1
|
Zhou Y, Gong X, You Y. Monitoring focused ultrasound ablation surgery (FUAS) using echo amplitudes of the therapeutic focused transducer. Med Eng Phys 2024; 133:104247. [PMID: 39557509 DOI: 10.1016/j.medengphy.2024.104247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/05/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024]
Abstract
OBJECTIVE B-mode sonography is commonly used to monitor focused ultrasound ablation surgery (FUAS), but has limitations in sensitivity. More accurate and reliable prediction of coagulation is required. METHODS The focused ultrasound (FUS) transducer was adapted for echo reception. Numerical simulations compared the normalized echo amplitudes from the FUS transducer and imaging probe at varying tissue depths and frequencies with a 3 mm necrosis at focus. An ex vivo experiment then evaluated echo changes from the FUS transducer and ultrasound imaging probe under different settings. Finally, coagulation prediction using FUS echo data was compared to sonography in a clinical ex vivo context. RESULTS The echo amplitudes from the FUS transducer exhibit a less pronounced decline with increasing tissue penetration depth compared to the ultrasound imaging probe. In ex vivo bovine liver experiments at depths of 2 cm and 4 cm, the FUS transducer detected normalized echo amplitudes that were significantly larger (i.e., 2∼3 folds) than those received by the ultrasound imaging probe. Moreover, multi-layered ex vivo tissue experiments that replicate clinical conditions revealed that coagulation prediction utilizing the FUS transducer's echo amplitudes achieved superior accuracy (91.2% vs. 60.3 %), sensitivity (92.1% vs. 54.5 %), and negative prediction (78.9% vs. 30.6 %), but similar specificity (88.2% vs. 84.6 %) and positive prediction (95.9% vs. 93.8 %) in comparison to sonography. CONCLUSION The echo amplitude of the FUS transducer serves as a sensitive and dependable metric for monitoring the FUAS outcomes. Its utilization may augment the procedure's safety and efficacy.
Collapse
Affiliation(s)
- Yufeng Zhou
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China; Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China; National Medical Products Administration (NMPA) Key Laboratory for Quality Evaluation of Ultrasonic Surgical Equipment, 507 Gaoxin Ave., Donghu New Technology Development Zone, Wuhan, Hubei, 430075, China.
| | - Xiaobo Gong
- National Engineering Research Center of Ultrasound Medicine, Chongqing, 401120, China
| | - Yaqin You
- National Engineering Research Center of Ultrasound Medicine, Chongqing, 401120, China
| |
Collapse
|
2
|
Li S, Tsui PH, Wu W, Wu S, Zhou Z. Ultrasound k-nearest neighbor entropy imaging: Theory, algorithm, and applications. ULTRASONICS 2024; 138:107256. [PMID: 38325231 DOI: 10.1016/j.ultras.2024.107256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/09/2024]
Abstract
Ultrasound information entropy is a flexible approach for analyzing ultrasound backscattering. Shannon entropy imaging based on probability distribution histograms (PDHs) has been implemented as a promising method for tissue characterization and diagnosis. However, the bin number affects the stability of entropy estimation. In this study, we introduced the k-nearest neighbor (KNN) algorithm to estimate entropy values and proposed ultrasound KNN entropy imaging. The proposed KNN estimator leveraged the Euclidean distance between data samples, rather than the histogram bins by conventional PDH estimators. We also proposed cumulative relative entropy (CRE) imaging to analyze time-series radiofrequency signals and applied it to monitor thermal lesions induced by microwave ablation (MWA). Computer simulation phantom experiments were conducted to validate and compare the performance of the proposed KNN entropy imaging, the conventional PDH entropy imaging, and Nakagami-m parametric imaging in detecting the variations of scatterer densities and visualizing inclusions. Clinical data of breast lesions were analyzed, and porcine liver MWA experiments ex vivo were conducted to validate the performance of KNN entropy imaging in classifying benign and malignant breast tumors and monitoring thermal lesions, respectively. Compared with PDH, the entropy estimation based on KNN was less affected by the tuning parameters. KNN entropy imaging was more sensitive to changes in scatterer densities and performed better visualizable capability than typical Shannon entropy (TSE) and Nakagami-m parametric imaging. Among different imaging methods, KNN-based Shannon entropy (KSE) imaging achieved the higher accuracy in classification of benign and malignant breast tumors and KNN-based CRE imaging had larger lesion-to-normal contrast when monitoring the ablated areas during MWA at different powers and treatment durations. Ultrasound KNN entropy imaging is a potential quantitative ultrasound approach for tissue characterization.
