1
|
Trushkevych O, Turvey M, Billson DR, Watson R, Hutchins DA, Edwards RS. Acoustic field visualisation using local absorption of ultrasound and thermochromic liquid crystals. ULTRASONICS 2024; 140:107300. [PMID: 38537517 DOI: 10.1016/j.ultras.2024.107300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/15/2024] [Accepted: 03/16/2024] [Indexed: 05/04/2024]
Abstract
Acoustic field and vibration visualisation is important in a wide range of applications. Laser vibrometry is often used for such visualisation, however, the equipment has a high cost and requires significant user expertise, and the method can be slow, as it requires scanning point by point. Here we suggest a different approach to visualisation of acoustic fields in the kHz - MHz range, using paint-on or removable film sensors, which produce a direct visual map of ultrasound displacement. The sensors are based on a film containing thermochromic liquid crystals (TLC), along with a backing/underlay layer which improves absorption of ultrasound. The absorption generates heat, which can be seen by a change in colour of the TLC film. A removable sensor is used to visualise the resonant modes of an air-coupled flexural transducer operated from 410 kHz to 7.23 MHz, and to visualise 40 kHz standing waves in a Perspex plate. The thermal basis of the visualisation is confirmed using thermal imaging. The speed and cost of visualisation makes the new sensor attractive for use in condition monitoring, for fast assessment of transducer quality, or for analysis of acoustic field distribution in power ultrasonic systems.
Collapse
Affiliation(s)
- O Trushkevych
- School of Engineering University of Warwick, Coventry CV4 7AL, UK; Department of Physics, University of Warwick, Coventry CV4 7AL, UK.
| | - M Turvey
- Department of Physics, University of Warwick, Coventry CV4 7AL, UK
| | - D R Billson
- School of Engineering University of Warwick, Coventry CV4 7AL, UK
| | - R Watson
- School of Engineering University of Warwick, Coventry CV4 7AL, UK
| | - D A Hutchins
- School of Engineering University of Warwick, Coventry CV4 7AL, UK
| | - R S Edwards
- Department of Physics, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
2
|
Sofokleous P, Damianou C. High-quality Agar and Polyacrylamide Tumor-mimicking Phantom Models for Magnetic Resonance-guided Focused Ultrasound Applications. J Med Ultrasound 2024; 32:121-133. [PMID: 38882616 PMCID: PMC11175378 DOI: 10.4103/jmu.jmu_68_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/04/2023] [Accepted: 07/13/2023] [Indexed: 06/18/2024] Open
Abstract
Background Tissue-mimicking phantoms (TMPs) have been used extensively in clinical and nonclinical settings to simulate the thermal effects of focus ultrasound (FUS) technology in real tissue or organs. With recent technological developments in the FUS technology and its monitoring/guided techniques such as ultrasound-guided FUS and magnetic resonance-guided FUS (MRgFUS) the need for TMPs are more important than ever to ensure the safety of the patients before being treated with FUS for a variety of diseases (e.g., cancer or neurological). The purpose of this study was to prepare a tumor-mimicking phantom (TUMP) model that can simulate competently a tumor that is surrounded by healthy tissue. Methods The TUMP models were prepared using polyacrylamide (PAA) and agar solutions enriched with MR contrast agents (silicon dioxide and glycerol), and the thermosensitive component bovine serum albumin (BSA) that can alter its physical properties once thermal change is detected, therefore offering real-time visualization of the applied FUS ablation in the TUMPs models. To establish if these TUMPs are good candidates to be used in thermoablation, their thermal properties were characterized with a custom-made FUS system in the laboratory and a magnetic resonance imaging (MRI) setup with MR-thermometry. The BSA protein's coagulation temperature was adjusted at 55°C by setting the pH of the PAA solution to 4.5, therefore simulating the necrosis temperature of the tissue. Results The experiments carried out showed that the TUMP models prepared by PAA can change color from transparent to cream-white due to the BSA protein coagulation caused by the thermal stress applied. The TUMP models offered a good MRI contrast between the TMPs and the TUMPs including real-time visualization of the ablation area due to the BSA protein coagulation. Furthermore, the T2-weighted MR images obtained showed a significant change in T2 when the BSA protein is thermally coagulated. MR thermometry maps demonstrated that the suggested TUMP models may successfully imitate a tumor that is present in soft tissue. Conclusion The TUMP models developed in this study have numerous uses in the testing and calibration of FUS equipment including the simulation and validation of thermal therapy treatment plans with FUS or MRgFUS in oncology applications.
