1
|
Roy M, Alix C, Burlaud-Gaillard J, Fouan D, Raoul W, Bouakaz A, Blanchard E, Lecomte T, Viaud-Massuard MC, Sasaki N, Serrière S, Escoffre JM. Delivery of Anticancer Drugs Using Microbubble-Assisted Ultrasound in a 3D Spheroid Model. Mol Pharm 2024; 21:831-844. [PMID: 38174896 DOI: 10.1021/acs.molpharmaceut.3c00921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Tumor spheroids are promising three-dimensional (3D) in vitro tumor models for the evaluation of drug delivery methods. The design of noninvasive and targeted drug methods is required to improve the intratumoral bioavailability of chemotherapeutic drugs and reduce their adverse off-target effects. Among such methods, microbubble-assisted ultrasound (MB-assisted US) is an innovative modality for noninvasive targeted drug delivery. The aim of the present study is to evaluate the efficacy of this US modality for the delivery of bleomycin, doxorubicin, and irinotecan in colorectal cancer (CRC) spheroids. MB-assisted US permeabilized the CRC spheroids to propidium iodide, which was used as a drug model without affecting their growth and viability. Histological analysis and electron microscopy revealed that MB-assisted US affected only the peripheral layer of the CRC spheroids. The acoustically mediated bleomycin delivery induced a significant decrease in CRC spheroid growth in comparison to spheroids treated with bleomycin alone. However, this US modality did not improve the therapeutic efficacy of doxorubicin and irinotecan on CRC spheroids. In conclusion, this study demonstrates that tumor spheroids are a relevant approach to evaluate the efficacy of MB-assisted US for the delivery of chemotherapeutics.
Collapse
Affiliation(s)
- Marie Roy
- UMR 1253, iBrain, Université de Tours, Inserm, 37032 Tours, France
| | - Corentin Alix
- UMR 1253, iBrain, Université de Tours, Inserm, 37032 Tours, France
| | - Julien Burlaud-Gaillard
- Inserm U1259, Université de Tours et CHRU de Tours & Plateforme IBiSA des Microscopies, PPF ASB, CHRU de Tours, 37032 Tours, France
| | - Damien Fouan
- UMR 1253, iBrain, Université de Tours, Inserm, 37032 Tours, France
| | - William Raoul
- Inserm UMR 1069, Nutrition Croissance et Cancer (N2C), Université de Tours, 37032 Tours, France
| | - Ayache Bouakaz
- UMR 1253, iBrain, Université de Tours, Inserm, 37032 Tours, France
| | - Emmanuelle Blanchard
- Inserm U1259, Université de Tours et CHRU de Tours & Plateforme IBiSA des Microscopies, PPF ASB, CHRU de Tours, 37032 Tours, France
| | - Thierry Lecomte
- Inserm UMR 1069, Nutrition Croissance et Cancer (N2C), Université de Tours, 37032 Tours, France
- Department of Hepato-Gastroenterology & Digestive Oncology, CHRU de Tours, 37000 Tours, France
| | | | - Noboru Sasaki
- Laboratory of Veterinary Internal Medicine, Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, 060-0818 Sapporo, Japan
| | - Sophie Serrière
- UMR 1253, iBrain, Université de Tours, Inserm, 37032 Tours, France
- Département d'Imagerie Préclinique, Plateforme Scientifique et Technique Analyse des Systèmes Biologiques, Université de Tours, 37032 Tours, France
| | | |
Collapse
|
2
|
Bai L, Luo T, Tang J, Zhang J, Tan X, Tang J, Huang L, Dong X, Li N, Li P, Liu Z. Ultrasound-Induced Tumor Perfusion Changes and Doxorubicin Delivery: A Study on Pulse Length and Pulse Repetition Frequency. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2024; 43:253-263. [PMID: 37853950 DOI: 10.1002/jum.16355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/26/2023] [Accepted: 09/28/2023] [Indexed: 10/20/2023]
Abstract
OBJECTIVES To investigate the appropriate combination of pulse length (PL) and pulse repetition frequency (PRF) when performing ultrasound stimulated microbubble (USMB) to enhance doxorubicin (DOX) delivery to tumors. METHODS A total of 48 tumor-bearing mice were divided into four groups, namely groups A-D. The mice in groups B-D were treated with chemotherapy and USMB treatment with different combinations of PL and PRF, and group A was control. Contrast-enhanced ultrasound imaging was conducted to analyze tumor blood perfusion. Fluorescence microscopy and high-performance liquid chromatography were used to qualitatively and quantitatively analyse DOX release. The structural changes of tumors were observed under light microscope and transmission electron microscope. Furthermore, another 24 tumor-bearing mice were treated with sonochemotherapy and some related inflammatory factors were measured to explore the underlying mechanism. RESULTS With PL of three cycles and PRF of 2 kHz, the tumor perfusion area ratio increased by 26.67%, and the DOX concentration was 4.69 times higher than the control (P < .001). With PL of 34.5 cycles and PRF of 200 Hz, the tumor perfusion area ratio decreased by 12.7% and DOX did not exhibit increased extravasation compared with the control. Microvascular rupture and hemorrhage were observed after long PL and low PRF treatment. While vasodilation and higher levels of some vasodilator inflammatory factors were found after treatment with short PL and high PRF. CONCLUSIONS USMB treatment using short PL and high PRF could enhance tumor blood perfusion and increase DOX delivery, whereas long PL and low PRF could not serve the same purpose.