Collapse
Affiliation(s)
- Sinan Li
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Po-Hsiang Tsui
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Institute for Radiological Research, Chang Gung University, Taoyuan, Taiwan; Division of Pediatric Gastroenterology, Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Weiwei Wu
- College of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Shuicai Wu
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China.
| | - Zhuhuang Zhou
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China.
| |
Collapse
|
3
|
Li S, Zhou Z, Wu S, Wu W. Ultrasound Homodyned-K Contrast-Weighted Summation Parametric Imaging Based on H-scan for Detecting Microwave Ablation Zones. ULTRASONIC IMAGING 2023; 45:119-135. [PMID: 36995065 DOI: 10.1177/01617346231162928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The homodyned-K (HK) distribution is a generalized model of envelope statistics whose parameters α (the clustering parameter) and k (the coherent-to-diffuse signal ratio) can be used to monitor the thermal lesions. In this study, we proposed an ultrasound HK contrast-weighted summation (CWS) parametric imaging algorithm based on the H-scan technique and investigated the optimal window side length (WSL) of the HK parameters estimated by the XU estimator (an estimation method based on the first moment of the intensity and two log-moments, which was used in the proposed algorithm) through phantom simulations. H-scan diversified ultrasonic backscattered signals into low- and high-frequency passbands. After envelope detection and HK parameter estimation for each frequency band, the α and k parametric maps were obtained, respectively. According to the contrast between the target region and background, the (α or k) parametric maps of the dual-frequency band were weighted and summed, and then the CWS images were yielded by pseudo-color imaging. The proposed HK CWS parametric imaging algorithm was used to detect the microwave ablation coagulation zones of porcine liver ex vivo under different powers and treatment durations. The performance of the proposed algorithm was compared with that of the conventional HK parametric imaging and frequency diversity and compounding Nakagami imaging algorithms. For two-dimensional HK parametric imaging, it was found that a WSL equal to 4 pulse lengths of the transducer was sufficient for estimating the α and k parameters in terms of both parameter estimation stability and parametric imaging resolution. The HK CWS parametric imaging provided an improved contrast-to-noise ratio over conventional HK parametric imaging, and the HK αcws parametric imaging achieved the best accuracy and Dice score of coagulation zone detection.
Collapse
Affiliation(s)
- Sinan Li
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Zhuhuang Zhou
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Shuicai Wu
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Weiwei Wu
- College of Biomedical Engineering, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Li S, Zhou Z, Wu S, Wu W. A Review of Quantitative Ultrasound-Based Approaches to Thermometry and Ablation Zone Identification Over the Past Decade. ULTRASONIC IMAGING 2022; 44:213-228. [PMID: 35993226 DOI: 10.1177/01617346221120069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Percutaneous thermal therapy is an important clinical treatment method for some solid tumors. It is critical to use effective image visualization techniques to monitor the therapy process in real time because precise control of the therapeutic zone directly affects the prognosis of tumor treatment. Ultrasound is used in thermal therapy monitoring because of its real-time, non-invasive, non-ionizing radiation, and low-cost characteristics. This paper presents a review of nine quantitative ultrasound-based methods for thermal therapy monitoring and their advances over the last decade since 2011. These methods were analyzed and compared with respect to two applications: ultrasonic thermometry and ablation zone identification. The advantages and limitations of these methods were compared and discussed, and future developments were suggested.
