1
|
Kim S, Lee JY, Park EJ, Ahn YD, Cheon Y, Sim W, Lee HJ. Tumor suppression effect of ultrasound-sensitive nanoparticles with focused ultrasound in a pancreas cancer xenograft model. Eur Radiol Exp 2024; 8:39. [PMID: 38503996 PMCID: PMC10951153 DOI: 10.1186/s41747-024-00436-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/15/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND We investigated the tumor suppression effect of an ultrasound-sensitive doxorubicin-loaded liposome-based nanoparticle, IMP301, to enhance the synergistic effect with focused ultrasound (FUS) in an animal model of pancreatic cancer. METHODS Thirty nude mice with xenografts of PANC-1 human pancreatic cancer cells were randomly and prospectively allocated to 6 different groups (5 per group) each for Study-1 (dose-response test) and Study-2 (synergistic effect test). Study-1 consisted of control, gemcitabine, Doxil with FUS, and three different doses of IMP301 (2, 4, 6 mg/kg) with FUS groups. Study-2 consisted of control, FUS only, gemcitabine, Doxil with FUS, and IMP301 (4 mg/kg) with or without FUS groups. Differences in tumor volume and growth rate were evaluated by one-way ANOVA and Student-Newman-Keuls test. RESULTS In Study-1, 4 mg/kg or greater IMP301 with FUS groups showed lower tumor growth rates of 14 ± 4 mm3/day (mean ± standard deviation) or less, compared to the control, gemcitabine, and Doxil with FUS groups with rates exceeding 28 ± 5 (p < 0.050). The addition of FUS in Study-2 decreased the tumor growth rate in the IMP301-treated groups from 36 ± 17 to 9 ± 6, which was lower than the control, FUS only, gemcitabine, and Doxil with FUS groups (p < 0.050). CONCLUSIONS IMP301 combined with FUS exhibited higher tumor growth suppression compared to the use of a conventional drug alone or the combination with FUS. The present study showed the potential of IMP301 to enhance the synergistic effect with FUS for the treatment of pancreatic cancer. RELEVANCE STATEMENT This article aims to evaluate the synergistic effect of FUS and ultrasound-responsive liposomal drug in tumor growth suppression by using xenograft mouse model of pancreatic ductal adenocarcinoma. FUS-induced ultrasound-sensitive drug release may be a potential noninvasive repeatable treatment option for patients with locally advanced or unresectable pancreatic cancer. KEY POINTS • Modification of conventional drugs combined with FUS would maximize tumor suppression. • IMP301 with FUS had higher tumor suppression effect compared to conventional chemotherapy. • This image-guided drug delivery would enhance therapeutic effects of systemic chemotherapy.
Collapse
Affiliation(s)
- Soojin Kim
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jae Young Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea.
- Department of Radiology, Seoul National University College of Medicine, 103 Daehak-Ro, Jongno-Gu, Seoul, Republic of Korea, 03080.
| | - Eun-Joo Park
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yun Deok Ahn
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yuri Cheon
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Wonchul Sim
- IMGT Company, Ltd, Seongnam, Republic of Korea
| | - Hak Jong Lee
- Department of Radiology, Seoul National University College of Medicine, 103 Daehak-Ro, Jongno-Gu, Seoul, Republic of Korea, 03080
- IMGT Company, Ltd, Seongnam, Republic of Korea
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Medical Device Development, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
2
|
Coppola A, Grasso D, Fontana F, Piacentino F, Minici R, Laganà D, Ierardi AM, Carrafiello G, D’Angelo F, Carcano G, Venturini M. Innovative Experimental Ultrasound and US-Related Techniques Using the Murine Model in Pancreatic Ductal Adenocarcinoma: A Systematic Review. J Clin Med 2023; 12:7677. [PMID: 38137745 PMCID: PMC10743777 DOI: 10.3390/jcm12247677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/24/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a cancer with one of the highest mortality rates in the world. Several studies have been conductedusing preclinical experiments in mice to find new therapeutic strategies. Experimental ultrasound, in expert hands, is a safe, multifaceted, and relatively not-expensive device that helps researchers in several ways. In this systematic review, we propose a summary of the applications of ultrasonography in a preclinical mouse model of PDAC. Eighty-eight studies met our inclusion criteria. The included studies could be divided into seven main topics: ultrasound in pancreatic cancer diagnosis and progression (n: 21); dynamic contrast-enhanced ultrasound (DCE-US) (n: 5); microbubble ultra-sound-mediated drug delivery; focused ultrasound (n: 23); sonodynamic therapy (SDT) (n: 7); harmonic motion elastography (HME) and shear wave elastography (SWE) (n: 6); ultrasound-guided procedures (n: 9). In six cases, the articles fit into two or more sections. In conclusion, ultrasound can be a really useful, eclectic, and ductile tool in different diagnostic areas, not only regarding diagnosis but also in therapy, pharmacological and interventional treatment, and follow-up. All these multiple possibilities of use certainly represent a good starting point for the effective and wide use of murine ultrasonography in the study and comprehensive evaluation of pancreatic cancer.