Collapse
Affiliation(s)
- Luhua Bai
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Tingting Luo
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Jiawei Tang
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Jing Zhang
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Xi Tan
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Junhui Tang
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Leidan Huang
- Department of Ultrasound, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Xiaoxiao Dong
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Ningshan Li
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Peijing Li
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Zheng Liu
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| |
Collapse
|
3
|
Juang EK, De Koninck LH, Vuong KS, Gnanaskandan A, Hsiao CT, Averkiou MA. Controlled Hyperthermia With High-Intensity Focused Ultrasound and Ultrasound Contrast Agent Microbubbles in Porcine Liver. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1852-1860. [PMID: 37246049 PMCID: PMC10330369 DOI: 10.1016/j.ultrasmedbio.2023.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/07/2023] [Accepted: 04/25/2023] [Indexed: 05/30/2023]
Abstract
OBJECTIVE The objective of this work was to study microbubble-enhanced temperature elevation with high-intensity focused ultrasound (HIFU) at different acoustic pressures and under image guidance. The microbubbles were administered with either local or vascular injections (that mimic systemic injections) in perfused and non-perfused ex vivo porcine liver under ultrasound image guidance. METHODS Porcine liver was insonified for 30 s with a single-element HIFU transducer (0.9 MHz, 0.413 ms, 82% duty cycle, focal pressures of 0.6-3.5 MPa). Contrast microbubbles were injected either locally or through the vasculature. A needle thermocouple at the focus measured temperature elevation. Diagnostic ultrasound (Philips iU22, C5-1 probe) guided placement of the thermocouple and delivery of microbubbles and monitored the procedure in real time. RESULTS At lower acoustic pressures (0.6 and 1.2 MPa) in non-perfused liver, inertial cavitation of the injected microbubbles led to greater temperatures at the focus compared with HIFU-only treatments. At higher pressures (2.4 and 3.5 MPa) native inertial cavitation in the tissue (without injecting microbubbles) resulted in temperature elevations similar to those after injecting microbubbles. The heated area was larger when using microbubbles at all pressures. In the presence of perfusion, only local injections provided a sufficiently high concentration of microbubbles necessary for significant temperature enhancement. CONCLUSION Local injections of microbubbles provide a higher concentration of microbubbles in a smaller area, avoiding acoustic shadowing, and can lead to higher temperature elevation at lower pressures and increase the size of the heated area at all pressures.
Collapse
Affiliation(s)
- Eric K Juang
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Lance H De Koninck
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Kaleb S Vuong
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Aswin Gnanaskandan
- Department of Mechanical and Materials Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | | | | |
Collapse
|
4
|
Pakdaman Zangabad R, Li H, Kouijzer JJP, Langeveld SAG, Beekers I, Verweij M, De Jong N, Kooiman K. Ultrasonic Characterization of Ibidi μ-Slide I Luer Channel Slides for Studies With Ultrasound Contrast Agents. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:422-429. [PMID: 37027575 DOI: 10.1109/tuffc.2023.3250202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Understanding and controlling the ultrasound contrast agent (UCA)'s response to an applied ultrasound pressure field are crucial when investigating ultrasound imaging sequences and therapeutic applications. The magnitude and frequency of the applied ultrasonic pressure waves affect the oscillatory response of the UCA. Therefore, it is important to have an ultrasound compatible and optically transparent chamber in which the acoustic response of the UCA can be studied. The aim of our study was to determine the in situ ultrasound pressure amplitude in the ibidi μ -slide I Luer channel, an optically transparent chamber suitable for cell culture, including culture under flow, for all microchannel heights (200, 400, 600, and [Formula: see text]). First, the in situ pressure field in the 800- [Formula: see text] high channel was experimentally characterized using Brandaris 128 ultrahigh-speed camera recordings of microbubbles (MBs) and a subsequent iterative processing method, upon insonification at 2 MHz, 45° incident angle, and 50-kPa peak negative pressure (PNP). Control studies in another cell culture chamber, the CLINIcell, were compared with the obtained results. The pressure amplitude was -3.7 dB with respect to the pressure field without the ibidi μ -slide. Second, using finite-element analysis, we determined the in situ pressure amplitude in the ibidi with the 800- [Formula: see text] channel (33.1 kPa), which was comparable to the experimental value (34 kPa). The simulations were extended to the other ibidi channel heights (200, 400, and [Formula: see text]) with either 35° or 45° incident angle, and at 1 and 2 MHz. The predicted in situ ultrasound pressure fields were between -8.7 and -1.1 dB of the incident pressure field depending on the listed configurations of ibidi slides with different channel heights, applied ultrasound frequencies, and incident angles. In conclusion, the determined ultrasound in situ pressures demonstrate the acoustic compatibility of the ibidi μ -slide I Luer for different channel heights, thereby showing its potential for studying the acoustic behavior of UCAs for imaging and therapy.
