1
|
Hoyt K. Super-Resolution Ultrasound Imaging for Monitoring the Therapeutic Efficacy of a Vascular Disrupting Agent in an Animal Model of Breast Cancer. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2024; 43:1099-1107. [PMID: 38411352 DOI: 10.1002/jum.16438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/01/2024] [Accepted: 02/10/2024] [Indexed: 02/28/2024]
Abstract
OBJECTIVE Evaluate the use of super-resolution ultrasound (SRUS) imaging for the early detection of tumor response to treatment using a vascular-disrupting agent (VDA). METHODS A population of 28 female nude athymic mice (Charles River Laboratories) were implanted with human breast cancer cells (MDA-MB-231, ATCC) in the mammary fat pad and allowed to grow. Ultrasound imaging was performed using a Vevo 3100 scanner (FUJIFILM VisualSonics Inc) equipped with the MX250 linear array transducer immediately before and after receiving bolus injections of a microbubble (MB) contrast agent (Definity, Lantheus Medical Imaging) via the tail vein. Following baseline ultrasound imaging, VDA drug (combretastatin A4 phosphate, CA4P, Sigma Aldrich) or control saline was injected via the placed catheter. After 4 or 24 hours, repeat ultrasound imaging along the same tumor cross-section occurred. Direct intratumoral pressure measurements were obtained using a calibrated sensor. All raw ultrasound data were saved for offline processing and SRUS image reconstruction using custom MATLAB software (MathWorks Inc). From a region encompassing the tumor space and the entire postprocessed ultrasound image sequence, time MB count (TMC) curves were generated in addition to traditional SRUS maps reflecting MB enumeration at each pixel location. Peak enhancement (PE) and wash-in rate (WIR) were extracted from these TMC curves. At termination, intratumoral microvessel density (MVD) was quantified using tomato lectin labeling of patent blood vessels. RESULTS SRUS images exhibited a clear difference between control and treated tumors. While there was no difference in any group parameters at baseline (0 hour, P > .09), both SRUS-derived PE and WIR measurements in tumors treated with VDA exhibited significant decreases by 4 (P = .03 and P = .05, respectively) and 24 hours (P = .02 and P = .01, respectively), but not in control group tumors (P > .22). Similarly, SRUS derived microvascular maps were not different at baseline (P = .81), but measures of vessel density were lower in treated tumors at both 4 and 24 hours (P < .04). An inverse relationship between intratumoral pressure and both PE and WIR parameters were found in control tumors (R2 > .09, P < .03). CONCLUSION SRUS imaging is a new modality for assessing tumor response to treatment using a VDA.
Collapse
Affiliation(s)
- Kenneth Hoyt
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
2
|
Liu L, O’Kelly D, Schuetze R, Carlson G, Zhou H, Trawick ML, Pinney KG, Mason RP. Non-Invasive Evaluation of Acute Effects of Tubulin Binding Agents: A Review of Imaging Vascular Disruption in Tumors. Molecules 2021; 26:2551. [PMID: 33925707 PMCID: PMC8125421 DOI: 10.3390/molecules26092551] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022] Open
Abstract
Tumor vasculature proliferates rapidly, generally lacks pericyte coverage, and is uniquely fragile making it an attractive therapeutic target. A subset of small-molecule tubulin binding agents cause disaggregation of the endothelial cytoskeleton leading to enhanced vascular permeability generating increased interstitial pressure. The resulting vascular collapse and ischemia cause downstream hypoxia, ultimately leading to cell death and necrosis. Thus, local damage generates massive amplification and tumor destruction. The tumor vasculature is readily accessed and potentially a common target irrespective of disease site in the body. Development of a therapeutic approach and particularly next generation agents benefits from effective non-invasive assays. Imaging technologies offer varying degrees of sophistication and ease of implementation. This review considers technological strengths and weaknesses with examples from our own laboratory. Methods reveal vascular extent and patency, as well as insights into tissue viability, proliferation and necrosis. Spatiotemporal resolution ranges from cellular microscopy to single slice tomography and full three-dimensional views of whole tumors and measurements can be sufficiently rapid to reveal acute changes or long-term outcomes. Since imaging is non-invasive, each tumor may serve as its own control making investigations particularly efficient and rigorous. The concept of tumor vascular disruption was proposed over 30 years ago and it remains an active area of research.