Collapse
Affiliation(s)
- Panagiotis Sofokleous
- Department of Electrical Engineering, Computer Engineering and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - Christakis Damianou
- Department of Electrical Engineering, Computer Engineering and Informatics, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
3
|
Bisht SR, Paul A, Patel P, Thareja P, Mercado-Shekhar KP. Systematic quantification of differences in shear wave elastography estimates between linear-elastic and viscoelastic material assumptionsa). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 155:2025-2036. [PMID: 38470185 DOI: 10.1121/10.0025291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/27/2024] [Indexed: 03/13/2024]
Abstract
Quantitative, accurate, and standardized metrics are important for reliable shear wave elastography (SWE)-based biomarkers. For over two decades, the linear-elastic material assumption has been employed in SWE modes. In recent years, viscoelasticity estimation methods have been adopted in a few clinical systems. The current study aims to systematically quantify differences in SWE estimates obtained using linear-elastic and viscoelastic material assumptions. An acousto-mechanical simulation framework of acoustic radiation force impulse-based SWE was created to elucidate the effect of material viscosity and shear modulus on SWE estimates. Shear modulus estimates exhibited errors up to 72% when a numerical viscoelastic phantom was assessed as linearly elastic. Shear modulus estimates of polyvinyl alcohol phantoms between rheometry and SWE following the Kelvin-Voigt viscoelastic model assumptions were not significantly different. However, the percentage difference in shear modulus estimates between rheometry and SWE using the linear-elastic assumption was 50.1%-62.1%. In ex vivo liver, the percentage difference in shear modulus estimates between linear-elastic and viscoelastic methods was 76.1%. These findings provide a direct and systematic quantification of the potential error introduced when viscoelastic tissues are imaged with SWE following the linear-elastic assumption. This work emphasizes the need to utilize viscoelasticity estimation methods for developing robust quantitative imaging biomarkers.
Collapse
Affiliation(s)
- Sapna R Bisht
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355, India
| | - Abhijit Paul
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355, India
| | - Panchami Patel
- Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355, India
| | - Prachi Thareja
- Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355, India
| | - Karla P Mercado-Shekhar
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
4
|
Boers T, Brink W, Bianchi L, Saccomandi P, van Hespen J, Wennemars G, Braak S, Versluis M, Manohar S. An anthropomorphic thyroid phantom for ultrasound-guided radiofrequency ablation of nodules. Med Phys 2024; 51:826-838. [PMID: 38141047 DOI: 10.1002/mp.16906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/01/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Needle-based procedures, such as fine needle aspiration and thermal ablation, are often applied for thyroid nodule diagnosis and therapeutic purposes, respectively. With blood vessels and nerves nearby, these procedures can pose risks in damaging surrounding critical structures. PURPOSE The development and validation of innovative strategies to manage these risks require a test object with well-characterized physical properties. For this work, we focus on the application of ultrasound-guided thermal radiofrequency ablation. METHODS We have developed a single-use anthropomorphic phantom mimicking the thyroid and surrounding anatomical and physiological structures that are relevant to ultrasound-guided thermal ablation. The phantom was composed of a mixture of polyacrylamide, water, and egg white extract and was cast using molds in multiple steps. The thermal, acoustical, and electrical characteristics were experimentally validated. The ablation zones were analyzed via non-destructive T2 -weighted magnetic resonance imaging scans utilizing the relaxometry changes of coagulated egg albumen, and the temperature distribution was monitored using an array of fiber Bragg grating sensors. RESULTS The physical properties of the phantom were verified both on ultrasound as well as in terms of the phantom response to thermal ablation. The final temperature achieved (92°C), the median percentage of the nodule ablated (82.1%), the median volume ablated outside the nodule (0.8 mL), and the median number of critical structures affected (0) were quantified. CONCLUSION An anthropomorphic phantom that can provide a realistic model for development and training in ultrasound-guided needle-based thermal interventions for thyroid nodules has been presented.
