1
|
Navarrete M, Castells-Rufas D, Kichou HB, Navarro-Patron G, Jimenez J, Carrabina J. High-Resolution Ultrasound Platform for Infant Meningitis Detection: An In Vitro Demonstration. SENSORS (BASEL, SWITZERLAND) 2024; 24:4768. [PMID: 39123818 PMCID: PMC11314795 DOI: 10.3390/s24154768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024]
Abstract
Infant meningitis remains a severe burden on global health, particularly for young infants. Traditional ultrasound imaging techniques are limited in spatial resolution to visualize white blood cells (WBCs) in the cerebrospinal fluid (CSF), which is considered a well-established marker for meningitis detection. This work presents a novel platform that uses high-resolution ultrasound to detect the backscatter signals from microscopic CSF WBCs through the anterior fontanelle of neonates and young infants. The whole system was built around a custom probe that allows for a 20 MHz focused transducer to be mechanically controlled to map the area of interest in the CSF. Data processing can be performed internally in the device without the need to extract the images for further analysis. The in vitro feasibility of the proposed solution was evaluated in imaging 7 μm particle suspensions at different concentrations relevant to meningitis diagnosis ranging from 7- to 646-particles (pp)/μL. The experimental tests were conducted from a simple setup using a sample container to a more realistic setup based on an anatomical phantom of the neonatal head. The results show high-quality images, where 7 μm particles can be resolved for the different concentrations.
Collapse
Affiliation(s)
- Manuel Navarrete
- Kriba, Barcelona Science Park, 08028 Barcelona, Spain; (H.B.K.); (G.N.-P.); (J.J.)
- Department of Microelectronics and Electronic Systems, Autonomous University of Barcelona, 08193 Barcelona, Spain; (D.C.-R.); (J.C.)
| | - David Castells-Rufas
- Department of Microelectronics and Electronic Systems, Autonomous University of Barcelona, 08193 Barcelona, Spain; (D.C.-R.); (J.C.)
| | | | | | - Javier Jimenez
- Kriba, Barcelona Science Park, 08028 Barcelona, Spain; (H.B.K.); (G.N.-P.); (J.J.)
| | - Jordi Carrabina
- Department of Microelectronics and Electronic Systems, Autonomous University of Barcelona, 08193 Barcelona, Spain; (D.C.-R.); (J.C.)
| |
Collapse
|
2
|
Jawli A, Aldehani W, Nabi G, Huang Z. Tissue-Mimicking Material Fabrication and Properties for Multiparametric Ultrasound Phantoms: A Systematic Review. Bioengineering (Basel) 2024; 11:620. [PMID: 38927856 PMCID: PMC11200625 DOI: 10.3390/bioengineering11060620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Medical imaging has allowed for significant advancements in the field of ultrasound procedures over the years. However, each imaging modality exhibits distinct limitations that differently affect their accuracy. It is imperative to ensure the quality of each modality to identify and eliminate these limitations. To achieve this, a tissue-mimicking material (TMM) phantom is utilised for validation. This study aims to perform a systematic analysis of tissue-mimicking materials used for creating ultrasound phantoms. We reviewed 234 studies on the use of TMM phantoms in ultrasound that were published from 2013 to 2023 from two research databases. Our focus was on studies that discussed TMMs' properties and fabrication for ultrasound, elastography, and flow phantoms. The screening process led to the selection of 16 out of 234 studies to include in the analysis. The TMM ultrasound phantoms were categorised into three groups based on the solvent used; each group offers a broad range of physical properties. The water-based material most closely aligns with the properties of ultrasound. This study provides important information about the materials used for ultrasound phantoms. We also compared these materials to real human tissues and found that PVA matches most of the human tissues the best.
