Sorg H, Zwetzich I, Tilkorn DJ, Kolbenschlag J, Hauser J, Goertz O, Spindler N, Langer S, Ring A. Effects of Extracorporeal Shock Waves on Microcirculation and Angiogenesis in the in vivo Wound Model of the Diver Box.
Eur Surg Res 2021;
62:134-143. [PMID:
34521085 DOI:
10.1159/000515737]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 03/05/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION
Extracorporeal shock waves (ESWs) have been shown to have a positive effect on skin wound healing; however, little is known on the regeneration of the microcirculation and angiogenesis as well as the different application modes.
METHODS
A total of 40 BALB/c mice were provided with dorsal skin fold chambers and were divided into 3 therapy groups (n = 30) and one control group (n = 10). The 3 therapy groups were treated with shock waves at different pulse rates (500-1,000 pulses/min) and application frequencies (day 0 and day 6 or day 0 only). Photographic documentation and intravital microscopy were carried out on day 1, 2, 4, and 6 after wounding.
RESULTS
Using the newly developed Diver Box, shock waves could be applied in vivo without mechanical tissue damage. Shock wave therapy to skin wounds demonstrated to induce faster wound closure rates in the beginning than controls in groups with higher pulse rates and frequencies of the shock waves. Furthermore, the regeneration of microcirculation and perfusion in the healing skin was significantly improved after the application of, in particular, higher pulse rates as given by increased numbers of perfused capillaries and functional vessel density. The study of inflammation showed, especially in high-pulse ESW groups, higher leukocyte counts, and rolling leukocytes over time until day 6 as a response to the induction of inflammatory reaction after ESW application. Angiogenesis showed a marked increase in positive areas as given by sprouts, coils, and recruitments in all ESW groups, especially between days 4 and 6.
CONCLUSION
The major findings of this trial demonstrate that ESW therapy to skin wounds is effective and safe. This is demonstrated by the initially faster wound closure rate, but later the same wound closure rate in the treatment groups than in controls. Furthermore, during the regeneration of microcirculation and perfusion in the healing skin, a significant improvement was observed after the application of, in particular, higher ESW pulse rates, suggesting an ESW-related increase in nutrient and oxygen supply in the wound tissue.
Collapse