1
|
Lee JE, Jeon HJ, Lee OJ, Lim HG. Diagnosis of diabetes mellitus using high frequency ultrasound and convolutional neural network. ULTRASONICS 2024; 136:107167. [PMID: 37757513 DOI: 10.1016/j.ultras.2023.107167] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/23/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
The incidence of diabetes mellitus has been increasing, prompting the search for non-invasive diagnostic methods. Although current methods exist, these have certain limitations, such as low reliability and accuracy, difficulty in individual patient adjustment, and discomfort during use. This paper presents a novel approach for diagnosing diabetes using high-frequency ultrasound (HFU) and a convolutional neural network (CNN). This method is based on the observation that glucose in red blood cells (RBCs) forms glycated hemoglobin (HbA1c) and accumulates on its surface. The study incubated RBCs with different glucose concentrations, collected acoustic reflection signals from them using a custom-designed 90-MHz transducer, and analyzed the signals using a CNN. The CNN was applied to the frequency spectra and spectrograms of the signal to identify correlations between changes in RBC properties owing to glucose concentration and signal features. The results confirmed the efficacy of the CNN-based approach with a classification accuracy of 0.98. This non-invasive diagnostic technology using HFU and CNN holds promise for in vivo diagnosis without the need for blood collection.
Collapse
Affiliation(s)
- Jeong Eun Lee
- Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Hyeon-Ju Jeon
- Data Assimilation Group, Korea Institute of Atmospheric Prediction Systems, Seoul 07071, Republic of Korea
| | - O-Joun Lee
- Department of Artificial Intelligence, The Catholic University of Korea, Bucheon 14662, Republic of Korea.
| | - Hae Gyun Lim
- Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
2
|
Vigetti L, Tardieux I. Fostering innovation to solve the biomechanics of microbe-host interactions: Focus on the adhesive forces underlying Apicomplexa parasite biology. Biol Cell 2023; 115:e202300016. [PMID: 37227253 DOI: 10.1111/boc.202300016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 05/26/2023]
Abstract
The protozoa, Toxoplasma gondii and Plasmodium spp., are preeminent members of the Apicomplexa parasitic phylum in large part due to their public health and economic impact. Hence, they serve as model unicellular eukaryotes with which to explore the repertoire of molecular and cellular strategies that specific developmental morphotypes deploy to timely adjust to their host(s) in order to perpetuate. In particular, host tissue- and cell-invasive morphotypes termed zoites alternate extracellular and intracellular lifestyles, thereby sensing and reacting to a wealth of host-derived biomechanical cues over their partnership. In the recent years, biophysical tools especially related to real time force measurement have been introduced, teaching us how creative are these microbes to shape a unique motility system that powers fast gliding through a variety of extracellular matrices, across cellular barriers, in vascular systems or into host cells. Equally performant was this toolkit to start illuminating how parasites manipulate their hosting cell adhesive and rheological properties to their advantage. In this review, besides highlighting major discoveries along the way, we discuss the most promising development, synergy, and multimodal integration in active noninvasive force microscopy methods. These should in the near future unlock current limitations and allow capturing, from molecules to tissues, the many biomechanical and biophysical interplays over the dynamic host and microbe partnership.
Collapse
Affiliation(s)
- Luis Vigetti
- Team Biomechanics of Host-Parasite Interactions, Institute for Advanced Biosciences, CNRS UMR5309, INSERM U1209, University of Grenoble Alpes, Grenoble, France
| | - Isabelle Tardieux
- Team Biomechanics of Host-Parasite Interactions, Institute for Advanced Biosciences, CNRS UMR5309, INSERM U1209, University of Grenoble Alpes, Grenoble, France
| |
Collapse
|
3
|
Grigorev GV, Lebedev AV, Wang X, Qian X, Maksimov GV, Lin L. Advances in Microfluidics for Single Red Blood Cell Analysis. BIOSENSORS 2023; 13:117. [PMID: 36671952 PMCID: PMC9856164 DOI: 10.3390/bios13010117] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/04/2022] [Accepted: 12/23/2022] [Indexed: 05/24/2023]
Abstract
The utilizations of microfluidic chips for single RBC (red blood cell) studies have attracted great interests in recent years to filter, trap, analyze, and release single erythrocytes for various applications. Researchers in this field have highlighted the vast potential in developing micro devices for industrial and academia usages, including lab-on-a-chip and organ-on-a-chip systems. This article critically reviews the current state-of-the-art and recent advances of microfluidics for single RBC analyses, including integrated sensors and microfluidic platforms for microscopic/tomographic/spectroscopic single RBC analyses, trapping arrays (including bifurcating channels), dielectrophoretic and agglutination/aggregation studies, as well as clinical implications covering cancer, sepsis, prenatal, and Sickle Cell diseases. Microfluidics based RBC microarrays, sorting/counting and trapping techniques (including acoustic, dielectrophoretic, hydrodynamic, magnetic, and optical techniques) are also reviewed. Lastly, organs on chips, multi-organ chips, and drug discovery involving single RBC are described. The limitations and drawbacks of each technology are addressed and future prospects are discussed.