Collapse
Affiliation(s)
- Li Liu
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| | - Devin O’Kelly
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| | - Regan Schuetze
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| | - Graham Carlson
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (G.C.); (M.L.T.); (K.G.P.)
| | - Heling Zhou
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| | - Mary Lynn Trawick
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (G.C.); (M.L.T.); (K.G.P.)
| | - Kevin G. Pinney
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (G.C.); (M.L.T.); (K.G.P.)
| | - Ralph P. Mason
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| |
Collapse
|
3
|
Charalambous A, Mico V, McVeigh LE, Marston G, Ingram N, Volpato M, Peyman SA, McLaughlan JR, Wierzbicki A, Loadman PM, Bushby RJ, Markham AF, Evans SD, Coletta PL. Targeted microbubbles carrying lipid-oil-nanodroplets for ultrasound-triggered delivery of the hydrophobic drug, combretastatin A4. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 36:102401. [PMID: 33894396 DOI: 10.1016/j.nano.2021.102401] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/03/2021] [Accepted: 04/11/2021] [Indexed: 12/11/2022]
Abstract
The hydrophobicity of a drug can be a major challenge in its development and prevents the clinical translation of highly potent anti-cancer agents. We have used a lipid-based nanoemulsion termed Lipid-Oil-Nanodroplets (LONDs) for the encapsulation and in vivo delivery of the poorly bioavailable combretastatin A4 (CA4). Drug delivery with CA4 LONDs was assessed in a xenograft model of colorectal cancer. LC-MS/MS analysis revealed that CA4 LONDs, administered at a drug dose four times lower than drug control, achieved equivalent concentrations of CA4 intratumorally. We then attached CA4 LONDs to microbubbles (MBs) and targeted this construct to VEGFR2. A reduction in tumor perfusion was observed in CA4 LONDs-MBs treated tumors. A combination study with irinotecan demonstrated a greater reduction in tumor growth and perfusion (P = 0.01) compared to irinotecan alone. This study suggests that LONDs, either alone or attached to targeted MBs, have the potential to significantly enhance tumor-specific hydrophobic drug delivery.
Collapse
Affiliation(s)
- Antonia Charalambous
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James's University. Hospital, Leeds, United Kingdom
| | - Victoria Mico
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds, United Kingdom
| | - Laura E McVeigh
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James's University. Hospital, Leeds, United Kingdom
| | - Gemma Marston
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James's University. Hospital, Leeds, United Kingdom
| | - Nicola Ingram
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James's University. Hospital, Leeds, United Kingdom
| | - Milène Volpato
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James's University. Hospital, Leeds, United Kingdom
| | - Sally A Peyman
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James's University. Hospital, Leeds, United Kingdom; Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds, United Kingdom
| | - James R McLaughlan
- School of Electronic and Electrical Engineering, University of Leeds, United Kingdom
| | - Antonia Wierzbicki
- Institute of Cancer Therapeutics, University of Bradford, Bradford, United Kingdom
| | - Paul M Loadman
- Institute of Cancer Therapeutics, University of Bradford, Bradford, United Kingdom
| | - Richard J Bushby
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds, United Kingdom; School of Chemistry, University of Leeds, Leeds, United Kingdom
| | - Alexander F Markham
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James's University. Hospital, Leeds, United Kingdom
| | - Stephen D Evans
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds, United Kingdom
| | - P Louise Coletta
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James's University. Hospital, Leeds, United Kingdom.
| |
Collapse
|
4
|
Han X, Dong J, Liu Z, Wu B, Tian Y, Tan H, Cheng W. Quantitative dynamic contrast-enhanced ultrasound to predict intrahepatic recurrence of hepatocellular carcinoma after radiofrequency ablation: a cohort study. Int J Hyperthermia 2020; 37:1066-1073. [PMID: 32924654 DOI: 10.1080/02656736.2020.1817576] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Affiliation(s)
- Xue Han
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, PR China
| | - Jing Dong
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, PR China
| | - Zhao Liu
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, PR China
| | - Bolin Wu
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, PR China
| | - Yuhang Tian
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, PR China
| | - Haoyan Tan
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, PR China
| | - Wen Cheng
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, PR China
| |
Collapse
|
5
|
Johnson SP, Ogunlade O, Lythgoe MF, Beard P, Pedley RB. Longitudinal Photoacoustic Imaging of the Pharmacodynamic Effect of Vascular Targeted Therapy on Tumors. Clin Cancer Res 2019; 25:7436-7447. [PMID: 31551349 PMCID: PMC7611302 DOI: 10.1158/1078-0432.ccr-19-0360] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 07/29/2019] [Accepted: 09/19/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Photoacoustic imaging (PAI) is a novel noninvasive and nonionizing imaging technique that allows longitudinal imaging of tumor vasculature in vivo and monitoring of response to therapy, especially for vascular targeted chemotherapy agents. In this study, we used a novel high-resolution all-optical PAI scanner to observe the pharmacodynamic response to the vascular-disrupting agent OXi4503. EXPERIMENTAL DESIGN Two models of colorectal carcinoma (SW1222 and LS174T) that possess differing pathophysiologic vascularization were established as subcutaneous tumors in mice. Monitoring of response was performed over a 16-day "regrowth" period following treatment at 40 mg/kg, and at day 2 for a "dose response" study at 40 mg/kg, 10 mg/kg, 1 mg/kg, and sham dose. RESULTS Qualitative and quantitative changes in PA signal are observed, with an initial decrease followed by a plateau and subsequent return of signal indicating regrowth. Both tumor types exhibited a decrease in signal; however, the more vascularized SW1222 tumors show greater response to treatment. Decreasing the dose of OXi4503 led to a decrease in PA signal intensity of 60%, 52%, and 20% in SW1222 tumors and 30%, 26%, and 4% for LS174T tumors. CONCLUSIONS We have shown for the first time that PAI can observe the pharmacodynamic response of tumor vasculature to drug treatment both longitudinally and at different dose levels. Assessment of differing response to treatment based on vascular pathophysiologic differences among patients has the potential to provide personalized drug therapy; we have demonstrated that PAI, which is clinically translatable, could be a powerful tool for this purpose.