Collapse
Affiliation(s)
- Sinan Li
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Zhuhuang Zhou
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Shuicai Wu
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Weiwei Wu
- College of Biomedical Engineering, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Karunakaran CP, Burgess MT, Rao MB, Holland CK, Mast TD. Effect of Overpressure on Acoustic Emissions and Treated Tissue Histology in ex Vivo Bulk Ultrasound Ablation. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:2360-2376. [PMID: 34023187 PMCID: PMC8243850 DOI: 10.1016/j.ultrasmedbio.2021.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 04/08/2021] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
Bulk ultrasound ablation is a thermal therapy approach in which tissue is heated by unfocused or weakly focused sonication (average intensities on the order of 100 W/cm2) to achieve coagulative necrosis within a few minutes exposure time. Assessing the role of bubble activity, including acoustic cavitation and tissue vaporization, in bulk ultrasound ablation may help in making bulk ultrasound ablation safer and more effective for clinical applications. Here, two series of ex vivo ablation trials were conducted to investigate the role of bubble activity and tissue vaporization in bulk ultrasound ablation. Fresh bovine liver tissue was ablated with unfocused, continuous-wave ultrasound using ultrasound image-ablate arrays sonicating at 31 W/cm2 (0.9 MPa amplitude) for either 20 min at a frequency of 3.1 MHz or 10 min at 4.8 MHz. Tissue specimens were maintained at a static overpressure of either 0.52 or 1.2 MPa to suppress bubble activity and tissue vaporization or at atmospheric pressure for control groups. A passive cavitation detector was used to record subharmonic (1.55 or 2.4 MHz), broadband (1.2-1.5 MHz) and low-frequency (5-20 kHz) acoustic emissions. Treated tissue was stained with 2% triphenyl tetrazolium chloride to evaluate thermal lesion dimensions. Subharmonic emissions were significantly reduced in overpressure groups compared with control groups. Correlations observed between acoustic emissions and lesion dimensions were significant and positive for the 3.1-MHz series, but significant and negative for the 4.8-MHz series. The results indicate that for bulk ultrasound ablation, where both acoustic cavitation and tissue vaporization are possible, bubble activity can enhance ablation in the absence of tissue vaporization, but can reduce thermal lesion dimensions in the presence of vaporization.
Collapse
Affiliation(s)
| | - Mark T Burgess
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA
| | - Marepalli B Rao
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA; Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio, USA
| | - Christy K Holland
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA; Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, Ohio, USA
| | - T Douglas Mast
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA; Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, Ohio, USA.
| |
Collapse
|
6
|
Hyperspectral image-based analysis of thermal damage for ex-vivo bovine liver utilizing radiofrequency ablation. Surg Oncol 2021; 38:101564. [PMID: 33865183 DOI: 10.1016/j.suronc.2021.101564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 02/23/2021] [Accepted: 03/28/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND & OBJECTIVE Thermal ablation is the predominant methodology to treat liver tumors for segregating patients who are not permitted to have surgical intervention. However, noticing or predicting the size of the thermal strategies is a challenging endeavor. We aim to analyze the effects of ablation district volume following radiofrequency ablation (RFA) of ex-vivo liver exploiting a custom Hyperspectral Imaging (HSI) system. MATERIALS AND METHODS RFA was conducted on the ex-vivo bovine liver at focal and peripheral blood vessel sites and observed by Custom HSI system, which has been designed to assess the exactness and proficiency using visible and near-infrared wavelengths region for tissue thermal effect. The experiment comprised up to ten trials with RFA. The experiment was carried out in two stages to assess the percentage of the thermal effect on the investigated sample superficially and for the side penetration effect. Measuring the diffuse reflectance (Ŗd) of the sample to identify the spectral reflectance shift which could differentiate between normal and ablated tissue exploiting the designed cross-correlation algorithm for monitoring of thermal ablation. RESULTS Determination of the diffuse reflection (Ŗd) spectral signature responses from normal, thermal effected, and thermal ablation regions of the investigated liver sample. Where the ideal wavelength range at (600-640 nm) could discriminate between these different regions. Then, exploited the converted RGB image of the HS liver tissue after RFA for more validations which shows that the optimum wavelength for differentiation at (530-560 nm and 600-640 nm). Finally, applying statistical analysis to validate our results presenting that wavelength 600 nm had the highest standard deviation (δ) to differentiate between various thermally affected regions regarding the normal tissue and wavelength 640 nm shows the highest (δ) to differentiate between the ablated and normal regions. CONCLUSION The designed and implemented medical imaging system incorporated the hyperspectral camera capabilities with the associate cross-correlation algorithm that could successfully distinguish between the ablated and thermally affected regions to assist the surgery during the tumor therapy.
