1
|
Mueller EN, Alina TB, Curry SD, Ganguly S, Cha JN, Goodwin AP. Silica-coated gold nanorods with hydrophobic modification show both enhanced two-photon fluorescence and ultrasound drug release. J Mater Chem B 2022; 10:9789-9793. [PMID: 36420680 DOI: 10.1039/d2tb02197h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Hydrophobically-modified silica-coated gold nanorods are presented here as multifunctional theranostic agents. A single modification both increases two-photon fluorescence and promotes cavitation-based acoustic signal for imaging. A two-fold greater release of small molecule drugs was observed under ultrasound-mediated conditions as compared to passive release without ultrasound.
Collapse
Affiliation(s)
- Evan N Mueller
- Department of Chemical and Biological Engineering, University of Colorado, 596 UCB, Boulder, Colorado 80309, USA.
| | - Talaial B Alina
- Department of Chemical and Biological Engineering, University of Colorado, 596 UCB, Boulder, Colorado 80309, USA.
| | - Shane D Curry
- Department of Chemical and Biological Engineering, University of Colorado, 596 UCB, Boulder, Colorado 80309, USA.
| | - Saheli Ganguly
- Department of Chemical and Biological Engineering, University of Colorado, 596 UCB, Boulder, Colorado 80309, USA.
| | - Jennifer N Cha
- Department of Chemical and Biological Engineering, University of Colorado, 596 UCB, Boulder, Colorado 80309, USA.
| | - Andrew P Goodwin
- Department of Chemical and Biological Engineering, University of Colorado, 596 UCB, Boulder, Colorado 80309, USA.
| |
Collapse
|
2
|
Radjenovic S, Dörl G, Gaal M, Beisteiner R. Safety of Clinical Ultrasound Neuromodulation. Brain Sci 2022; 12:1277. [PMID: 36291211 PMCID: PMC9599299 DOI: 10.3390/brainsci12101277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022] Open
Abstract
Transcranial ultrasound holds much potential as a safe, non-invasive modality for navigated neuromodulation, with low-intensity focused ultrasound (FUS) and transcranial pulse stimulation (TPS) representing the two main modalities. While neuroscientific and preclinical applications have received much interest, clinical applications are still relatively scarce. For safety considerations, the current literature is largely based on guidelines for ultrasound imaging that uses various physical parameters to describe the ultrasound pulse form and expected bioeffects. However, the safety situation for neuromodulation is inherently different. This article provides an overview of relevant ultrasound parameters with a focus on bioeffects relevant for safe clinical applications. Further, a retrospective analysis of safety data for clinical TPS applications in patients is presented.
Collapse
Affiliation(s)
| | | | | | - Roland Beisteiner
- Functional Brain Diagnostics and Therapy, Department of Neurology, Medical University of Vienna, Spitalgasse 23, A-1090 Vienna, Austria
| |
Collapse
|
3
|
Yoo SS, Kim HC, Kim J, Kim E, Kowsari K, Van Reet J, Yoon K. Enhancement of cerebrospinal fluid tracer movement by the application of pulsed transcranial focused ultrasound. Sci Rep 2022; 12:12940. [PMID: 35902724 PMCID: PMC9334279 DOI: 10.1038/s41598-022-17314-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/25/2022] [Indexed: 11/10/2022] Open
Abstract
Efficient transport of solutes in the cerebrospinal fluid (CSF) plays a critical role in their clearance from the brain. Convective bulk flow of solutes in the CSF in the perivascular space (PVS) is considered one of the important mechanisms behind solute movement in the brain, before their ultimate drainage to the systemic lymphatic system. Acoustic pressure waves can impose radiation force on a medium in its path, inducing localized and directional fluidic flow, known as acoustic streaming. We transcranially applied low-intensity focused ultrasound (FUS) to rats that received an intracisternal injection of fluorescent CSF tracers (dextran and ovalbumin, having two different molecular weights-Mw). The sonication pulsing parameter was determined on the set that propelled the aqueous solution of toluidine blue O dye into a porous media (melamine foam) at the highest level of infiltration. Fluorescence imaging of the brain showed that application of FUS increased the uptake of ovalbumin at the sonicated plane, particularly around the ventricles, whereas the uptake of high-Mw dextran was unaffected. Numerical simulation showed that the effects of sonication were non-thermal. Sonication did not alter the animals' behavior or disrupt the blood-brain barrier (BBB) while yielding normal brain histology. The results suggest that FUS may serve as a new non-invasive means to promote interstitial CSF solute transport in a region-specific manner without disrupting the BBB, providing potential for enhanced clearance of waste products from the brain.