Collapse
Affiliation(s)
- S Peter Johnson
- UCL Cancer Institute, University College London, London, United Kingdom.
| | - Olumide Ogunlade
- UCL Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Mark F Lythgoe
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, United Kingdom
| | - Paul Beard
- UCL Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - R Barbara Pedley
- UCL Cancer Institute, University College London, London, United Kingdom
| |
Collapse
|
6
|
Power Doppler ultrasound and contrast-enhanced ultrasound demonstrate non-invasive tumour vascular response to anti-vascular therapy in canine cancer patients. Sci Rep 2019; 9:9262. [PMID: 31239493 PMCID: PMC6592898 DOI: 10.1038/s41598-019-45682-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 06/07/2019] [Indexed: 02/06/2023] Open
Abstract
Combretastatin A4-phosphate (CA4P) is an anti-vascular agent which selectively shuts down blood supply in tumours, resulting in extensive tumour necrosis. The aim of this study was to assess in vivo, non-invasive ultrasound techniques for the early evaluation of tumour perfusion following CA4P treatment of spontaneous tumours. Eight dogs that bore spontaneous tumours were enrolled and were subsequently treated with a single dose of intravenous CA4P. Perfusion of tumours was evaluated by power Doppler ultrasound (PDUS) pre-treatment (0 h), during the injection (10 min, 20 min, 30 min) and after CA4P infusion (24 and 72 h). Vascularity index (VI) of the tumour tissue was quantitatively analysed and accuracy was verified by correlation analysis with the results of immunohistochemical evaluation of microvessel density (MVD). Central and peripheral perfusion was evaluated by contrast-enhanced ultrasound (CEUS) pre-treatment and at 72 h post-treatment. Post-treatment, PDUS demonstrated a significant decrease in VI within 10 min of CA4P infusion. CEUS parameters demonstrated a significant decrease in blood velocity and volume in the central aspect of the tumour. Histology revealed a 4.4-fold reduction (p < 0.001, 95% CI [2.2,9.4]) in MVD and a 4.1-fold increase (p = 0.003, 95% CI [1.4,11.8]) in necrotic tumour tissue. A strong correlation between PDUS results and immunohistochemical results was found (Pearson R2 = 0.957, p < 0.001). Furthermore, the findings of PDUS were supported by the objective results of the CEUS analyses. These data suggest a role for ultrasound in real-time, non-invasive monitoring of tumour vascular response as an early indicator of CA4P treatment efficacy.