Collapse
Affiliation(s)
- Tim Boers
- Multi-Modality Medical Imaging group, TechMed Centre, University of Twente, Enschede, the Netherlands
| | - Wyger Brink
- Magnetic Detection and Imaging group, TechMed Centre, University of Twente, Enschede, the Netherlands
| | - Leonardo Bianchi
- Multi-Modality Medical Imaging group, TechMed Centre, University of Twente, Enschede, the Netherlands
- Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| | - Paola Saccomandi
- Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| | - Johan van Hespen
- Multi-Modality Medical Imaging group, TechMed Centre, University of Twente, Enschede, the Netherlands
| | - Germen Wennemars
- Magnetic Detection and Imaging group, TechMed Centre, University of Twente, Enschede, the Netherlands
| | - Sicco Braak
- Department of Radiology, Ziekenhuisgroep Twente, Almelo, the Netherlands
| | - Michel Versluis
- Physics of Fluids group, TechMed Centre, University of Twente, Enschede, the Netherlands
| | - Srirang Manohar
- Multi-Modality Medical Imaging group, TechMed Centre, University of Twente, Enschede, the Netherlands
| |
Collapse
|
5
|
Kang J, Kang X, Liu S, Jing H, Wang J, Qu Z, Duan J, Zhang B. Multifunctional-hierarchical flexibility metasurfaces for multispectral compatible camouflage of microwave, infrared and visible. OPTICS EXPRESS 2023; 31:29280-29299. [PMID: 37710732 DOI: 10.1364/oe.494367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/06/2023] [Indexed: 09/16/2023]
Abstract
The prevalent use of multispectral detection technology makes single-band camouflage devices ineffective, and the investigation of technology for camouflage that combines multispectral bands becomes urgent. The multifunctional-hierarchical flexibility metasurfaces (MHFM) for multispectral compatible camouflage of microwave, infrared, and visible, is proposed, fabricated, and measured. MHFM is primarily composed of an infrared shielding layer (IRSL), a radar absorbing layer (RAL), and a visible color layer (VCL). Among them, IRSL can block thermal infrared detection, and RAL can efficiently absorb microwave band electromagnetic (EM) waves. The VLC can display black (below 28°C), purple (28°C∼31°C), green (31°C∼33°C), and yellow (above 33°C) at different temperatures to achieve visible camouflage. Simulation results show that MHFM can achieve absorption higher than 90% in the 2.9∼13.9 GHz microwave band. Theoretically, the emissivity of MHFM in the infrared spectral range 3∼14 µm is less than 0.34. In addition, the MHFM consists of high-temperature-resistant materials that can be used normally at temperatures up to 175°C, providing excellent high-temperature stability. The measurement results show that the camouflage performance of the MHFM is in excellent agreement with the proposed theory. This study proposes a new method for multispectral camouflage that has broad engineering applications.
