symptoms. The proportional and transcriptional alterations in each immune cell type during EAU were reversed by DMF treatment. Bioinformatics analysis in our study indicated that the enhanced expression of Pim1 and Cxcr4 in EAU was reversed by DMF treatment. Further experiments demonstrated that DMF restored the balance between effector T (Teff) /regulatory T (Treg) cells through inhibiting the pathway of PIM1-protein kinase B (AKT)-Forkhead box O1 (FOXO1). By incorporating the scRNA-seq data of the retina from EAU mice into analysis, our study identified that T cells highly expressing Pim1 and Cxcr4 were enriched in the retina. DMF repressed the ocular infiltration of Teff cells, and this effect might depend on its inhibition of PIM1 and CXCR4 expression. Additionally, our study indicated that DMF might reduce the proportion of plasma cells by inhibiting PIM1 expression in B cells. CONCLUSIONS DMF effectively attenuated EAU symptoms. During EAU, DMF reversed the Teff/Treg cell imbalance and suppressed the ocular infiltration of Teff cells by inhibiting PIM1 and CXCR4 expression. Thus, DMF may act as a new drug option for the treatment of AU.
Collapse
Affiliation(s)
- Lei Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - He Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Xuening Peng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Zhaohuai Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Sichen Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Dongting Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Jialing Chen
- Sun Yat-sen University, Guangzhou, 510060, China
| | - Si Li
- Sun Yat-sen University, Guangzhou, 510060, China
| | - Renbing Jia
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China.
| | - Zuohong Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China.
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China.
| |
Collapse
|