Collapse
|
7
|
Tissue characterization utilizing hyperspectral imaging for liver thermal ablation. Photodiagnosis Photodyn Ther 2020; 31:101899. [DOI: 10.1016/j.pdpdt.2020.101899] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023]
|
8
|
Zhang S, Wu S, Shang S, Qin X, Jia X, Li D, Cui Z, Xu T, Niu G, Bouakaz A, Wan M. Detection and Monitoring of Thermal Lesions Induced by Microwave Ablation Using Ultrasound Imaging and Convolutional Neural Networks. IEEE J Biomed Health Inform 2020; 24:965-973. [DOI: 10.1109/jbhi.2019.2939810] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Abbass MA, Ahmad SA, Mahalingam N, Krothapalli KS, Masterson JA, Rao MB, Barthe PG, Mast TD. In vivo ultrasound thermal ablation control using echo decorrelation imaging in rabbit liver and VX2 tumor. PLoS One 2019; 14:e0226001. [PMID: 31805129 PMCID: PMC6894854 DOI: 10.1371/journal.pone.0226001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 11/18/2019] [Indexed: 12/21/2022] Open
Abstract
The utility of echo decorrelation imaging feedback for real-time control of in vivo ultrasound thermal ablation was assessed in rabbit liver with VX2 tumor. High-intensity focused ultrasound (HIFU) and unfocused (bulk) ablation were performed using 5 MHz linear image-ablate arrays. Treatments comprised up to nine lower-power sonications, followed by up to nine higher-power sonications, ceasing when the average cumulative echo decorrelation within a control region of interest exceeded a predefined threshold (- 2.3, log10-scaled echo decorrelation per millisecond, corresponding to 90% specificity for tumor ablation prediction in previous in vivo experiments). This threshold was exceeded in all cases for both HIFU (N = 12) and bulk (N = 8) ablation. Controlled HIFU trials achieved a significantly higher average ablation rate compared to comparable ablation trials without image-based control, reported previously. Both controlled HIFU and bulk ablation trials required significantly less treatment time than these previous uncontrolled trials. Prediction of local liver and VX2 tumor ablation using echo decorrelation was tested using receiver operator characteristic curve analysis, showing prediction capability statistically equivalent to uncontrolled trials. Compared to uncontrolled trials, controlled trials resulted in smaller thermal ablation regions and higher contrast between echo decorrelation in treated vs. untreated regions. These results indicate that control using echo decorrelation imaging may reduce treatment duration and increase treatment reliability for in vivo thermal ablation.
Collapse
Affiliation(s)
- Mohamed A. Abbass
- Dept of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Syed A. Ahmad
- Dept of Surgery, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Neeraja Mahalingam
- Dept of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - K. Sameer Krothapalli
- Dept of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Jack A. Masterson
- Dept of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Marepalli B. Rao
- Dept of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, United States of America
- Dept of Environmental Health, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Peter G. Barthe
- Guided Therapy Systems/Ardent Sound, Mesa, Arizona, United States of America
| | - T. Douglas Mast
- Dept of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, United States of America
| |
Collapse
|
10
|
Zhou Z, Wang Y, Song S, Wu W, Wu S, Tsui PH. Monitoring Microwave Ablation Using Ultrasound Echo Decorrelation Imaging: An ex vivo Study. SENSORS (BASEL, SWITZERLAND) 2019; 19:E977. [PMID: 30823609 PMCID: PMC6412341 DOI: 10.3390/s19040977] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/17/2019] [Accepted: 02/21/2019] [Indexed: 12/19/2022]
Abstract
In this study, a microwave-induced ablation zone (thermal lesion) monitoring method based on ultrasound echo decorrelation imaging was proposed. A total of 15 cases of ex vivo porcine liver microwave ablation (MWA) experiments were carried out. Ultrasound radiofrequency (RF) signals at different times during MWA were acquired using a commercial clinical ultrasound scanner with a 7.5-MHz linear-array transducer. Instantaneous and cumulative echo decorrelation images of two adjacent frames of RF data were calculated. Polynomial approximation images were obtained on the basis of the thresholded cumulative echo decorrelation images. Experimental results showed that the instantaneous echo decorrelation images outperformed conventional B-mode images in monitoring microwave-induced thermal lesions. Using gross pathology measurements as the reference standard, the estimation of thermal lesions using the polynomial approximation images yielded an average accuracy of 88.60%. We concluded that instantaneous ultrasound echo decorrelation imaging is capable of monitoring the change of thermal lesions during MWA, and cumulative ultrasound echo decorrelation imaging and polynomial approximation imaging are feasible for quantitatively depicting thermal lesions.
Collapse
Affiliation(s)
- Zhuhuang Zhou
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Yue Wang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Shuang Song
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Weiwei Wu
- College of Biomedical Engineering, Capital Medical University, Beijing 100054, China.
| | - Shuicai Wu
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Po-Hsiang Tsui
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
- Medical Imaging Research Center, Institute for Radiological Research, Chang Gung University and Chang Gung Memorial Hospital at Linkou, Taoyuan 33302, Taiwan.