Collapse
|
6
|
Omidian H, Dey Chowdhury S, Babanejad N. Cryogels: Advancing Biomaterials for Transformative Biomedical Applications. Pharmaceutics 2023; 15:1836. [PMID: 37514023 PMCID: PMC10384998 DOI: 10.3390/pharmaceutics15071836] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Cryogels, composed of synthetic and natural materials, have emerged as versatile biomaterials with applications in tissue engineering, controlled drug delivery, regenerative medicine, and therapeutics. However, optimizing cryogel properties, such as mechanical strength and release profiles, remains challenging. To advance the field, researchers are exploring advanced manufacturing techniques, biomimetic design, and addressing long-term stability. Combination therapies and drug delivery systems using cryogels show promise. In vivo evaluation and clinical trials are crucial for safety and efficacy. Overcoming practical challenges, including scalability, structural integrity, mass transfer constraints, biocompatibility, seamless integration, and cost-effectiveness, is essential. By addressing these challenges, cryogels can transform biomedical applications with innovative biomaterials.
Collapse
Affiliation(s)
- Hossein Omidian
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Sumana Dey Chowdhury
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Niloofar Babanejad
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| |
Collapse
|
7
|
Sharma A, Marapureddy SG, Paul A, Bisht SR, Kakkar M, Thareja P, Mercado-Shekhar KP. Characterizing Viscoelastic Polyvinyl Alcohol Phantoms for Ultrasound Elastography. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:497-511. [PMID: 36328889 DOI: 10.1016/j.ultrasmedbio.2022.09.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Ultrasound phantoms mimic the acoustic and mechanical properties of native tissues. Polyvinyl alcohol (PVA) phantoms are used extensively as models for validating ultrasound elastography approaches. However, the viscous properties of PVA phantoms have not been investigated adequately. Glycerol is a viscous liquid that has been reported to increase the speed of sound of phantoms. This study aims to assess the acoustic and viscoelastic properties of PVA phantoms and PVA mixed with glycerol at varying concentrations. The phantoms were fabricated with 10% w/v PVA in water with varying concentrations of glycerol (10%, 15% and 20% v/v) and 2% w/v silicon carbide particles as acoustic scatterers. The phantoms were subjected to either one, two, or three 24-h freeze-thaw cycles. The longitudinal sound speeds of all PVA phantoms were measured, and ranged from 1529 to 1660 m/s. Attenuation spectroscopy was performed in the range of 5 to 20 MHz. The measured attenuation followed a power-law relationship with frequency, wherein the power-law fit constants and exponents ranged from 0.02 to 0.1 dB/cm/MHzn and from 1.6 to 1.9, respectively. These results were in agreement with previous reports for soft tissues. Viscoelasticity of PVA phantoms was assessed using rheometry. The estimated values of shear modulus and viscosity using the Kelvin-Voigt and Kelvin-Voigt fractional derivative models were within the range of previously-reported tissue-mimicking phantoms and soft tissues. The number of freeze-thaw cycles were shown to alter the viscosity of PVA phantoms, even in the absence of glycerol. Scanning electron microscopy images of PVA phantoms without glycerol showed a porous hydrogel network, in contrast to those of PVA-glycerol phantoms with non-porous structure. Phantoms fabricated in this study possess tunable acoustic and viscoelastic properties within the range reported for healthy and diseased soft tissues. This study demonstrates that PVA phantoms can be manufactured with glycerol for applications in ultrasound elastography.
Collapse
Affiliation(s)
- Ananya Sharma
- Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, India
| | - Sai Geetha Marapureddy
- Discipline of Chemical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, India
| | - Abhijit Paul
- Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, India
| | - Sapna R Bisht
- Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, India
| | - Manik Kakkar
- Discipline of Electrical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, India
| | - Prachi Thareja
- Discipline of Chemical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, India
| | - Karla P Mercado-Shekhar
- Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, India.