Collapse
Affiliation(s)
- Adel Jawli
- Division of Imaging Sciences and Technology, School of Medicine, Ninewells Hospital, University of Dundee, Dundee DD1 9SY, UK
- Department of Clinical Radiology, Sheikh Jaber Al-Ahmad Al-Sabah Hospital, Ministry of Health, Sulaibikhat 13001, Kuwait
| | - Wadhhah Aldehani
- Division of Imaging Sciences and Technology, School of Medicine, Ninewells Hospital, University of Dundee, Dundee DD1 9SY, UK
| | - Ghulam Nabi
- Division of Imaging Sciences and Technology, School of Medicine, Ninewells Hospital, University of Dundee, Dundee DD1 9SY, UK
| | - Zhihong Huang
- Division of Imaging Sciences and Technology, School of Medicine, Ninewells Hospital, University of Dundee, Dundee DD1 9SY, UK
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK
| |
Collapse
|
3
|
Albor-Ramírez E, Reyes-Alberto M, Vidal-Flores LM, Gutierrez-Herrera E, Padilla-Castañeda MA. Agarose Gel Characterization for the Fabrication of Brain Tissue Phantoms for Infrared Multispectral Vision Systems. Gels 2023; 9:944. [PMID: 38131930 PMCID: PMC10742522 DOI: 10.3390/gels9120944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
Synthetic phantoms that recreate the characteristics of biological tissues are valuable tools for systematically studying and comprehending physiologies, pathologies, and biological processes related to tissues. The reproduction of mechanical and optical properties allows for the development and evaluation of novel systems and applications in areas such as imaging, optics, ultrasound, or dosimetry, among others. This paper proposes a methodology for manufacturing agarose-based phantoms that mimics the optical properties of healthy brain tissue within the wavelength infrared range of 800 to 820 nm. The fabrication of such phantoms enables the possibility of testing and experimentation in controlled and safe environments toward the design of new near-infrared multispectral imaging systems in neurosurgery. The results of an experimental optical characterization study indicate the validity and reliability of the proposed method for fabricating brain tissue phantoms in a cost-effective and straightforward fashion.
Collapse
Affiliation(s)
| | - Miguel Reyes-Alberto
- Applied Sciences and Technology Institute ICAT, National Autonomous University of Mexico UNAM, Ciudad Universitaria, Mexico City 04510, Mexico; (E.A.-R.); (L.M.V.-F.); (E.G.-H.)
| | | | | | - Miguel A. Padilla-Castañeda
- Applied Sciences and Technology Institute ICAT, National Autonomous University of Mexico UNAM, Ciudad Universitaria, Mexico City 04510, Mexico; (E.A.-R.); (L.M.V.-F.); (E.G.-H.)
| |
Collapse
|
4
|
Babanejad N, Mfoafo K, Thumma A, Omidi Y, Omidian H. Advances in cryostructures and their applications in biomedical and pharmaceutical products. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04683-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
5
|
Arteaga-Marrero N, Villa E, Llanos González AB, Gómez Gil ME, Fernández OA, Ruiz-Alzola J, González-Fernández J. Low-Cost Pseudo-Anthropomorphic PVA-C and Cellulose Lung Phantom for Ultrasound-Guided Interventions. Gels 2023; 9:gels9020074. [PMID: 36826245 PMCID: PMC9957311 DOI: 10.3390/gels9020074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
A low-cost custom-made pseudo-anthropomorphic lung phantom, offering a model for ultrasound-guided interventions, is presented. The phantom is a rectangular solidstructure fabricated with polyvinyl alcohol cryogel (PVA-C) and cellulose to mimic the healthy parenchyma. The pathologies of interest were embedded as inclusions containing gaseous, liquid, or solid materials. The ribs were 3D-printed using polyethylene terephthalate, and the pleura was made of a bidimensional reticle based on PVA-C. The healthy and pathological tissues were mimicked to display acoustic and echoic properties similar to that of soft tissues. Theflexible fabrication process facilitated the modification of the physical and acoustic properties of the phantom. The phantom's manufacture offers flexibility regarding the number, shape, location, and composition of the inclusions and the insertion of ribs and pleura. In-plane and out-of-plane needle insertions, fine needle aspiration, and core needle biopsy were performed under ultrasound image guidance. The mimicked tissues displayed a resistance and recoil effect typically encountered in a real scenario for a pneumothorax, abscesses, and neoplasms. The presented phantom accurately replicated thoracic tissues (lung, ribs, and pleura) and associated pathologies providing a useful tool for training ultrasound-guided procedures.