Collapse
|
5
|
da Silva ANG, de Oliveira JRS, Madureira ÁNDM, Lima WA, Lima VLDM. Biochemical and Physiological Events Involved in Responses to the Ultrasound Used in Physiotherapy: A Review. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:2417-2429. [PMID: 36115728 DOI: 10.1016/j.ultrasmedbio.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Therapeutic ultrasound (TUS) is the ultrasound modality widely used in physical therapy for the treatment of acute and chronic injuries of various biological tissues. Its thermal and mechanical effects modify the permeability of the plasma membrane, the flow of ions and molecules and cell signaling and, in this way, promote the cascade of physiological events that culminate in the repair of injuries. This article is a review of the biochemical and physiological effects of TUS with parameters commonly used by physical therapists. Integrins can translate the mechanical signal of the TUS into a cellular biochemical signal for protein synthesis and modification of the active site of enzymes, so cell function and metabolism are modified. TUS also alters the permeability of the plasma membrane, allowing the influx of ions and molecules that modulate the cellular electrochemical signaling pathways. With biochemical and electrochemical signals tampered with, the cellular response to damage is then modified or enhanced. Greater release of pro-inflammatory factors, cytokines and growth factors, increased blood flow and activation of protein kinases also seem to be involved in the therapeutic response of TUS. Although a vast number of publications describe the mechanisms by which TUS can interact with the biological system, little is known about the metabolic possibilities of TUS because of the lack of standardization in its application.
Collapse
Affiliation(s)
- Ayala Nathaly Gomes da Silva
- Laboratório de Lipídios e Aplicaçães de Biomoléculas em Doenças Prevalentes e Negligenciadas, Universidade Federal de Pernambuco, Recife, Brazil
| | - João Ricardhis Saturnino de Oliveira
- Laboratório de Lipídios e Aplicaçães de Biomoléculas em Doenças Prevalentes e Negligenciadas, Universidade Federal de Pernambuco, Recife, Brazil
| | - Álvaro Nóbrega de Melo Madureira
- Laboratório de Lipídios e Aplicaçães de Biomoléculas em Doenças Prevalentes e Negligenciadas, Universidade Federal de Pernambuco, Recife, Brazil
| | - Wildberg Alencar Lima
- Laboratório de Lipídios e Aplicaçães de Biomoléculas em Doenças Prevalentes e Negligenciadas, Universidade Federal de Pernambuco, Recife, Brazil
| | - Vera Lúcia de Menezes Lima
- Laboratório de Lipídios e Aplicaçães de Biomoléculas em Doenças Prevalentes e Negligenciadas, Universidade Federal de Pernambuco, Recife, Brazil.
| |
Collapse
|
6
|
Joshi K, Sanwal R, Thu KL, Tsai SSH, Lee WL. Plug and Pop: A 3D-Printed, Modular Platform for Drug Delivery Using Clinical Ultrasound and Microbubbles. Pharmaceutics 2022; 14:pharmaceutics14112516. [PMID: 36432707 PMCID: PMC9695114 DOI: 10.3390/pharmaceutics14112516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Targeted drug and gene delivery using ultrasound and microbubbles (USMB) has the potential to treat several diseases. In vitro investigation of USMB-mediated delivery is of prime importance prior to in vivo studies because it is cost-efficient and allows for the rapid optimization of experimental parameters. Most in vitro USMB studies are carried out with non-clinical, research-grade ultrasound systems, which are not approved for clinical use and are difficult to replicate by other labs. A standardized, low-cost, and easy-to-use in vitro experimental setup using a clinical ultrasound system would facilitate the eventual translation of the technology to the bedside. In this paper, we report a modular 3D-printed experimental setup using a clinical ultrasound transducer that can be used to study USMB-mediated drug delivery. We demonstrate its utility for optimizing various cargo delivery parameters in the HEK293 cell line, as well as for the CMT167 lung carcinoma cell line, using dextran as a model drug. We found that the proportion of dextran-positive cells increases with increasing mechanical index and ultrasound treatment time and decreases with increasing pulse interval (PI). We also observed that dextran delivery is most efficient for a narrow range of microbubble concentrations.