| |
Collapse
|
8
|
Ivory AM, De Melo Baesso R, Durando G, Rajagopal S, Miloro P. Development and testing of a system for controlled ultrasound hyperthermia treatment with a phantom device. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; PP:266-275. [PMID: 37018591 DOI: 10.1109/tuffc.2023.3235453] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Hyperthermia is the process of raising tissue temperatures in the range 40 - 45 °C for a prolonged time (up to hours). Unlike in ablation therapy, raising the temperature to such levels does not cause necrosis of the tissue but has been postulated to sensitize the tissue for radiotherapy. The ability to maintain a certain temperature in a target region is key to a hyperthermia delivery system. The aim of this work was to design and characterize a heat delivery system for ultrasound hyperthermia able to generate a uniform power deposition pattern in the target region with a closed-loop control which would maintain the defined temperature over a defined period. The hyperthermia delivery system presented herein is a flexible design with the ability to strictly control the induced temperature rise with a feedback loop. The system can be reproduced elsewhere with relative ease and is adaptable for various tumor sizes/locations and for other temperature elevation applications, such as ablation therapy. The system was fully characterized and tested on a newly-designed custom-built phantom with controlled acoustic and thermal properties and containing embedded thermocouples. Additionally, a layer of thermochromic material was fixed above the thermocouples and the recorded temperature increase was compared to the RGB (red, green, and blue) color-change in the material. The transducer characterization allowed for input voltage to output power curves to be generated, thus allowing for comparison of power deposition to temperature increase in the phantom. Additionally, the transducer characterization generated a field map of the symmetric field. The system was capable of increasing the temperature of the target area by 6 °C above body temperature and maintain the temperature to within ±0.5 °C over a defined period. The increase in temperature correlated with the RGB image analysis of the thermochromic material. The results of this work have the potential to contribute towards increasing confidence in the delivery of hyperthermia treatment to superficial tumors. The developed system could potentially be used for phantom or small animal proof-of-principle studies. The developed phantom test device may be used for testing other hyperthermia systems.
Collapse
|
9
|
Nanda Kumar Y, Singh Z, Wang YN, Schade GR, Kreider W, Bruce M, Vlaisavljevich E, Khokhlova TD, Maxwell AD. Development of Tough Hydrogel Phantoms to Mimic Fibrous Tissue for Focused Ultrasound Therapies. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:1762-1777. [PMID: 35697582 PMCID: PMC9357045 DOI: 10.1016/j.ultrasmedbio.2022.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 05/30/2023]
Abstract
Tissue-mimicking gels provide a cost-effective medium to optimize histotripsy treatment parameters with immediate feedback. Agarose and polyacrylamide gels are often used to evaluate treatment outcomes as they mimic the acoustic properties and stiffness of a variety of soft tissues, but they do not exhibit high toughness, a characteristic of fibrous connective tissue. To mimic pathologic fibrous tissue found in benign prostate hyperplasia (BPH) and other diseases that are potentially treatable with histotripsy, an optically transparent hydrogel with high toughness was developed that is a hybrid of polyacrylamide and alginate. The stiffness was established using shear wave elastography (SWE) and indentometry techniques and was found to be representative of human BPH ex vivo prostate tissue. Different phantom compositions and excised ex vivo BPH tissue samples were treated with a 700-kHz histotripsy transducer at different pulse repetition frequencies. Post-treatment, the hybrid gels and the tissue samples exhibited differential reduction in stiffness as measured by SWE. On B-mode ultrasound, partially treated areas were present as hyperechoic zones and fully liquified areas as hypoechoic zones. Phase contrast microscopy of the gel samples revealed liquefaction in regions consistent with the target lesion dimensions and correlated to findings identified in tissue samples via histology. The dose required to achieve liquefaction in the hybrid gel was similar to what has been observed in ex vivo tissue and greater than that of agarose of comparable or higher Young's modulus by a factor >10. These results indicate that the developed hydrogels closely mimic elasticities found in BPH prostate ex vivo tissue and have a similar response to histotripsy treatment, thus making them a useful cost-effective alternative for developing and evaluating different treatment protocols.