Collapse
Affiliation(s)
- Andrea Coppola
- Diagnostic and Interventional Radiology Unit, Circolo Hospital, ASST Sette Laghi, 21100 Varese, Italy (M.V.)
- Department of Medicine and Technological Innovation, Insubria University, 21100 Varese, Italy
| | - Dario Grasso
- Diagnostic and Interventional Radiology Unit, Circolo Hospital, ASST Sette Laghi, 21100 Varese, Italy (M.V.)
- Department of Medicine and Technological Innovation, Insubria University, 21100 Varese, Italy
| | - Federico Fontana
- Diagnostic and Interventional Radiology Unit, Circolo Hospital, ASST Sette Laghi, 21100 Varese, Italy (M.V.)
- Department of Medicine and Technological Innovation, Insubria University, 21100 Varese, Italy
| | - Filippo Piacentino
- Diagnostic and Interventional Radiology Unit, Circolo Hospital, ASST Sette Laghi, 21100 Varese, Italy (M.V.)
- Department of Medicine and Technological Innovation, Insubria University, 21100 Varese, Italy
| | - Roberto Minici
- Radiology Unit, Dulbecco University Hospital, 88100 Catanzaro, Italy; (R.M.)
| | - Domenico Laganà
- Radiology Unit, Dulbecco University Hospital, 88100 Catanzaro, Italy; (R.M.)
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Anna Maria Ierardi
- Radiology Unit, IRCCS Ca Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | | | - Fabio D’Angelo
- Department of Medicine and Surgery, Insubria University, 21100 Varese, Italy;
- Orthopedic Surgery Unit, ASST Sette Laghi, 21100 Varese, Italy
| | - Giulio Carcano
- Department of Medicine and Technological Innovation, Insubria University, 21100 Varese, Italy
- Emergency and Transplant Surgery Department, ASST Sette Laghi, 21100 Varese, Italy
| | - Massimo Venturini
- Diagnostic and Interventional Radiology Unit, Circolo Hospital, ASST Sette Laghi, 21100 Varese, Italy (M.V.)
- Department of Medicine and Technological Innovation, Insubria University, 21100 Varese, Italy
| |
Collapse
|
3
|
Li CH, Chang YC, Hsiao M, Chan MH. Ultrasound and Nanomedicine for Cancer-Targeted Drug Delivery: Screening, Cellular Mechanisms and Therapeutic Opportunities. Pharmaceutics 2022; 14:1282. [PMID: 35745854 PMCID: PMC9229768 DOI: 10.3390/pharmaceutics14061282] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 12/02/2022] Open
Abstract
Cancer is a disease characterized by abnormal cell growth. According to a report published by the World Health Organization (WHO), cancer is the second leading cause of death globally, responsible for an estimated 9.6 million deaths in 2018. It should be noted that ultrasound is already widely used as a diagnostic procedure for detecting tumorigenesis. In addition, ultrasound energy can also be utilized effectively for treating cancer. By filling the interior of lipospheres with gas molecules, these particles can serve both as contrast agents for ultrasonic imaging and as delivery systems for drugs such as microbubbles and nanobubbles. Therefore, this review aims to describe the nanoparticle-assisted drug delivery system and how it can enhance image analysis and biomedicine. The formation characteristics of nanoparticles indicate that they will accumulate at the tumor site upon ultrasonic imaging, in accordance with their modification characteristics. As a result of changing the accumulation of materials, it is possible to examine the results by comparing images of other tumor cell lines. It is also possible to investigate ultrasound images for evidence of cellular effects. In combination with a precision ultrasound imaging system, drug-carrying lipospheres can precisely track tumor tissue and deliver drugs to tumor cells to enhance the ability of this nanocomposite to treat cancer.
Collapse
Affiliation(s)
- Chien-Hsiu Li
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan;
| | - Yu-Chan Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan;
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ming-Hsien Chan
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan;
| |
Collapse
|
4
|
Lafond M, Lambin T, Drainville RA, Dupré A, Pioche M, Melodelima D, Lafon C. Pancreatic Ductal Adenocarcinoma: Current and Emerging Therapeutic Uses of Focused Ultrasound. Cancers (Basel) 2022; 14:2577. [PMID: 35681557 PMCID: PMC9179649 DOI: 10.3390/cancers14112577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 11/27/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) diagnosis accompanies a somber prognosis for the patient, with dismal survival odds: 5% at 5 years. Despite extensive research, PDAC is expected to become the second leading cause of mortality by cancer by 2030. Ultrasound (US) has been used successfully in treating other types of cancer and evidence is flourishing that it could benefit PDAC patients. High-intensity focused US (HIFU) is currently used for pain management in palliative care. In addition, clinical work is being performed to use US to downstage borderline resectable tumors and increase the proportion of patients eligible for surgical ablation. Focused US (FUS) can also induce mechanical effects, which may elicit an anti-tumor response through disruption of the stroma and can be used for targeted drug delivery. More recently, sonodynamic therapy (akin to photodynamic therapy) and immunomodulation have brought new perspectives in treating PDAC. The aim of this review is to summarize the current state of those techniques and share our opinion on their future and challenges.