Collapse
Affiliation(s)
- Georgii V. Grigorev
- Data Science and Information Technology Research Center, Tsinghua Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
- Mechanical Engineering Department, University of California in Berkeley, Berkeley, CA 94720, USA
- School of Information Technology, Cherepovets State University, 162600 Cherepovets, Russia
| | - Alexander V. Lebedev
- Machine Building Department, Bauman Moscow State University, 105005 Moscow, Russia
| | - Xiaohao Wang
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xiang Qian
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - George V. Maksimov
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Physical metallurgy Department, Federal State Autonomous Educational Institution of Higher Education National Research Technological University “MISiS”, 119049 Moscow, Russia
| | - Liwei Lin
- Mechanical Engineering Department, University of California in Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
4
|
Peng H, Mao L, Qian X, Lu X, Jiang L, Sun Y, Zhou Q. Acoustic Energy Controlled Nanoparticle Aggregation for Nanotherapy. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:735-744. [PMID: 31794392 DOI: 10.1109/tuffc.2019.2956043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Patients with unresectable or nonablatable tumors are difficult to cure, but nanotherapy combining targeted nanoparticles has many severe side effects due to the toxicities of anticancer drugs. We found that acoustic energy can produce a local region with high concentration from a low concentration suspended liquid of nano-SiO2 particles at 2.5 MHz. Our calculated results show that the main reason for aggregation is the synthesized effect of the potential well of acoustic energy and streaming to trap them. In addition, the aggregated region can be manipulated to a targeted position in the vessel phantom by moving the ultrasound transducer external to the body. This noninvasive manipulation of suspended nanoparticles can rapidly increase the local drug concentration, but reduce the total dosage of anticancer drugs, which has the potential to be used for patients with advanced tumors by improving the physiological effects and reducing the side effects.
Collapse
|
5
|
Liu Q, Hu J, Minin IV, Minin OV. High-Performance Ultrasonic Tweezers for Manipulation of Motile and Still Single Cells in a Droplet. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:3018-3027. [PMID: 31481255 DOI: 10.1016/j.ultrasmedbio.2019.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 07/22/2019] [Accepted: 08/01/2019] [Indexed: 06/10/2023]
Abstract
The manipulation of motile and still single cells with the simultaneous features of selective trapping, 3-D path free transport, position-controllable release and little heat damage has been a significant challenge. We developed an ultrasonic method for capturing motile and still single cells with the aforementioned features in a droplet. During manipulation, a micromanipulation probe (MMP), which vibrated linearly with a trajectory parallel to a silicon substrate, was immersed in the droplet and was not in contact with the substrate. Motile and still single cells, such as Chattonella marina with a length of 30-50 μm and yeast cells with a diameter of 3-10 μm, at the interface between the droplet and substrate were selectively sucked onto the vibrating MMP and transported via a 3-D route inside the droplet by moving the MMP (or the device). The MMP and captured single cells were in contact, making the release position controllable. The measured temperature rise of the MMP was <0.1°C; thus, it is competitive for the manipulation of biological samples. Finite-element analyses revealed that the contact-type capture was due to acoustic radiation force generated by the ultrasonic field around the vibrating MMP. The dependence of the capture capability and working frequency bandwidth on the working conditions was investigated experimentally.
Collapse
Affiliation(s)
- Qingyang Liu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Junhui Hu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, China.
| | - Igor V Minin
- Tomsk State University, Tomsk, Russia; Tomsk Polytechnical University, Tomsk, Russia
| | - Oleg V Minin
- Tomsk State University, Tomsk, Russia; Tomsk Polytechnical University, Tomsk, Russia
| |
Collapse
|
6
|
Urban MW. Production of acoustic radiation force using ultrasound: methods and applications. Expert Rev Med Devices 2018; 15:819-834. [PMID: 30350736 DOI: 10.1080/17434440.2018.1538782] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Acoustic radiation force (ARF) is used in many biomedical applications. The transfer of momentum in acoustic waves can be used in a multitude of ways to perturb tissue and manipulate cells. AREAS COVERED This review will briefly cover the acoustic theory related to ARF, particularly that related to application in tissues. The use of ARF in measurement of mechanical properties will be treated in detail with emphasis on the spatial and temporal modulation of the ARF. Additional topics covered will be the manipulation of particles with ARF, correction of phase aberration with ARF, modulation of cellular behavior with ARF, and bioeffects related to ARF use. EXPERT COMMENTARY The use of ARF can be tailored to specific applications for measurements of mechanical properties or correction of focusing for ultrasound beams. Additionally, noncontact manipulation of particles and cells with ARF enables a wide array of applications for tissue engineering and biosensing.