Collapse
Affiliation(s)
- Yashwanth Nanda Kumar
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, Washington, USA.
| | - Zorawar Singh
- Department of Urology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Yak-Nam Wang
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, Washington, USA
| | - George R Schade
- Department of Urology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Wayne Kreider
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, Washington, USA
| | - Matthew Bruce
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, Washington, USA
| | - Eli Vlaisavljevich
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Tatiana D Khokhlova
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, Washington, USA; Department of Gastroenterology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Adam D Maxwell
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, Washington, USA; Department of Urology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
10
|
Braunstein L, Brüningk SC, Rivens I, Civale J, Haar GT. Characterization of Acoustic, Cavitation, and Thermal Properties of Poly(vinyl alcohol) Hydrogels for Use as Therapeutic Ultrasound Tissue Mimics. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:1095-1109. [PMID: 35337687 DOI: 10.1016/j.ultrasmedbio.2022.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/19/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
The thermal and mechanical effects induced in tissue by ultrasound can be exploited for therapeutic applications. Tissue-mimicking materials (TMMs), reflecting different soft tissue properties, are required for experimental evaluation of therapeutic potential. In the study described here, poly(vinyl alcohol) (PVA) hydrogels were characterized. Hydrogels prepared using different concentrations (5%-20% w/w) and molecular weights of PVA ± cellulose scatterers (2.5%-10% w/w) were characterized acoustically (sound speed, attenuation) as a function of temperature (25°C-45°C), thermally (thermal conductivity, specific heat capacity) and in terms of their cavitation thresholds. Results were compared with measurements in fresh sheep tissue (kidney, liver, spleen). Sound speed depended most strongly on PVA concentration, and attenuation, on cellulose content. For the range of formulations investigated, the PVA gel acoustic properties (sound speed: 1532 ± 17 to 1590 ± 9 m/s, attenuation coefficient: 0.08 ± 0.01 to 0.37 ± 0.02 dB/cm) fell within those measured in fresh tissue. Cavitation thresholds for 10% PVA hydrogels (50% occurrence: 4.1-5.4 MPa, 75% occurrence: 5.4-8.2 MPa) decreased with increasing cellulose content. In summary, PVA cellulose composite hydrogels may be suitable mimics of acoustic, cavitation and thermal properties of soft tissue for a number of therapeutic ultrasound applications.
Collapse
Affiliation(s)
- Lisa Braunstein
- Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom.
| | - Sarah C Brüningk
- Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom; Machine Learning & Computational Biology Lab, Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland; SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Ian Rivens
- Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - John Civale
- Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Gail Ter Haar
- Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
11
|
Liu Y, Maruvada S. Development and characterization of polyurethane-based tissue and blood mimicking materials for high intensity therapeutic ultrasound. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 151:3043. [PMID: 35649924 DOI: 10.1121/10.0010385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/16/2022] [Indexed: 06/15/2023]
Abstract
A polyurethane-based tissue mimicking material (TMM) and blood mimicking material (BMM) for the acoustic and thermal characterization of high intensity therapeutic ultrasound (HITU) devices has been developed. Urethane powder and other chemicals were dispersed into either a high temperature hydrogel matrix (gellan gum) or degassed water to form the TMM and BMM, respectively. The ultrasonic properties of both TMM and BMM, including attenuation coefficient, speed of sound, acoustical impedance, and backscatter coefficient, were characterized at room temperature. The thermal conductivity and diffusivity, BMM viscosity, and TMM Young's modulus were also measured. Importantly, the attenuation coefficient has a nearly linear frequency dependence, as is the case for most soft tissues and blood at 37 °C. Their mean values are 0.61f1.2 dB cm-1 (TMM) and 0.2f1.1 dB cm-1 (BMM) based on measurements from 1 to 8 MHz using a time delay spectrometry (TDS) system. Most of the other relevant physical parameters are also close to the reported values of soft tissues and blood. These polyurethane-based TMM and BMM are appropriate for developing standardized dosimetry techniques, validating numerical models, and determining the safety and efficacy of HITU devices.