Collapse
|
7
|
Wang YJ, Zhang PH, Zhang R, An PL. Predictive Value of Quantitative Uterine Fibroid Perfusion Parameters From Contrast-Enhanced Ultrasound for the Therapeutic Effect of High-Intensity Focused Ultrasound Ablation. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2019; 38:1511-1517. [PMID: 30286521 DOI: 10.1002/jum.14838] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/14/2018] [Indexed: 05/16/2023]
Abstract
OBJECTIVES To assess the predictive significance of quantitative perfusion parameters from contrast-enhanced ultrasound (CEUS) for the therapeutic response to high-intensity focused ultrasound (HIFU) ablation in patients with uterine fibroids. METHODS A total of 263 patients with single uterine fibroids were treated with HIFU ablation under ultrasound guidance. The arrival time, peak time, enhancement time, enhancement intensity, and enhancement rate were evaluated with pretreatment CEUS. According to a nonperfused volume ratio evaluation by posttreatment magnetic resonance imaging, all patients were assigned to groups with volume ratios of 70% or higher and lower than 70%. Then the predictive performances of different parameters for ablation efficacy were studied. RESULTS The arrival time, peak time, and enhancement time in the group with a nonperfused volume ratio of 70% or higher were longer than those in the group with a volume ratio lower than 70% (mean ± SD, 16.7 ± 3.5, 26.5 ± 4.9, and 10.2 ± 2.6 seconds, respectively, versus 13.3 ± 4.2, 20.8 ± 5.4, and 7.6 ± 2.3 seconds), whereas patients with a volume ratio of 70% or higher had a lower mean enhancement intensity and enhancement rate than those with a volume ratio lower than 70% (29.7 ± 16.7 dB and 3.2 ± 1.5 dB/s versus 63.2 ± 26.3 dB and 8.6 ± 4.3 dB/s; P < .05). The nonperfused volume ratio was negatively correlated with the enhancement intensity and enhancement rate (r = -0.631 and -0.712) but positively correlated with the arrival time, peak time, and enhancement time (r = 0.322, 0.456, and 0.477; P < .05). The areas under the receiver operating characteristic curve for the enhancement time, enhancement intensity, and enhancement rate were 0.73, 0.79, and 0.81 (P < .05). CONCLUSIONS Quantitative parameters from CEUS are potentially useful for evaluating the therapeutic effect of HIFU ablation for uterine fibroids.
Collapse
Affiliation(s)
- Ying-Jin Wang
- the Medical Ultrasound Center, Northwest Women's and Children's Hospital, Shaanxi, China
| | - Peng-Hua Zhang
- the Medical Ultrasound Center, Northwest Women's and Children's Hospital, Shaanxi, China
| | - Rong Zhang
- the Medical Ultrasound Center, Northwest Women's and Children's Hospital, Shaanxi, China
| | - Pei-Li An
- the Medical Ultrasound Center, Northwest Women's and Children's Hospital, Shaanxi, China
| |
Collapse
|
8
|
Zhou G, Cai ZQ, Luo J, Hu ZX, Luo H, Wu H, Chen Q. Prognostic value of enhancement rate by enhanced ultrasound in hepatitis B virus-positive hepatocellular carcinoma undergoing radiofrequency ablation. Asia Pac J Clin Oncol 2019; 15:238-243. [PMID: 31119840 DOI: 10.1111/ajco.13157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 04/17/2019] [Indexed: 12/23/2022]
Abstract
AIM To assess the prognostic significance of enhancement rate (ER) measured by contrast-enhanced ultrasonography (CEUS) in patients with hepatocellular carcinoma (HCC) undergoing radiofrequency ablation (RFA). MATERIALS AND METHODS A total of 253 patients with single primary HCC undergoing preoperative CEUS and RFA were enrolled in this study. The ER were evaluated though pretreatment CEUS. After a mean follow-up of 36.8 ± 10.2 months, the correlation of ER measured by CEUS and survival after RFA was analyzed by univariate and multivariate analysis. The optimal cutoff ER value to predict survival was determined using receiver-operating characteristic analysis. RESULTS Mean follow-up period for all 253 patients was 36.8 ± 10.2 months, 31.2% of patients had died at endpoint. The optimal cutoff ER value predicting survival was 2.2 dB/s. Univariate analysis demonstrated that patients with a high ER level had poorer OS (62.8 months vs 48.8 months, P = 0.02) and recurrence-free survival (RFS = 60.2 months vs 47.4 months, P = 0.03) than patients with a low ER level. ER measured by CEUS also been confirmed as independent risk factor for overall survival (hazard ratio [HR], 1.87; 95% confidence interval [95% CI], 1.21-7.25; P < 0.01) and RFS (HR, 1.67; 95% CI, 1.08-6.21; P < 0.01) in multivariate analysis enrolling gender, BMI, tumor size, antiviral therapy, HBV DNA, histological differentiation, Child-Pugh score and tumor node metastasis (TNM) stage. CONCLUSIONS ER measured by CEUS was a significant predictive factor for survival after RFA for HCC.