Collapse
Affiliation(s)
- Kushal Joshi
- Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Toronto, ON M5B 1T8, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1T8, Canada
| | - Rajiv Sanwal
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1T8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Kelsie L. Thu
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1T8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Scott S. H. Tsai
- Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Toronto, ON M5B 1T8, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1T8, Canada
- Biomedical Engineering Graduate Program, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
| | - Warren L. Lee
- Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Toronto, ON M5B 1T8, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1T8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Biomedical Engineering Graduate Program, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
- Correspondence:
| |
Collapse
|
7
|
Martinez P, Bottenus N, Borden M. Cavitation Characterization of Size-Isolated Microbubbles in a Vessel Phantom Using Focused Ultrasound. Pharmaceutics 2022; 14:pharmaceutics14091925. [PMID: 36145673 PMCID: PMC9501432 DOI: 10.3390/pharmaceutics14091925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 12/03/2022] Open
Abstract
Pharmaceutical delivery can be noninvasively targeted on-demand by microbubble (MB) assisted focused ultrasound (FUS). Passive cavitation detection (PCD) has become a useful method to obtain real-time feedback on MB activity due to a FUS pulse. Previous work has demonstrated the acoustic PCD response of MBs at a variety of acoustic parameters, but few have explored variations in microbubble parameters. The goal of this study was to determine the acoustic response of different MB size populations and concentrations. Four MB size distributions were prepared (2, 3, 5 µm diameter and polydisperse) and pulled through a 2% agar wall-less vessel phantom. FUS was applied by a 1.515 MHz geometrically focused transducer for 1 ms pulses at 1 Hz PRF and seven distinct mechanical indices (MI) ranging from 0.01 to 1.0 (0.0123 to 1.23 MPa PNP). We found that the onset of harmonic (HCD) and broadband cavitation dose (BCD) depends on the mechanical index, MB size and MB concentration. When matched for MI, the HCD and BCD rise, plateau, and decline as microbubble concentration is increased. Importantly, when microbubble size and concentration are combined into gas volume fraction, all four microbubble size distributions align to similar onset and peak; these results may help guide the planning and control of MB + FUS therapeutic procedures.
Collapse
Affiliation(s)
- Payton Martinez
- Biomedical Engineering Program, University of Colorado, Boulder, CO 80309, USA; (P.M.); (N.B.)
- IQ Biology Program, University of Colorado, Boulder, CO 80309, USA
| | - Nick Bottenus
- Biomedical Engineering Program, University of Colorado, Boulder, CO 80309, USA; (P.M.); (N.B.)
- Mechanical Engineering Department, University of Colorado, Boulder, CO 80309, USA
| | - Mark Borden
- Biomedical Engineering Program, University of Colorado, Boulder, CO 80309, USA; (P.M.); (N.B.)
- Mechanical Engineering Department, University of Colorado, Boulder, CO 80309, USA
- Correspondence:
| |
Collapse
|
8
|
Teenan O, Sahni V, Henderson RB, Conway BR, Moran CM, Hughes J, Denby L. Sonoporation of Human Renal Proximal Tubular Epithelial Cells In Vitro to Enhance the Liberation of Intracellular miRNA Biomarkers. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:1019-1032. [PMID: 35307235 DOI: 10.1016/j.ultrasmedbio.2022.01.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/11/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Ultrasound has previously been demonstrated to non-invasively cause tissue disruption. Small animal studies have demonstrated that this effect can be enhanced by contrast microbubbles and has the potential to be clinically beneficial in techniques such as targeted drug delivery or enhancing liquid biopsies when a physical biopsy may be inappropriate. Cavitating microbubbles in close proximity to cells increases membrane permeability, allowing small intracellular molecules to leak into the extracellular space. This study sought to establish whether cavitating microbubbles could liberate cell-specific miRNAs, augmenting biomarker detection for non-invasive liquid biopsies. Insonating human polarized renal proximal tubular epithelial cells (RPTECs), in the presence of SonoVue microbubbles, revealed that cellular health could be maintained while achieving the release of miRNAs, miR-21, miR-30e, miR-192 and miR-194 (respectively, 10.9-fold, 7.17-fold, 5.95-fold and 5.36-fold). To examine the mechanism of release, RPTECs expressing enhanced green fluorescent protein were generated and the protein successfully liberated. Cell polarization, cellular phenotype and cell viability after sonoporation were measured by a number of techniques. Ultrastructural studies using electron microscopy showed gap-junction disruption and pore formation on cellular surfaces. These studies revealed that cell-specific miRNAs can be non-specifically liberated from RPTECs by sonoporation without a significant decrease in cell viability.
Collapse
Affiliation(s)
- Oliver Teenan
- Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, UK
| | - Vishal Sahni
- GlaxoSmithKline, Medical Research Centre, Stevenage, UK
| | | | - Bryan R Conway
- Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, UK
| | - Carmel M Moran
- Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, UK
| | - Jeremy Hughes
- Centre for Inflammation Research, University of Edinburgh, Queens Medical Research Institute, Edinburgh, UK
| | - Laura Denby
- Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, UK.