Collapse
Affiliation(s)
- Natalia Arteaga-Marrero
- Grupo Tecnología Médica IACTEC, Instituto de Astrofísica de Canarias (IAC), 38205 San Cristóbal de La Laguna, Spain
| | - Enrique Villa
- Grupo Tecnología Médica IACTEC, Instituto de Astrofísica de Canarias (IAC), 38205 San Cristóbal de La Laguna, Spain
- Correspondence:
| | - Ana Belén Llanos González
- Departamento de Neumología, Complejo Universitario de Canarias (HUC), 38320 San Cristóbal de La Laguna, Spain
| | - Marta Elena Gómez Gil
- Departameto de Radiología, Complejo Universitario de Canarias (HUC), 38320 San Cristóbal de La Laguna, Spain
| | - Orlando Acosta Fernández
- Departamento de Neumología, Complejo Universitario de Canarias (HUC), 38320 San Cristóbal de La Laguna, Spain
| | - Juan Ruiz-Alzola
- Grupo Tecnología Médica IACTEC, Instituto de Astrofísica de Canarias (IAC), 38205 San Cristóbal de La Laguna, Spain
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
- Departamento de Señales y Comunicaciones, Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
| | - Javier González-Fernández
- Departamento de Ingeniería Biomédica, Instituto Tecnológico de Canarias (ITC), 38009 Santa Cruz de Tenerife, Spain
| |
Collapse
|
6
|
Dakok KK, Matjafri MZ, Suardi N, Oglat AA, Nabasu SE. A Review of Carotid Artery Phantoms for Doppler Ultrasound Applications. J Med Ultrasound 2021; 29:157-166. [PMID: 34729323 PMCID: PMC8515632 DOI: 10.4103/jmu.jmu_164_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/19/2021] [Accepted: 02/25/2021] [Indexed: 11/19/2022] Open
Abstract
Ultrasound imaging systems need tissue-mimicking phantoms with a good range of acoustic properties. Many studies on carotid artery phantoms have been carried out using ultrasound; hence this study presents a review of the different forms of carotid artery phantoms used to examine blood hemodynamics by Doppler ultrasound (DU) methods and explains the ingredients that constitute every phantom with their advantages and disadvantages. Different research databases were consulted to access relevant information on carotid artery phantoms used for DU measurements after which the information were presented systematically spanning from walled phantoms to wall-less phantoms. This review points out the fact that carotid artery phantoms are made up of tissue mimicking materials, vessel mimicking materials, and blood mimicking fluid whose properties matched those of real human tissues and vessels. These materials are a combination of substances such as water, gelatin, glycerol, scatterers, and other powders in their right proportions.
Collapse
Affiliation(s)
- Kyermang Kyense Dakok
- Department of Medical Physics and Radiation Science, School of Physics, Univirsti Sains Malaysia, Penang Malaysia, Nigeria
| | - Mohammed Zubir Matjafri
- Department of Medical Physics and Radiation Science, School of Physics, Univirsti Sains Malaysia, Penang Malaysia, Nigeria
| | - Nursakinah Suardi
- Department of Medical Physics and Radiation Science, School of Physics, Univirsti Sains Malaysia, Penang Malaysia, Nigeria
| | - Ammar Anwar Oglat
- Department of Medical Imaging, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Joradan, Nigeria
| | - Seth Ezra Nabasu
- Department of Physics, Plateau State University Bokkos, Plateau State, Nigeria
| |
Collapse
|
7
|
Fernández A, Ibáñez A, Parrilla M, Elvira L, Bassat Q, Jiménez J. Estimation of the concentration of particles in suspension based on envelope statistics of ultrasound backscattering. ULTRASONICS 2021; 116:106501. [PMID: 34147922 DOI: 10.1016/j.ultras.2021.106501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/08/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
This work deals with the development of a methodology to evaluate the concentration in cell or particle suspensions from ultrasound images. The novelty of the method is based on two goals: first, it should be valid when the energy reaching the scatterers is unknown and cannot be measured or calibrated. In addition, it should be robust against echo overlap which may occur due to high scatterer concentration. Both characteristics are especially valuable in quantitative ultrasound analysis in the clinical context. In this regard, the present work considers the ability of envelope statistics models to characterize ultrasound images. Envelope statistical analysis are based on the examination of the physical properties of a medium through the study of the statistical distribution of the backscattered signal envelop. A review of the statistical distributions typically used to characterize scattering mediums was conducted. The main parameters of the distribution were estimated from simulations of signals backscattered by particle suspensions. Then, the ability of these parameters to characterize the suspension concentration was analyzed and the µ parameter from the Homodyned-K distribution resulted as the most suitable parameter for the task. Simulations were also used to study the impact of noise, signal amplitude variability and dispersion of particle sizes on the estimation method. The efficiency of the algorithm on experimental measurements was also evaluated. To this end, two sets of ultrasound images were obtained from suspensions of 7 µm and 12 µm polystyrene particles in water, using a 20 MHz focused transducer. The methodology proved to be efficient to quantify the concentration of particle suspensions in the range between 5 and 3000 particles/µl, achieving similar results for both particle sizes and for different signal-to-noise ratios.