Collapse
Affiliation(s)
- Guo Zhou
- Ultrasonography Department, the Affiliated Hospital of UESTC & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Zhi-Qing Cai
- Ultrasonography Department, the Affiliated Hospital of UESTC & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Jun Luo
- Ultrasonography Department, the Affiliated Hospital of UESTC & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Zi-Xing Hu
- Ultrasonography Department, the Affiliated Hospital of UESTC & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Hao Luo
- Ultrasonography Department, the Affiliated Hospital of UESTC & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Hao Wu
- Ultrasonography Department, the Affiliated Hospital of UESTC & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Qing Chen
- Ultrasonography Department, the Affiliated Hospital of UESTC & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Maguire CJ, Chen Z, Mocharla VP, Sriram M, Strecker TE, Hamel E, Zhou H, Lopez R, Wang Y, Mason RP, Chaplin DJ, Trawick ML, Pinney KG. Synthesis of dihydronaphthalene analogues inspired by combretastatin A-4 and their biological evaluation as anticancer agents. MEDCHEMCOMM 2018; 9:1649-1662. [PMID: 30429970 PMCID: PMC6201230 DOI: 10.1039/c8md00322j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/13/2018] [Indexed: 12/17/2022]
Abstract
The natural products colchicine and combretastatin A-4 (CA4) have provided inspiration for the discovery and development of a wide array of derivatives and analogues that inhibit tubulin polymerization through a binding interaction at the colchicine site on β-tubulin. A water-soluble phosphate prodrug salt of CA4 (referred to as CA4P) has demonstrated the ability to selectively damage tumor-associated vasculature and ushered in a new class of developmental anticancer agents known as vascular disrupting agents (VDAs). Through a long-term program of structure activity relationship (SAR) driven inquiry, we discovered that the dihydronaphthalene molecular scaffold provided access to small-molecule inhibitors of tubulin polymerization. In particular, a dihydronaphthalene analogue bearing a pendant trimethoxy aryl ring (referred to as KGP03) and a similar aroyl ring (referred to as KGP413) were potent inhibitors of tubulin polymerization (IC50 = 1.0 and 1.2 μM, respectively) and displayed low nM cytotoxicity against human cancer cell lines. In order to enhance water-solubility for in vivo evaluation, the corresponding phosphate prodrug salts (KGP04 and KGP152, respectively) were synthesized. In a preliminary in vivo study in a SCID-BALB/c mouse model bearing the human breast tumor MDA-MB-231-luc, a 99% reduction in signal was observed with bioluminescence imaging (BLI) 4 h after IP administration of KGP152 (200 mg kg-1) indicating reduced tumor blood flow. In a separate study, disruption of tumor-associated blood flow in a Fischer rat bearing an A549-luc human lung tumor was observed by color Doppler ultrasound following administration of KGP04 (15 mg kg-1).
Collapse
Affiliation(s)
- Casey J Maguire
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place #97348 , Waco , TX 76798-7348 , USA . ; Tel: +(254) 710 4117
| | - Zhi Chen
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place #97348 , Waco , TX 76798-7348 , USA . ; Tel: +(254) 710 4117
| | - Vani P Mocharla
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place #97348 , Waco , TX 76798-7348 , USA . ; Tel: +(254) 710 4117
| | - Madhavi Sriram
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place #97348 , Waco , TX 76798-7348 , USA . ; Tel: +(254) 710 4117
| | - Tracy E Strecker
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place #97348 , Waco , TX 76798-7348 , USA . ; Tel: +(254) 710 4117
| | - Ernest Hamel
- Screening Technologies Branch , Developmental Therapeutics Program , Division of Cancer Treatment and Diagnosis , National Cancer Institute , Frederick National Laboratory for Cancer Research , National Institutes of Health , Frederick , MD 21702 , USA
| | - Heling Zhou
- Department of Radiology , The University of Texas Southwestern Medical Center , 5323 Harry Hines Boulevard , Dallas , TX 75390-9058 , USA
| | - Ramona Lopez
- Department of Radiology , The University of Texas Southwestern Medical Center , 5323 Harry Hines Boulevard , Dallas , TX 75390-9058 , USA
| | - Yifan Wang
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place #97348 , Waco , TX 76798-7348 , USA . ; Tel: +(254) 710 4117
| | - Ralph P Mason
- Department of Radiology , The University of Texas Southwestern Medical Center , 5323 Harry Hines Boulevard , Dallas , TX 75390-9058 , USA
| | - David J Chaplin
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place #97348 , Waco , TX 76798-7348 , USA . ; Tel: +(254) 710 4117
- Mateon Therapeutics, Inc. , 701 Gateway Boulevard, Suite 210 , South San Francisco , CA 94080 , USA
| | - Mary Lynn Trawick
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place #97348 , Waco , TX 76798-7348 , USA . ; Tel: +(254) 710 4117
| | - Kevin G Pinney
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place #97348 , Waco , TX 76798-7348 , USA . ; Tel: +(254) 710 4117
| |
Collapse
|