| |
Collapse
|
9
|
de Maar JS, Rousou C, van Elburg B, Vos HJ, Lajoinie GPR, Bos C, Moonen CTW, Deckers R. Ultrasound-Mediated Drug Delivery With a Clinical Ultrasound System: In Vitro Evaluation. Front Pharmacol 2021; 12:768436. [PMID: 34737709 PMCID: PMC8560689 DOI: 10.3389/fphar.2021.768436] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/05/2021] [Indexed: 12/22/2022] Open
Abstract
Chemotherapy efficacy is often reduced by insufficient drug uptake in tumor cells. The combination of ultrasound and microbubbles (USMB) has been shown to improve drug delivery and to enhance the efficacy of several drugs in vitro and in vivo, through effects collectively known as sonopermeation. However, clinical translation of USMB therapy is hampered by the large variety of (non-clinical) US set-ups and US parameters that are used in these studies, which are not easily translated to clinical practice. In order to facilitate clinical translation, the aim of this study was to prove that USMB therapy using a clinical ultrasound system (Philips iU22) in combination with clinically approved microbubbles (SonoVue) leads to efficient in vitro sonopermeation. To this end, we measured the efficacy of USMB therapy for different US probes (S5-1, C5-1 and C9-4) and US parameters in FaDu cells. The US probe with the lowest central frequency (i.e. 1.6 MHz for S5-1) showed the highest USMB-induced intracellular uptake of the fluorescent dye SYTOX™ Green (SG). These SG uptake levels were comparable to or even higher than those obtained with a custom-built US system with optimized US parameters. Moreover, USMB therapy with both the clinical and the custom-built US system increased the cytotoxicity of the hydrophilic drug bleomycin. Our results demonstrate that a clinical US system can be used to perform USMB therapy as efficiently as a single-element transducer set-up with optimized US parameters. Therefore, future trials could be based on these clinical US systems, including validated US parameters, in order to accelerate successful translation of USMB therapy.
Collapse
Affiliation(s)
- Josanne S de Maar
- Imaging and Oncology Division, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Charis Rousou
- Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, Netherlands
| | - Benjamin van Elburg
- Physics of Fluids Group, MIRA Institute of Biomedical Technology and Technical Medicine, University of Twente, Enschede, Netherlands
| | - Hendrik J Vos
- Laboratory of Acoustical Wavefield Imaging, Faculty of Applied Sciences, Delft University of Technology, Delft, Netherlands
| | - Guillaume P R Lajoinie
- Physics of Fluids Group, MIRA Institute of Biomedical Technology and Technical Medicine, University of Twente, Enschede, Netherlands
| | - Clemens Bos
- Imaging and Oncology Division, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Chrit T W Moonen
- Imaging and Oncology Division, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Roel Deckers
- Imaging and Oncology Division, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
10
|
Keller SB, Averkiou MA. The Role of Ultrasound in Modulating Interstitial Fluid Pressure in Solid Tumors for Improved Drug Delivery. Bioconjug Chem 2021; 33:1049-1056. [PMID: 34514776 DOI: 10.1021/acs.bioconjchem.1c00422] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The unique microenvironment of solid tumors, including desmoplasia within the extracellular matrix, enhanced vascular permeability, and poor lymphatic drainage, leads to an elevated interstitial fluid pressure which is a major barrier to drug delivery. Reducing tumor interstitial fluid pressure is one proposed method of increasing drug delivery to the tumor. The goal of this topical review is to describe recent work using focused ultrasound with or without microbubbles to modulate tumor interstitial fluid pressure, through either thermal or mechanical effects on the extracellular matrix and the vasculature. Furthermore, we provide a review on techniques in which ultrasound imaging may be used to diagnose elevated interstitial fluid pressure within solid tumors. Ultrasound-based techniques show high promise in diagnosing and treating elevated interstitial pressure to enhance drug delivery.
Collapse
Affiliation(s)
- Sara B Keller
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Michalakis A Averkiou
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
11
|
Gailliègue FN, Tamošiūnas M, André FM, Mir LM. A Setup for Microscopic Studies of Ultrasounds Effects on Microliters Scale Samples: Analytical, Numerical and Experimental Characterization. Pharmaceutics 2021; 13:pharmaceutics13060847. [PMID: 34201070 PMCID: PMC8227135 DOI: 10.3390/pharmaceutics13060847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 11/23/2022] Open
Abstract
Sonoporation is the process of cell membrane permeabilization, due to exposure to ultrasounds. There is a lack of consensus concerning the mechanisms of sonoporation: Understanding the mechanisms of sonoporation refines the choice of the ultrasonic parameters to be applied on the cells. Cells’ classical exposure systems to ultrasounds have several drawbacks, like the immersion of the cells in large volumes of liquid, the nonhomogeneous acoustic pressure in the large sample, and thus, the necessity for magnetic stirring to somehow homogenize the exposure of the cells. This article reports the development and characterization of a novel system allowing the exposure to ultrasounds of very small volumes and their observation under the microscope. The observation under a microscope imposes the exposure of cells and Giant Unilamellar Vesicles under an oblique incidence, as well as the very unusual presence of rigid walls limiting the sonicated volume. The advantages of this new setup are not only the use of a very small volume of cells culture medium/microbubbles (MB), but the presence of flat walls near the sonicated region that results in a more homogeneous ultrasonic pressure field, and thus, the control of the focal distance and the real exposure time. The setup presented here comprises the ability to survey the geometrical and dynamical aspects of the exposure of cells and MB to ultrasounds, if an ultrafast camera is used. Indeed, the setup thus fulfills all the requirements to apply ultrasounds conveniently, for accurate mechanistic experiments under an inverted fluorescence microscope, and it could have interesting applications in photoacoustic research.