Collapse
Affiliation(s)
- Yunbo Liu
- Division of Applied Mechanics, Office of Science and Engineering Lab, Center for Devices and Radiology, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993, USA
| | - Subha Maruvada
- Division of Applied Mechanics, Office of Science and Engineering Lab, Center for Devices and Radiology, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993, USA
| |
Collapse
|
12
|
Zhong X, Zhou P, Zhao Y, Liu W, Zhang X. A novel tissue-mimicking phantom for US/CT/MR-guided tumor puncture and thermal ablation. Int J Hyperthermia 2022; 39:557-563. [PMID: 35379066 DOI: 10.1080/02656736.2022.2056249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM This study aimed to develop a novel tumor-bearing tissue phantom model that can be used for US/CT/MR-guided tumor puncture and thermal ablation. METHODS The phantom model comprised two parts: a normal tissue-mimicking phantom and a tumor-mimicking phantom. A normal tissue phantom was prepared based on a polyacrylamide gel mixed with thermochromic ink. Moreover, a spherical phantom containing contrast agents was constructed and embedded in the tissue phantom to mimic a tumor lesion. US/CT/MR imaging features and thermochromic property of the phantom model were characterized. Finally, the utility of the phantom model for imaging-guided microwave ablation training was examined. RESULTS The tumor phantom containing contrast agents showed hyper-echogenicity, higher CT numbers, and lower T2 signal intensity compared with the normal tissue phantom in US/CT/MR images. Consequently, we could locate the position of the tumor in US/CT/MR imaging and perform an imaging-guided tumor puncture. When the temperature reached the threshold of 60 °C, the phantom exhibited a permanent color change from cream white to magenta. Based on this obvious color change, our phantom model could clearly map the thermal ablation region after thermotherapy. CONCLUSIONS We developed a novel US/CT/MR-imageable tumor-bearing tissue model that can be used for imaging-guided tumor puncture and thermal ablation. Furthermore, it allows visual assessment of the ablation region by analyzing the obvious color change. Overall, this phantom model could be a good training tool in the field of thermal ablation.
Collapse
Affiliation(s)
- Xinyu Zhong
- Department of Ultrasound, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ping Zhou
- Department of Ultrasound, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yongfeng Zhao
- Department of Ultrasound, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wengang Liu
- Department of Ultrasound, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xinghao Zhang
- Department of Ultrasound, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
13
|
Ambrogio S, Baêsso RM, Bosio F, Fedele F, Ramnarine KV, Zeqiri B, Miloro P. A standard test phantom for the performance assessment of magnetic resonance guided high intensity focused ultrasound (MRgHIFU) thermal therapy devices. Int J Hyperthermia 2021; 39:57-68. [PMID: 34936852 DOI: 10.1080/02656736.2021.2017023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Purpose: Test objects for High Intensity Focused Ultrasound (HIFU) are required for the standardization and definition of treatment, Quality Assurance (QA), comparison of results between centers and calibration of devices. This study describes a HIFU test object which provides temperature measurement as a function of time, in a reference material compatible with Magnetic Resonance (MR) and ultrasound.Materials and methods: T-Type fine wire thermocouples were used as sensors and 5 correction methods for viscous heating artifacts were assessed. The phantom was tested in a MR-HIFU Philips Sonalleve device over a period of 12 months, demonstrating stability and validity to evaluate the performance of the device.Results: The study furnished useful information regarding the MR-HIFU sessions and highlighted potential limitations of the existing QA and monitoring methods. The importance of temperature monitoring along the whole acoustic path was demonstrated as MR Thermometry readings differed in the three MR plane views (coronal, sagittal, transverse), in particular when the focus was near a soft-tissue/bone interface, where there can be an MR signal loss with significant temperature and thermal dose underestimation (138% variation between the three plane views).Conclusions: The test object was easy to use and has potential as a valid tool for training, QA, research and development for MR guided HIFU and potentially ultrasound guided devices.