Collapse
Affiliation(s)
- Maxime Lafond
- LabTAU, The Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Léon Bérard, Université Lyon 1, University Lyon, 69003 Lyon, France; (R.A.D.); (A.D.); (D.M.); (C.L.)
| | - Thomas Lambin
- Endoscopy Division, Édouard Herriot Hospital, 69003 Lyon, France; (T.L.); (M.P.)
| | - Robert Andrew Drainville
- LabTAU, The Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Léon Bérard, Université Lyon 1, University Lyon, 69003 Lyon, France; (R.A.D.); (A.D.); (D.M.); (C.L.)
| | - Aurélien Dupré
- LabTAU, The Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Léon Bérard, Université Lyon 1, University Lyon, 69003 Lyon, France; (R.A.D.); (A.D.); (D.M.); (C.L.)
| | - Mathieu Pioche
- Endoscopy Division, Édouard Herriot Hospital, 69003 Lyon, France; (T.L.); (M.P.)
| | - David Melodelima
- LabTAU, The Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Léon Bérard, Université Lyon 1, University Lyon, 69003 Lyon, France; (R.A.D.); (A.D.); (D.M.); (C.L.)
| | - Cyril Lafon
- LabTAU, The Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Léon Bérard, Université Lyon 1, University Lyon, 69003 Lyon, France; (R.A.D.); (A.D.); (D.M.); (C.L.)
| |
Collapse
|
5
|
Escoffre JM, Sekkat N, Oujagir E, Bodard S, Mousset C, Presset A, Chautard R, Ayoub J, Lecomte T, Bouakaz A. Delivery of anti-cancer drugs using microbubble-assisted ultrasound in digestive oncology: From preclinical to clinical studies. Expert Opin Drug Deliv 2022; 19:421-433. [PMID: 35363586 DOI: 10.1080/17425247.2022.2061459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The combination of microbubbles (MBs) and ultrasound (US) is an emerging method for the noninvasive and targeted enhancement of intratumor chemotherapeutic uptake. This method showed an increased local drug extravasation in tumor tissue while reducing the systemic adverse effects in various tumor models. AREA COVERED We focused on preclinical and clinical studies investigating the therapeutic efficacy and safety of this technology for the treatment of colorectal, pancreatic and liver cancers. We discussed the limitations of the current investigations and future perspectives. EXPERT OPINION The therapeutic efficacy and the safety of delivery of standard chemotherapy regimen using MB-assisted US have been mainly demonstrated in subcutaneous models of digestive cancers. Although some clinical trials on pancreatic ductal carcinoma and hepatic metastases from various digestive cancers have shown promising results, successful evaluation of this method in terms of US settings, chemotherapeutic schemes and MBs-related parameters will need to be addressed in more relevant preclinical models of digestive cancers, in small and large animals before fully and successfully translating this technology for clinic use. Ultimately, a clear evidence of the correlation between the enhanced intratumoral concentrations of therapeutics and the increased therapeutic response of tumors have to be provided in clinical trials.
Collapse
Affiliation(s)
| | - Najib Sekkat
- Université de Tours, UMR 1253, iBrain, Inserm, Tours, France
| | - Edward Oujagir
- Université de Tours, UMR 1253, iBrain, Inserm, Tours, France
| | - Sylvie Bodard
- Université de Tours, UMR 1253, iBrain, Inserm, Tours, France
| | - Coralie Mousset
- Université de Tours, UMR 1253, iBrain, Inserm, Tours, France
| | - Antoine Presset
- Université de Tours, UMR 1253, iBrain, Inserm, Tours, France
| | - Romain Chautard
- Inserm UMR 1069, Nutrition, Croissance et Cancer (N2C), Université de Tours, Tours, France.,Department of Hepato-Gastroenterology & Digestive Oncology, CHRU de Tours, Tours, France
| | - Jean Ayoub
- Université de Tours, UMR 1253, iBrain, Inserm, Tours, France.,Departement of Echography & Doppler, CHRU de Tours, Tours, France
| | - Thierry Lecomte
- Inserm UMR 1069, Nutrition, Croissance et Cancer (N2C), Université de Tours, Tours, France.,Department of Hepato-Gastroenterology & Digestive Oncology, CHRU de Tours, Tours, France
| | - Ayache Bouakaz
- Université de Tours, UMR 1253, iBrain, Inserm, Tours, France
| |
Collapse
|