Collapse
Affiliation(s)
- Florian N. Gailliègue
- Institut Gustave Roussy, Metabolic and Systemic Aspects of the Oncogenesis (METSY), Université Paris-Saclay, CNRS, 94805 Villejuif, France; (F.N.G.); (F.M.A.)
| | - Mindaugas Tamošiūnas
- Biophotonics Laboratory, Institute of Atomic Physics and Spectroscopy, University of Latvia, 19 Raina Blvd., LV-1586 Rīga, Latvia;
| | - Franck M. André
- Institut Gustave Roussy, Metabolic and Systemic Aspects of the Oncogenesis (METSY), Université Paris-Saclay, CNRS, 94805 Villejuif, France; (F.N.G.); (F.M.A.)
| | - Lluis M. Mir
- Institut Gustave Roussy, Metabolic and Systemic Aspects of the Oncogenesis (METSY), Université Paris-Saclay, CNRS, 94805 Villejuif, France; (F.N.G.); (F.M.A.)
- Correspondence: ; Tel.: +33-(0)1421-14792
| |
Collapse
|
12
|
Pellow C, Cherin E, Abenojar EC, Exner AA, Zheng G, Demore CEM, Goertz DE. High-Frequency Array-Based Nanobubble Nonlinear Imaging in a Phantom and In Vivo. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2059-2074. [PMID: 33513102 PMCID: PMC8296974 DOI: 10.1109/tuffc.2021.3055141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
There has been growing interest in nanobubbles (NBs) for vascular and extravascular ultrasound contrast imaging and therapeutic applications. Studies to date have generally utilized low frequencies (<12 MHz), high concentrations (>109 mL-1), and uncalibrated B-mode or contrast-mode on commercial systems without reporting investigations on NB signatures upon which the imaging protocols should be based. We recently demonstrated that low concentrations (106 mL-1) of porphyrin-lipid-encapsulated NBs scatter nonlinearly at low (2.5, 8 MHz) and high (12.5, 25, 30 MHz) frequencies in a pressure threshold-dependent manner that is advantageous for amplitude modulation (AM) imaging. Here, we implement pressure-calibrated AM at high frequency on a commercial preclinical array system to enhance sensitivity to nonlinear scattering of three phospholipid-based NB formulations. With this approach, improvements in contrast to tissue ratio relative to B-mode between 12.4 and 22.8 dB are demonstrated in a tissue-mimicking phantom, and between 6.7 and 14.8 dB in vivo.
Collapse
|
13
|
Malone CD, Fetzer DT, Monsky WL, Itani M, Mellnick VM, Velez PA, Middleton WD, Averkiou MA, Ramaswamy RS. Contrast-enhanced US for the Interventional Radiologist: Current and Emerging Applications. Radiographics 2021; 40:562-588. [PMID: 32125955 DOI: 10.1148/rg.2020190183] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
US is a powerful and nearly ubiquitous tool in the practice of interventional radiology. Use of contrast-enhanced US (CEUS) has gained traction in diagnostic imaging given the recent approval by the U.S. Food and Drug Administration (FDA) of microbubble contrast agents for use in the liver, such as sulfur hexafluoride lipid-type A microspheres. Adoption of CEUS by interventional radiologists can enhance not only procedure guidance but also preprocedure patient evaluation and assessment of treatment response across a wide spectrum of oncologic, vascular, and nonvascular procedures. In addition, the unique physical properties of microbubble contrast agents make them amenable as therapeutic vehicles in themselves, which can lay a foundation for future therapeutic innovations in the field in drug delivery, thrombolysis, and vascular flow augmentation. The purpose of this article is to provide an introduction to and overview of CEUS aimed at the interventional radiologist, highlighting its role before, during, and after frequently practiced oncologic and vascular interventions such as biopsy, ablation, transarterial chemoembolization, detection and control of hemorrhage, evaluation of transjugular intrahepatic portosystemic shunts (TIPS), detection of aortic endograft endoleak, thrombus detection and evaluation, evaluation of vascular malformations, lymphangiography, and percutaneous drain placement. Basic physical principles of CEUS, injection and scanning protocols, and logistics for practice implementation are also discussed. Early adoption of CEUS by the interventional radiology community will ensure rapid innovation of the field and development of future novel procedures. Online supplemental material is available for this article. ©RSNA, 2020.