Collapse
Affiliation(s)
- Matthew W Urban
- a Department of Radiology , Mayo Clinic , Rochester , MN , USA
| |
Collapse
|
7
|
Liu HC, Gang EJ, Kim HN, Lim HG, Jung H, Chen R, Abdel-Azim H, Shung KK, Kim YM. Characterizing Deformability of Drug Resistant Patient-Derived Acute Lymphoblastic Leukemia (ALL) Cells Using Acoustic Tweezers. Sci Rep 2018; 8:15708. [PMID: 30356155 PMCID: PMC6200731 DOI: 10.1038/s41598-018-34024-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 10/05/2018] [Indexed: 12/31/2022] Open
Abstract
The role of cell mechanics in cancer cells is a novel research area that has resulted in the identification of new mechanisms of therapy resistance. Single beam acoustic (SBA) tweezers are a promising technology for the quantification of the mechanical phenotype of cells. Our previous study showed that SBA tweezers can be used to quantify the deformability of adherent breast cancer cell lines. The physical properties of patient-derived (primary) pre-B acute lymphoblastic leukemia (ALL) cells involved in chemotherapeutic resistance have not been widely investigated. Here, we demonstrate the feasibility of analyzing primary pre-B ALL cells from four cases using SBA tweezers. ALL cells showed increased deformability with increasing acoustic pressure of the SBA tweezers. Moreover, ALL cells that are resistant to chemotherapeutic drugs were more deformable than were untreated ALL cells. We demonstrated that SBA tweezers can quantify the deformability of nonadherent leukemia cells and discriminate this mechanical phenotype in chemotherapy-resistant leukemia cells in a contact- and label-free manner.
Collapse
Affiliation(s)
- Hsiao-Chuan Liu
- Department of Biomedical Engineering and NIH Ultrasonic Transducer Resource Center, University of Southern California, 1042 Downey Way, Los Angeles, CA, 90089, USA.,Department of Pediatrics, Division of Hematology, Oncology, Blood and Marrow Transplantation, Children's Hospital Los Angeles, University of Southern California, 4650 Sunset Blvd, Los Angeles, CA, 90027, USA
| | - Eun Ji Gang
- Department of Pediatrics, Division of Hematology, Oncology, Blood and Marrow Transplantation, Children's Hospital Los Angeles, University of Southern California, 4650 Sunset Blvd, Los Angeles, CA, 90027, USA
| | - Hye Na Kim
- Department of Pediatrics, Division of Hematology, Oncology, Blood and Marrow Transplantation, Children's Hospital Los Angeles, University of Southern California, 4650 Sunset Blvd, Los Angeles, CA, 90027, USA
| | - Hae Gyun Lim
- Department of Creative IT Engineering and Future IT Innovation Laboratory, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Hayong Jung
- Department of Biomedical Engineering and NIH Ultrasonic Transducer Resource Center, University of Southern California, 1042 Downey Way, Los Angeles, CA, 90089, USA
| | - Ruimin Chen
- Department of Biomedical Engineering and NIH Ultrasonic Transducer Resource Center, University of Southern California, 1042 Downey Way, Los Angeles, CA, 90089, USA
| | - Hisham Abdel-Azim
- Department of Pediatrics, Division of Hematology, Oncology, Blood and Marrow Transplantation, Children's Hospital Los Angeles, University of Southern California, 4650 Sunset Blvd, Los Angeles, CA, 90027, USA
| | - K Kirk Shung
- Department of Biomedical Engineering and NIH Ultrasonic Transducer Resource Center, University of Southern California, 1042 Downey Way, Los Angeles, CA, 90089, USA.
| | - Yong-Mi Kim
- Department of Pediatrics, Division of Hematology, Oncology, Blood and Marrow Transplantation, Children's Hospital Los Angeles, University of Southern California, 4650 Sunset Blvd, Los Angeles, CA, 90027, USA.
| |
Collapse
|