Collapse
Affiliation(s)
- Seung-Schik Yoo
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA.
| | - Hyun-Chul Kim
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
- Department of Artificial Intelligence, Kyungpook National University, Daegu, Republic of Korea
| | - Jaeho Kim
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
- Department of Neurology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Evgenii Kim
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Kavin Kowsari
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Boston, MA, USA
| | - Jared Van Reet
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Kyungho Yoon
- School of Mathematics and Computing (Computational Science and Engineering), Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Chen H, Felix C, Folloni D, Verhagen L, Sallet J, Jerusalem A. Modelling transcranial ultrasound neuromodulation: an energy-based multiscale framework. Acta Biomater 2022; 151:317-332. [PMID: 35902037 DOI: 10.1016/j.actbio.2022.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/26/2022]
Abstract
Several animal and human studies have now established the potential of low intensity, low frequency transcranial ultrasound (TUS) for non-invasive neuromodulation. Paradoxically, the underlying mechanisms through which TUS neuromodulation operates are still unclear, and a consensus on the identification of optimal sonication parameters still remains elusive. One emerging hypothesis based on thermodynamical considerations attributes the acoustic-induced nerve activity alterations to the mechanical energy and/or entropy conversions occurring during TUS action. Here, we propose a multiscale modelling framework to examine the energy states of neuromodulation under TUS. First, macroscopic tissue-level acoustic simulations of the sonication of a whole monkey brain are conducted under different sonication protocols. For each one of them, mechanical loading conditions of the received waves in the anterior cingulate cortex region are recorded and exported into a microscopic cell-level 3D viscoelastic finite element model of neuronal axon embedded extracellular medium. Pulse-averaged elastically stored and viscously dissipated energy rate densities during axon deformation are finally computed under different sonication incident angles and are mapped against distinct combinations of sonication parameters of the TUS. The proposed multiscale framework allows for the analysis of vibrational patterns of the axons and its comparison against the spectrograms of stimulating ultrasound. The results are in agreement with literature data on neuromodulation, demonstrating the potential of this framework to identify optimised acoustic parameters in TUS neuromodulation. The proposed approach is finally discussed in the context of multiphysics energetic considerations, argued here to be a promising avenue towards a scalable framework for TUS in silico predictions. STATEMENT OF SIGNIFICANCE: Low-intensity transcranial ultrasound (TUS) is poised to become a leading neuromodulation technique for the treatment of neurological disorders. Paradoxically, how it operates at the cellular scale remains unknown, hampering progress in personalised treatment. To this end, models of the multiphysics of neurons able to upscale results to the organ scale are required. We propose here to achieve this by considering an axon submitted to an ultrasound wave extracted from a simulation at the organ scale. Doing so, information pertaining to both stored and dissipated axonal energies can be extracted for a given head/brain morphology. This two-scale multiphysics energetic approach is a promising scalable framework for in silico predictions in the context of personalised TUS treatment.
Collapse
Affiliation(s)
- Haoyu Chen
- Department of Engineering Science, University of Oxford, Oxford, UK
| | - Ciara Felix
- Department of Engineering Science, University of Oxford, Oxford, UK
| | - Davide Folloni
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, UK; Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lennart Verhagen
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, UK; Donders Institute, Radboud University, Nijmegen, Netherlands
| | - Jérôme Sallet
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, UK; Inserm, Stem Cell and Brain Research Institute, Université Lyon 1, Bron, France
| | - Antoine Jerusalem
- Department of Engineering Science, University of Oxford, Oxford, UK.
| |
Collapse
|
5
|
Braunstein L, Brüningk SC, Rivens I, Civale J, Haar GT. Characterization of Acoustic, Cavitation, and Thermal Properties of Poly(vinyl alcohol) Hydrogels for Use as Therapeutic Ultrasound Tissue Mimics. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:1095-1109. [PMID: 35337687 DOI: 10.1016/j.ultrasmedbio.2022.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/19/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
The thermal and mechanical effects induced in tissue by ultrasound can be exploited for therapeutic applications. Tissue-mimicking materials (TMMs), reflecting different soft tissue properties, are required for experimental evaluation of therapeutic potential. In the study described here, poly(vinyl alcohol) (PVA) hydrogels were characterized. Hydrogels prepared using different concentrations (5%-20% w/w) and molecular weights of PVA ± cellulose scatterers (2.5%-10% w/w) were characterized acoustically (sound speed, attenuation) as a function of temperature (25°C-45°C), thermally (thermal conductivity, specific heat capacity) and in terms of their cavitation thresholds. Results were compared with measurements in fresh sheep tissue (kidney, liver, spleen). Sound speed depended most strongly on PVA concentration, and attenuation, on cellulose content. For the range of formulations investigated, the PVA gel acoustic properties (sound speed: 1532 ± 17 to 1590 ± 9 m/s, attenuation coefficient: 0.08 ± 0.01 to 0.37 ± 0.02 dB/cm) fell within those measured in fresh tissue. Cavitation thresholds for 10% PVA hydrogels (50% occurrence: 4.1-5.4 MPa, 75% occurrence: 5.4-8.2 MPa) decreased with increasing cellulose content. In summary, PVA cellulose composite hydrogels may be suitable mimics of acoustic, cavitation and thermal properties of soft tissue for a number of therapeutic ultrasound applications.