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan 33302, Taiwan.
| |
Collapse
|
11
|
Raymond JL, Cleveland RO, Roy RA. HIFU-induced changes in optical scattering and absorption of tissue over nine orders of thermal dose. Phys Med Biol 2018; 63:245001. [PMID: 30524076 DOI: 10.1088/1361-6560/aaed69] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The optical properties of tissue change during thermal ablation. Multi-modal methods such as acousto-optic (AO) and photo-acoustic (PA) imaging may provide a real-time, direct measure of lesion formation. Baseline changes in optical properties have been previously measured over limited ranges of thermal dose for tissues exposed to a temperature-controlled water bath, however, there is scant data for optical properties of lesions created by HIFU. In this work, the optical scattering and absorption coefficients from 400-1300 nm of excised chicken breast exposed to HIFU were measured using an integrating sphere spectrophotometric technique. HIFU-induced spatiotemporal temperature elevations were measured using an infrared camera and used to calculate the thermal dose delivered to a localized region of tissue. Results obtained over a range of thermal dose spanning 9 orders of magnitude show that the reduced scattering coefficient increases for HIFU exposures exceeding a threshold thermal dose of CEM43 = 600 ± 81 cumulative equivalent minutes. HIFU-induced thermal damage results in changes in scattering over all optical wavelengths, with a 2.5-fold increase for thermal lesions exceeding 70 °C. The tissue absorption coefficient was also found to increase for thermally lesioned tissue, however, the magnitude was strongly dependent on the optical wavelength and there was substantial sample-to-sample variability, such that the existence of a threshold thermal dose could not be determined. Therapeutic windows, where the optical penetration depth is expected to be greatest, were identified in the near infrared regime centered near 900 nm and 1100 nm. These data motivate further research to improve the real-time AO and PA sensing of lesion formation during HIFU therapy as an alternative to thermometry.
Collapse
Affiliation(s)
- Jason L Raymond
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kingdom. Author to whom any correspondence should be addressed
| | | | | |
Collapse
|
12
|
Abbass MA, Garbo AJ, Mahalingam N, Killin JK, Mast TD. Optimized Echo Decorrelation Imaging Feedback for Bulk Ultrasound Ablation Control. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:1743-1755. [PMID: 29994657 PMCID: PMC6294441 DOI: 10.1109/tuffc.2018.2847599] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Feasibility of controlling bulk ultrasound (US) thermal ablation using echo decorrelation imaging was investigated in ex vivo bovine liver. The first of two ablation and control procedures used a sequence of constant-intensity sonication cycles, ceased when the minimum echo decorrelation within a control region of interest (ROI) exceeded a predetermined threshold. The second procedure used a variable-intensity sonication sequence, with spatially averaged decorrelation as the stopping criterion. US exposures and echo decorrelation imaging were performed by a linear image-ablate array. Based on preliminary experiments, control ROIs and thresholds for the minimum-decorrelation and average-decorrelation criteria were specified. Controlled trials for the minimum-decorrelation and average-decorrelation criteria were compared with uncontrolled trials employing 9 or 18 cycles of matching sonication sequences. Lesion dimensions, treatment times, ablation rates, and areas under receiver operating characteristic curves were statistically compared. Successfully controlled trials using both criteria required significantly shorter treatment times than corresponding 18-cycle treatments, with better ablation prediction performance than uncontrolled 9-cycle and 18-cycle treatments. Either control approach resulted in greater ablation rate than corresponding 9-cycle or 18-cycle uncontrolled approaches. A post hoc analysis studied the effect of exchanging control criteria between the two series of controlled experiments. For either group, the average time needed to exceed the alternative decorrelation threshold approximately matched the average duration of successfully controlled experimental trials. These results indicate that either approach, using minimum-decorrelation or average-decorrelation criteria, is feasible for control of bulk US ablation. In addition, use of a variable-intensity sonication sequence for bulk US thermal ablation can result in larger ablated regions compared to constant-intensity sonication sequences.