Collapse
Affiliation(s)
- Christopher D Malone
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, CB 8131, St Louis, MO 63110 (C.D.M., M.I., V.M.M., P.A.V., W.D.M., R.S.R.); Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Tex (D.T.F.); Department of Radiology, University of Washington Medical Center, Seattle, Wash (W.L.M.); and Department of Bioengineering, University of Washington, Seattle, Wash (M.A.A.)
| | - David T Fetzer
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, CB 8131, St Louis, MO 63110 (C.D.M., M.I., V.M.M., P.A.V., W.D.M., R.S.R.); Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Tex (D.T.F.); Department of Radiology, University of Washington Medical Center, Seattle, Wash (W.L.M.); and Department of Bioengineering, University of Washington, Seattle, Wash (M.A.A.)
| | - Wayne L Monsky
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, CB 8131, St Louis, MO 63110 (C.D.M., M.I., V.M.M., P.A.V., W.D.M., R.S.R.); Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Tex (D.T.F.); Department of Radiology, University of Washington Medical Center, Seattle, Wash (W.L.M.); and Department of Bioengineering, University of Washington, Seattle, Wash (M.A.A.)
| | - Malak Itani
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, CB 8131, St Louis, MO 63110 (C.D.M., M.I., V.M.M., P.A.V., W.D.M., R.S.R.); Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Tex (D.T.F.); Department of Radiology, University of Washington Medical Center, Seattle, Wash (W.L.M.); and Department of Bioengineering, University of Washington, Seattle, Wash (M.A.A.)
| | - Vincent M Mellnick
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, CB 8131, St Louis, MO 63110 (C.D.M., M.I., V.M.M., P.A.V., W.D.M., R.S.R.); Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Tex (D.T.F.); Department of Radiology, University of Washington Medical Center, Seattle, Wash (W.L.M.); and Department of Bioengineering, University of Washington, Seattle, Wash (M.A.A.)
| | - Philip A Velez
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, CB 8131, St Louis, MO 63110 (C.D.M., M.I., V.M.M., P.A.V., W.D.M., R.S.R.); Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Tex (D.T.F.); Department of Radiology, University of Washington Medical Center, Seattle, Wash (W.L.M.); and Department of Bioengineering, University of Washington, Seattle, Wash (M.A.A.)
| | - William D Middleton
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, CB 8131, St Louis, MO 63110 (C.D.M., M.I., V.M.M., P.A.V., W.D.M., R.S.R.); Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Tex (D.T.F.); Department of Radiology, University of Washington Medical Center, Seattle, Wash (W.L.M.); and Department of Bioengineering, University of Washington, Seattle, Wash (M.A.A.)
| | - Michalakis A Averkiou
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, CB 8131, St Louis, MO 63110 (C.D.M., M.I., V.M.M., P.A.V., W.D.M., R.S.R.); Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Tex (D.T.F.); Department of Radiology, University of Washington Medical Center, Seattle, Wash (W.L.M.); and Department of Bioengineering, University of Washington, Seattle, Wash (M.A.A.)
| | - Raja S Ramaswamy
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, CB 8131, St Louis, MO 63110 (C.D.M., M.I., V.M.M., P.A.V., W.D.M., R.S.R.); Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Tex (D.T.F.); Department of Radiology, University of Washington Medical Center, Seattle, Wash (W.L.M.); and Department of Bioengineering, University of Washington, Seattle, Wash (M.A.A.)
| |
Collapse
|
14
|
Li Y, Chen Z, Ge S. Sonoporation: Underlying Mechanisms and Applications in Cellular Regulation. BIO INTEGRATION 2021. [DOI: 10.15212/bioi-2020-0028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ultrasound combined with microbubble-mediated sonoporation has been applied to enhance drug or gene intracellular delivery. Sonoporation leads to the formation of openings in the cell membrane, triggered by ultrasound-mediated oscillations and destruction of microbubbles. Multiple mechanisms
are involved in the occurrence of sonoporation, including ultrasonic parameters, microbubbles size, and the distance of microbubbles to cells. Recent advances are beginning to extend applications through the assistance of contrast agents, which allow ultrasound to connect directly to cellular
functions such as gene expression, cellular apoptosis, differentiation, and even epigenetic reprogramming. In this review, we summarize the current state of the art concerning microbubble‐cell interactions and sonoporation effects leading to cellular functions.
Collapse
Affiliation(s)
- Yue Li
- First Affiliated Hospital of University of South China, Hengyang, China
| | - Zhiyi Chen
- First Affiliated Hospital of University of South China, Hengyang, China
| | - Shuping Ge
- Department of Pediatrics, St Christopher’s Hospital for Children, Tower Health and Drexel University, Philadelphia, PA (S.G.)
| |
Collapse
|
15
|
Keller SB, Sheeran PS, Averkiou MA. Cavitation Therapy Monitoring of Commercial Microbubbles With a Clinical Scanner. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:1144-1154. [PMID: 33112743 DOI: 10.1109/tuffc.2020.3034532] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The ability to monitor cavitation activity during ultrasound and microbubble-mediated procedures is of high clinical value. However, there has been little reported literature comparing the cavitation characteristics of different clinical microbubbles, nor have current clinical scanners been used to perform passive cavitation detection in real time. The goal of this work was to investigate and characterize standard microbubble formulations (Optison, Sonovue, Sonazoid, and a custom microbubble made with similar components as Definity) with a custom passive cavitation detector (two confocal single-element focused transducers) and with a Philips EPIQ scanner with a C5-1 curvilinear probe passively listening. We evaluated three different methods for investigating cavitation thresholds, two from previously reported work and one developed in this work. For all three techniques, it was observed that the inertial cavitation thresholds were between 0.1 and 0.3 MPa for all agents when detected with both systems. Notably, we found that most microbubble formulations in bulk solution behaved generally similarly, with some differences. We show that these characteristics and thresholds are maintained when using a diagnostic ultrasound system for detecting cavitation activity. We believe that a systematic evaluation of the frequency response of the cavitation activity of different microbubbles in order to inform real-time therapy monitoring using a clinical ultrasound device could make an immediate clinical impact.