Collapse
Affiliation(s)
- Lisa Braunstein
- Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom.
| | - Sarah C Brüningk
- Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom; Machine Learning & Computational Biology Lab, Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland; SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Ian Rivens
- Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - John Civale
- Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Gail Ter Haar
- Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
6
|
Bawiec CR, Rosnitskiy PB, Peek AT, Maxwell AD, Kreider W, Haar GRT, Sapozhnikov OA, Khokhlova VA, Khokhlova TD. Inertial Cavitation Behaviors Induced by Nonlinear Focused Ultrasound Pulses. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2884-2895. [PMID: 33861702 PMCID: PMC8500614 DOI: 10.1109/tuffc.2021.3073347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Inertial cavitation induced by pulsed high-intensity focused ultrasound (pHIFU) has previously been shown to successfully permeabilize tumor tissue and enhance chemotherapeutic drug uptake. In addition to HIFU frequency, peak rarefactional pressure ( p- ), and pulse duration, the threshold for cavitation-induced bioeffects has recently been correlated with asymmetric distortion caused by nonlinear propagation, diffraction and formation of shocks in the focal waveform, and therefore with the transducer F -number. To connect previously observed bioeffects with bubble dynamics and their attendant physical mechanisms, the dependence of inertial cavitation behavior on shock formation was investigated in transparent agarose gel phantoms using high-speed photography and passive cavitation detection (PCD). Agarose phantoms with concentrations ranging from 1.5% to 5% were exposed to 1-ms pulses using three transducers of the same aperture but different focal distances ( F -numbers of 0.77, 1.02, and 1.52). Pulses had central frequencies of 1, 1.5, or 1.9 MHz and a range of p- at the focus varying within 1-18 MPa. Three distinct categories of bubble behavior were observed as the acoustic power increased: stationary near-spherical oscillation of individual bubbles, proliferation of multiple bubbles along the pHIFU beam axis, and fanned-out proliferation toward the transducer. Proliferating bubbles were only observed under strongly nonlinear or shock-forming conditions regardless of frequency, and only where the bubbles reached a certain threshold size range. In stiffer gels with higher agarose concentrations, the same pattern of cavitation behavior was observed, but the dimensions of proliferating clouds were smaller. These observations suggest mechanisms that may be involved in bubble proliferation: enhanced growth of bubbles under shock-forming conditions, subsequent shock scattering from the gel-bubble interface, causing an increase in the repetitive tension created by the acoustic wave, and the appearance of a new growing bubble in the proximal direction. Different behaviors corresponded to specific spectral characteristics in the PCD signals: broadband noise in all cases, narrow peaks of backscattered harmonics in the case of stationary bubbles, and broadened, shifted harmonic peaks in the case of proliferating bubbles. The shift in harmonic peaks can be interpreted as a Doppler shift from targets moving at speeds of up to 2 m/s, which correspond to the observed bubble proliferation speeds.
Collapse
|
7
|
Liu HL, Tsai CH, Jan CK, Chang HY, Huang SM, Li ML, Qiu W, Zheng H. Design and Implementation of a Transmit/Receive Ultrasound Phased Array for Brain Applications. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:1756-1767. [PMID: 30010555 DOI: 10.1109/tuffc.2018.2855181] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Focused ultrasound phased array systems have attracted increased attention for brain therapy applications. However, such systems currently lack a direct and real-time method to intraoperatively monitor ultrasound pressure distribution for securing treatment. This study proposes a dual-mode ultrasound phased array system design to support transmit/receive operations for concurrent ultrasound exposure and backscattered focal beam reconstruction through a spherically focused ultrasound array. A 256-channel ultrasound transmission system was used to transmit focused ultrasonic energy (full 256 channels), with an extended implementation of multiple-channel receiving function (up to 64 channels) using the same 256-channel ultrasound array. A coherent backscatter-received beam formation algorithm was implemented to map the point spread function (PSF) and focal beam distribution under a free-field/transcranial environment setup, with the backscattering generated from a strong scatterer (a point reflector or a microbubble-perfused tube) or a weakly scattered tissue-mimicking graphite phantom. Our results showed that PSF and focal beam can be successfully reconstructed and visualized in free-field conditions and can also be transcranially reconstructed following skull-induced aberration correction. In vivo experiments were conducted to demonstrate its capability to preoperatively and semiquantitatively map a focal beam to guide blood-brain barrier opening. The proposed system may have potential for real-time guidance of ultrasound brain intervention, and may facilitate the design of a dual-mode ultrasound phased array for brain therapeutic applications.
