Amini A, Chien S, Bayat M. Impact of Ultrasound Therapy on Stem Cell Differentiation - A Systematic Review.
Curr Stem Cell Res Ther 2020;
15:462-472. [PMID:
32096749 DOI:
10.2174/1574888x15666200225124934]
[Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE
This is a systematic review of the effects of low-intensity pulsed ultrasound (LIPUS) on stem cell differentiation.
BACKGROUND DATA
Recent studies have investigated several types of stem cells from different sources in the body. These stem cells should strictly be certified and promoted for cell therapies before being used in medical applications. LIPUS has been used extensively in treatment centers and in research to promote stem cell differentiation, function, and proliferation.
MATERIALS AND METHODS
The databases of PubMed, Google Scholar, and Scopus were searched for abstracts and full-text scientific papers published from 1989-2019 that reported the application of LIPUS on stem cell differentiation. Related English language articles were found using the following defined keywords: low-intensity pulsed ultrasound, stem cell, differentiation. Criteria for inclusion in the review were: LIPUS with frequencies of 1-3 MHz and pulsed ultrasound intensity of <500 mW/cm2. Duration, exposure time, and cell sources were taken into consideration.
RESULTS
Fifty-two articles were selected based on the inclusion criteria. Most articles demonstrated that the application of LIPUS had positive effects on stem cell differentiation. However, some authors recommended that LIPUS combined with other physical therapy aides was more effective in stem cell differentiation.
CONCLUSION
LIPUS significantly increases the level of stem cell differentiation in cells derived mainly from bone marrow mesenchymal stem cells. There is a need for further studies to analyze the effect of LIPUS on cells derived from other sources, particularly adipose tissue-derived mesenchymal stem cells, for treating hard diseases, such as osteoporosis and diabetic foot ulcer. Due to a lack of reporting on standard LIPUS parameters in the field, more experiments comparing the protocols for standardization of LIPUS parameters are needed to establish the best protocol, which would allow for the best results.
Collapse