Collapse
Affiliation(s)
- Alba Fernández
- CSIC, Instituto de Tecnologías Físicas y de la Información, 28006 Madrid, Spain.
| | - Alberto Ibáñez
- CSIC, Instituto de Tecnologías Físicas y de la Información, 28006 Madrid, Spain
| | - Montserrat Parrilla
- CSIC, Instituto de Tecnologías Físicas y de la Información, 28006 Madrid, Spain
| | - Luis Elvira
- CSIC, Instituto de Tecnologías Físicas y de la Información, 28006 Madrid, Spain
| | - Quique Bassat
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique; ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain; Pediatric Infectious Diseases Unit, Pediatrics Department, Hospital Sant Joan de Déu (University of Barcelona), Barcelona, Spain; Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | | |
Collapse
|
8
|
Elvira L, Ibanez Rodriguez A, Fernandez A, Duran C, Parrilla Romero M, Pose-Diez-de-la-Lastra A, Bassat Q, Jimenez J. A New Methodology for the Assessment of Very Low Concentrations of Cells in Serous Body Fluids Based on the Count of Ultrasound Echoes Backscattered From Cells. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:1580-1592. [PMID: 33259295 DOI: 10.1109/tuffc.2020.3041495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A methodology for the assessment of cell concentration, in the range 5-100 cells/ [Formula: see text], suitable for in vivo analysis of serous body fluids is presented in this work. This methodology is based on the quantitative analysis of ultrasound images obtained from cell suspensions and considers applicability criteria, such as short analysis times, moderate frequency, and absolute concentration estimation, all necessary to deal with the variability of tissues among different patients. Numerical simulations provided the framework to analyze the impact of echo overlapping and the polydispersion of scatterer sizes on the cell concentration estimation. The cell concentration range that can be analyzed as a function of the transducer and emitted waveform used was also discussed. Experiments were conducted to evaluate the performance of the method using 7- [Formula: see text] and 12- [Formula: see text] polystyrene particles in water suspensions in the 5-100 particles/ [Formula: see text] range. A single scanning focused transducer working at a central frequency of 20 MHz was used to obtain ultrasound images. The method proposed to estimate the concentration proved to be robust for different particle sizes and variations of gain acquisition settings. The effect of tissues placed in the ultrasound path between the probe and the sample was also investigated using 3-mm-thick tissue mimics. Under this situation, the algorithm was robust for the concentration analysis of 12 [Formula: see text] particle suspensions, yet significant deviations were obtained for the smallest particles.
Collapse
|
9
|
Peek AT, Hunter C, Kreider W, Khokhlova TD, Rosnitskiy PB, Yuldashev PV, Sapozhnikov OA, Khokhlova VA. Bilayer aberration-inducing gel phantom for high intensity focused ultrasound applications. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 148:3569. [PMID: 33379925 PMCID: PMC8097711 DOI: 10.1121/10.0002877] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/04/2020] [Accepted: 11/15/2020] [Indexed: 05/19/2023]
Abstract
Aberrations induced by soft tissue inhomogeneities often complicate high-intensity focused ultrasound (HIFU) therapies. In this work, a bilayer phantom made from polyvinyl alcohol hydrogel and ballistic gel was built to mimic alternating layers of water-based and lipid tissues characteristic of an abdominal body wall and to reproducibly distort HIFU fields. The density, sound speed, and attenuation coefficient of each material were measured using a homogeneous gel layer. A surface with random topographical features was designed as an interface between gel layers using a 2D Fourier spectrum approach and replicating different spatial scales of tissue inhomogeneities. Distortion of the field of a 256-element 1.5 MHz HIFU array by the phantom was characterized through hydrophone measurements for linear and nonlinear beam focusing and compared to the corresponding distortion induced by an ex vivo porcine body wall of the same thickness. Both spatial shift and widening of the focal lobe were observed, as well as dramatic reduction in focal pressures caused by aberrations. The results suggest that the phantom produced levels of aberration that are similar to a real body wall and can serve as a research tool for studying HIFU effects as well as for developing algorithms for aberration correction.