Collapse
|
8
|
Khokhlova T, Rosnitskiy P, Hunter C, Maxwell A, Kreider W, Ter Haar G, Costa M, Sapozhnikov O, Khokhlova V. Dependence of inertial cavitation induced by high intensity focused ultrasound on transducer F-number and nonlinear waveform distortion. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 144:1160. [PMID: 30424663 PMCID: PMC6125138 DOI: 10.1121/1.5052260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/20/2018] [Accepted: 08/13/2018] [Indexed: 05/03/2023]
Abstract
Pulsed high intensity focused ultrasound was shown to enhance chemotherapeutic drug uptake in tumor tissue through inertial cavitation, which is commonly assumed to require peak rarefactional pressures to exceed a certain threshold. However, recent studies have indicated that inertial cavitation activity also correlates with the presence of shocks at the focus. The shock front amplitude and corresponding peak negative pressure (p -) in the focal waveform are primarily determined by the transducer F-number: less focused transducers produce shocks at lower p -. Here, the dependence of inertial cavitation activity on the transducer F-number was investigated in agarose gel by monitoring broadband noise emissions with a coaxial passive cavitation detector (PCD) during pulsed exposures (pulse duration 1 ms, pulse repetition frequency 1 Hz) with p- varying within 1-15 MPa. Three 1.5 MHz transducers with the same aperture, but different focal distances (F-numbers 0.77, 1.02, 1.52) were used. PCD signals were processed to extract cavitation probability, persistence, and mean noise level. At the same p -, all metrics indicated enhanced cavitation activity at higher F-numbers; specifically, cavitation probability reached 100% when shocks formed at the focus. These results provide further evidence supporting the excitation of inertial cavitation at reduced p - by waveforms with nonlinear distortion and shocks.
Collapse
Affiliation(s)
- Tatiana Khokhlova
- Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, Washington 98125, USA
| | - Pavel Rosnitskiy
- Department of Acoustics, Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Christopher Hunter
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 NE 40th Street, Seattle, Washington 98105, USA
| | - Adam Maxwell
- Department of Urology, School of Medicine, University of Washington, Seattle, Washington 98195, USA
| | - Wayne Kreider
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 NE 40th Street, Seattle, Washington 98105, USA
| | - Gail Ter Haar
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SM2 5PT, United Kingdom
| | - Marcia Costa
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SM2 5PT, United Kingdom
| | - Oleg Sapozhnikov
- Department of Acoustics, Faculty of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia
| | - Vera Khokhlova
- Department of Acoustics, Faculty of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia
| |
Collapse
|
9
|
Lafond M, Asquier N, Mestas JL, Carpentier A, Umemura SI, Lafon C. Evaluation of a Three Hydrophones Method for 2-Dimensional Cavitation Localization. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:1093-1101. [PMID: 29993829 DOI: 10.1109/tuffc.2018.2825233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cavitation is a critical parameter in various therapeutic applications involving ultrasound (US) such as histotrispy, lithothripsy, drug delivery, and cavitation-enhanced hyperthermia. A cavitation exposure outside the region of interest may lead to suboptimal treatment efficacy or in a worse case, to safety issues. Current methods of localizing cavitation are based on imaging approaches, such as beamforming the cavitation signals received passively by a US imager. These methods, although efficient, require expensive equipment, which may discourage potential future developments. We propose a threehydrophone method to localize the cavitation cloud source. Firstly, the delays between the three receptors are measured by detecting the maximum of their inter-correlations. Then, the position of the source is calculated by either minimizing a cost function or solving hyperbolic equations. After a numerical validation, the method was assessed experimentally. This method was able to track a source displacement with accuracy similar to the size of the cavitation cloud (2-4 millimeters). This light and versatile method provides interesting perspectives since localization can be executed in real time and the extension to three-dimensional localization seems straightforward.
Collapse
|