Collapse
|
13
|
Zhang S, Shang S, Han Y, Gu C, Wu S, Liu S, Niu G, Bouakaz A, Wan M. Ex Vivo and In Vivo Monitoring and Characterization of Thermal Lesions by High-Intensity Focused Ultrasound and Microwave Ablation Using Ultrasonic Nakagami Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:1701-1710. [PMID: 29969420 DOI: 10.1109/tmi.2018.2829934] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The feasibility of ultrasonic Nakagami imaging to evaluate thermal lesions by high-intensity focused ultrasound and microwave ablation was explored in ex vivo and in vivo liver models. Dynamic changes of the ultrasonic Nakagami parameter in thermal lesions were calculated, and ultrasonic B-mode and Nakagami images were reconstructed simultaneously. The contrast-to-noise ratio (CNR) between thermal lesions and normal tissue was used to estimate the contrast resolution of the monitoring images. After thermal ablation, a bright hyper-echoic region appeared in the ultrasonic B-mode and Nakagami images, identifying the thermal lesion. During thermal ablation, mean values of Nakagami parameter showed an increasing trend from 0.72 to 1.01 for the ex vivo model and 0.54 to 0.72 for the in vivo model. After thermal ablation, mean CNR values of the ultrasonic Nakagami images were 1.29 dB (ex vivo) and 0.80 dB (in vivo), significantly higher ( ) than those for B-mode images. Thermal lesion size, assessed using ultrasonic Nakagami images, shows a good correlation to those obtained from the gross-pathology images (for the ex vivo model: length, = 0.96; width, = 0.90; for the in vivo model: length, = 0.95; width, = 0.85). This preliminary study suggests that ultrasonic Nakagami parameter may have a potential use in evaluating the formation of thermal lesions with better image contrast. Moreover, ultrasonic Nakagami imaging combined with B-mode imaging may be utilized as an alternative modality in developing monitoring systems for image-guided thermal ablation treatments.
Collapse
|
14
|
Zhang S, Xu R, Shang S, Han Y, Liu S, Xu T, Gu C, Zhu X, Niu G, Wan M. In vivo monitoring of microwave ablation in a porcine model using ultrasonic differential attenuation coefficient intercept imaging. Int J Hyperthermia 2018; 34:1157-1170. [DOI: 10.1080/02656736.2018.1437477] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Siyuan Zhang
- Department of Biomedical Engineering, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Ranxiang Xu
- Department of Biomedical Engineering, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Shaoqiang Shang
- Department of Biomedical Engineering, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Yuqiang Han
- Department of Biomedical Engineering, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Sihao Liu
- Department of Biomedical Engineering, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Tianqi Xu
- Department of Biomedical Engineering, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Chunming Gu
- Department of Biomedical Engineering, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Xingguang Zhu
- Department of Biomedical Engineering, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, People’s Republic of China
- Medical Engineering Division, Beijing HuiLongGuan Hospital, Beijing, People's Republic of China
| | - Gang Niu
- Department of Radiology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Mingxi Wan
- Department of Biomedical Engineering, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| |
Collapse
|
15
|
Abbass MA, Killin JK, Mahalingam N, Hooi FM, Barthe PG, Mast TD. Real-Time Spatiotemporal Control of High-Intensity Focused Ultrasound Thermal Ablation Using Echo Decorrelation Imaging in ex Vivo Bovine Liver. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:199-213. [PMID: 29074273 PMCID: PMC5712268 DOI: 10.1016/j.ultrasmedbio.2017.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 08/28/2017] [Accepted: 09/07/2017] [Indexed: 05/05/2023]
Abstract
The ability to control high-intensity focused ultrasound (HIFU) thermal ablation using echo decorrelation imaging feedback was evaluated in ex vivo bovine liver. Sonications were automatically ceased when the minimum cumulative echo decorrelation within the region of interest exceeded an ablation control threshold, determined from preliminary experiments as -2.7 (log-scaled decorrelation per millisecond), corresponding to 90% specificity for local ablation prediction. Controlled HIFU thermal ablation experiments were compared with uncontrolled experiments employing two, five or nine sonication cycles. Means and standard errors of the lesion width, area and depth, as well as receiver operating characteristic curves testing ablation prediction performance, were computed for each group. Controlled trials exhibited significantly smaller average lesion area, width and treatment time than five-cycle or nine-cycle uncontrolled trials and also had significantly greater prediction capability than two-cycle uncontrolled trials. These results suggest echo decorrelation imaging is an effective approach to real-time HIFU ablation control.
Collapse
Affiliation(s)
- Mohamed A Abbass
- Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jakob K Killin
- Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA
| | | | - Fong Ming Hooi
- Ultrasound Division, Siemens Healthcare, Issaquah, Washington, USA
| | | | - T Douglas Mast
- Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA.
| |
Collapse
|