Collapse
Affiliation(s)
- Alex T Peek
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 NE 40th Street, Seattle, Washington 98105, USA
| | - Christopher Hunter
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 NE 40th Street, Seattle, Washington 98105, USA
| | - Wayne Kreider
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 NE 40th Street, Seattle, Washington 98105, USA
| | - Tatiana D Khokhlova
- Division of Gastroenterology, Department of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, Washington 98195, USA
| | - Pavel B Rosnitskiy
- Department of Acoustics, Physics Faculty, Moscow State University, Leninskie Gory, Moscow 119991, Russia
| | - Petr V Yuldashev
- Department of Acoustics, Physics Faculty, Moscow State University, Leninskie Gory, Moscow 119991, Russia
| | - Oleg A Sapozhnikov
- Department of Acoustics, Physics Faculty, Moscow State University, Leninskie Gory, Moscow 119991, Russia
| | - Vera A Khokhlova
- Department of Acoustics, Physics Faculty, Moscow State University, Leninskie Gory, Moscow 119991, Russia
| |
Collapse
|
10
|
Villa E, Arteaga-Marrero N, González-Fernández J, Ruiz-Alzola J. Bimodal microwave and ultrasound phantoms for non-invasive clinical imaging. Sci Rep 2020; 10:20401. [PMID: 33230246 PMCID: PMC7684317 DOI: 10.1038/s41598-020-77368-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/05/2020] [Indexed: 11/25/2022] Open
Abstract
A precise and thorough methodology is presented for the design and fabrication of bimodal phantoms to be used in medical microwave and ultrasound applications. Dielectric and acoustic properties of human soft tissues were simultaneously mimicked. The phantoms were fabricated using polyvinyl alcohol cryogel (PVA-C) as gelling agent at a 10% concentration. Sucrose was employed to control the dielectric properties in the microwave spectrum, whereas cellulose was used as acoustic scatterer for ultrasound. For the dielectric properties at microwaves, a mathematical model was extracted to calculate the complex permittivity of the desired mimicked tissues in the frequency range from 500 MHz to 20 GHz. This model, dependent on frequency and sucrose concentration, was in good agreement with the reference Cole-Cole model. Regarding the acoustic properties, the speed of sound and attenuation coefficient were employed for validation. In both cases, the experimental data were consistent with the corresponding theoretical values for soft tissues. The characterization of these PVA-C phantoms demonstrated a significant performance for simultaneous microwave and ultrasound operation. In conclusion, PVA-C has been validated as gelling agent for the fabrication of complex multimodal phantoms that mimic soft tissues providing a unique tool to be used in a range of clinical applications.
Collapse
Affiliation(s)
- Enrique Villa
- IACTEC Medical Technology Group, Instituto de Astrofísica de Canarias, San Cristóbal de La Laguna, 38205, Spain.
| | - Natalia Arteaga-Marrero
- IACTEC Medical Technology Group, Instituto de Astrofísica de Canarias, San Cristóbal de La Laguna, 38205, Spain
| | - Javier González-Fernández
- Department of Biomedical Engineering, Instituto Tecnológico de Canarias, Santa Cruz de Tenerife, 38009, Spain
| | - Juan Ruiz-Alzola
- IACTEC Medical Technology Group, Instituto de Astrofísica de Canarias, San Cristóbal de La Laguna, 38205, Spain
- Department of Signals and Communications, University Research Institute for Biomedical and Health Research, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, 35016, Spain
| |
Collapse
|
11
|
Malone AJ, Cournane S, Naydenova IG, Fagan AJ, Browne JE. Polyvinyl alcohol cryogel based vessel mimicking material for modelling the progression of atherosclerosis. Phys Med 2020; 69:1-8. [DOI: 10.1016/j.ejmp.2019.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/31/2019] [Accepted: 11/15/2019] [Indexed: 01/03/2023] Open
|