Collapse
|
16
|
Vahl JM, von Witzleben A, Reiter R, Theodoraki MN, Wigand M, Hoffmann TK, Goldberg-Bockhorn E. Infrasound a new weapon in cancer therapy? Explore (NY) 2021; 18:366-370. [PMID: 33745848 DOI: 10.1016/j.explore.2021.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/25/2021] [Accepted: 03/07/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Researchers take different positions when describing the effects of infrasound on the human body. Although several studies investigated the likely harmful effects of infrasound exposure from wind turbines a significant connection has not been found yet. There is evidence that infrasound interacts with cell metabolism and may disrupt cell membrane integrity. OBJECTIVES The suggested impairment of the cells' ultrastructure by infrasound leads to the question of whether infrasound can be therapeutically used, for instance in cancer therapy. This review provides the current state of the literature. METHOD Current literature on infrasound in cancer therapy including all studies with the search terms 'cancer' and 'infrasound' were identified and reviewed until the year 2020. RESULTS The present state of research reveals promising effects of targeted infrasound in cancer therapy. Infrasound directly affects the tumor cells' ultrastructure and seems to sensitize several types of cancer to chemotherapy, presumably due to membrane permeabilization. The application of infrasound on tumor cells without other therapeutic agents demonstrates different effects that probably depend on the type of cells, the applied frequency and sound pressure level as well as the time of exposure. CONCLUSIONS The mechanism of infrasound on cancer cells is not completely understood yet, hence, further studies have to be conducted to clarify the ultrastructural and metabolic changes inside the tumor cells. The development of suitable infrasound generators for the application in a clinical setting would be an important course of action.
Collapse
Affiliation(s)
- J M Vahl
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, 89075 Ulm, Germany.
| | - A von Witzleben
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, 89075 Ulm, Germany
| | - R Reiter
- Department of Phoniatrics and Pedaudiology, Ulm University Medical Center, 89075 Ulm, Germany
| | - M N Theodoraki
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, 89075 Ulm, Germany
| | - M Wigand
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, 89075 Ulm, Germany
| | - T K Hoffmann
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, 89075 Ulm, Germany
| | - E Goldberg-Bockhorn
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, 89075 Ulm, Germany
| |
Collapse
|
17
|
Keller SB, Suo D, Wang YN, Kenerson H, Yeung RS, Averkiou MA. Image-Guided Treatment of Primary Liver Cancer in Mice Leads to Vascular Disruption and Increased Drug Penetration. Front Pharmacol 2020; 11:584344. [PMID: 33101038 PMCID: PMC7554611 DOI: 10.3389/fphar.2020.584344] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/07/2020] [Indexed: 12/14/2022] Open
Abstract
Despite advances in interventional procedures and chemotherapeutic drug development, hepatocellular carcinoma (HCC) is still the fourth leading cause of cancer-related deaths worldwide with a <30% 5-year survival rate. This poor prognosis can be attributed to the fact that HCC most commonly occurs in patients with pre-existing liver conditions, rendering many treatment options too aggressive. Patient survival rates could be improved by a more targeted approach. Ultrasound-induced cavitation can provide a means for overcoming traditional barriers defining drug uptake. The goal of this work was to evaluate preclinical efficacy of image-guided, cavitation-enabled drug delivery with a clinical ultrasound scanner. To this end, ultrasound conditions (unique from those used in imaging) were designed and implemented on a Philips EPIQ and S5-1 phased array probe to produced focused ultrasound for cavitation treatment. Sonovue® microbubbles which are clinically approved as an ultrasound contrast agent were used for both imaging and cavitation treatment. A genetically engineered mouse model was bred and used as a physiologically relevant preclinical analog to human HCC. It was observed that image-guided and targeted microbubble cavitation resulted in selective disruption of the tumor blood flow and enhanced doxorubicin uptake and penetration. Histology results indicate that no gross morphological damage occurred as a result of this process. The combination of these effects may be exploited to treat HCC and other challenging malignancies and could be implemented with currently available ultrasound scanners and reagents.
Collapse
Affiliation(s)
- Sara B Keller
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Dingjie Suo
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Yak-Nam Wang
- Applied Physics Laboratory, University of Washington, Seattle, WA, United States
| | - Heidi Kenerson
- Department of Surgery, University of Washington, Seattle, WA, United States
| | - Raymond S Yeung
- Department of Surgery, University of Washington, Seattle, WA, United States
| | | |
Collapse
|