Collapse
Affiliation(s)
- S Ambrogio
- Medical Physics Department, Guy's and St Thomas' NHS Foundation Trust, London, UK.,Ultrasound and Underwater Acoustics Division, National Physical Laboratory, Teddington, UK
| | - R M Baêsso
- Ultrasound and Underwater Acoustics Division, National Physical Laboratory, Teddington, UK
| | - F Bosio
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - F Fedele
- Medical Physics Department, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - K V Ramnarine
- Medical Physics Department, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - B Zeqiri
- Ultrasound and Underwater Acoustics Division, National Physical Laboratory, Teddington, UK
| | - P Miloro
- Ultrasound and Underwater Acoustics Division, National Physical Laboratory, Teddington, UK
| |
Collapse
|
14
|
Morchi L, Gini M, Mariani A, Pagliarani N, Cafarelli A, Tognarelli S, Menciassi A. A Reusable Thermochromic Phantom for Testing High Intensity Focused Ultrasound Technologies. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:1431-1434. [PMID: 34891554 DOI: 10.1109/embc46164.2021.9629845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
High Intensity Focused Ultrasound (HIFU) surgery is a promising technology for the treatment of several pathologies, including cancer. Testing is a fundamental step for verifying treatment efficacy and safety. Ex-vivo tissues represent the most common solution for replicating the properties of human tissues in the HIFU operative scenario. However, they constitute an avoidable waste of resources. Thus, tissue mimicking phantoms have been investigated as a more sustainable and reliable alternative. In this scenario, we proposed a reusable silicone-based thermochromic phantom. It is cost-effective and can be rapidly fabricated. The acoustic, mechanical, and thermal characterization of the phantom are reported. The phantom usability was evaluated with a HIFU robotic platform. 18 different working conditions were tested by varying both sonication power and duration. Temperature and simulated lesions' size were quantified for all testing conditions. An accordance between temperature and lesion dimension trend over time was found. The proposed phantom results a valid alternative to ex-vivo tissues, especially in the early stages of developing novel HIFU treatment paradigms.
Collapse
|
15
|
Zhang W, Trivedi H, Adams M, Losey AD, Diederich CJ, Ozhinsky E, Rieke V, Bucknor MD. Anatomic thermochromic tissue-mimicking phantom of the lumbar spine for pre-clinical evaluation of MR-guided focused ultrasound (MRgFUS) ablation of the facet joint. Int J Hyperthermia 2021; 38:130-135. [PMID: 33541151 DOI: 10.1080/02656736.2021.1880650] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVE To develop a thermochromic tissue-mimicking phantom (TTMP) with an embedded 3D-printed bone mimic of the lumbar spine to evaluate MRgFUS ablation of the facet joint and medial branch nerve. MATERIALS AND METHODS Multiple 3D-printed materials were selected and characterized by measurements of speed of sound and linear acoustic attenuation coefficient using a through-transmission technique. A 3D model of the lumbar spine was segmented from a de-identified CT scan, and 3D printed. The 3D-printed spine was embedded within a TTMP with thermochromic ink color change setpoint at 60 °C. Multiple high energy sonications were targeted to the facet joints and medial branch nerve anatomical location using an ExAblate MRgFUS system connected to a 3T MR scanner. The phantom was dissected to assess sonication targets and the surrounding structures for color change as compared to the expected region of ablation on MR-thermometry. RESULTS The measured sound attenuation coefficient and speed of sound of gypsum was 240 Np/m-MHz and 2471 m/s, which is the closest to published values for cortical bone. Following sonication, dissection of the TTMP revealed good concordance between the regions of color change within the phantom and expected areas of ablation on MR-thermometry. No heat deposition was observed in critical areas, including the spinal canal and nerve roots from either color change or MRI. CONCLUSION Ablated regions in the TTMP correlated well with expected ablations based on MR-thermometry. These findings demonstrate the utility of an anatomic spine phantom in evaluating MRgFUS sonication for facet joint and medial branch nerve ablations.
Collapse
Affiliation(s)
| | - Hari Trivedi
- Department of Radiology and Imaging Science, Emory University Hospital, Atlanta, GA, USA
| | - Matthew Adams
- Department of Radiation Oncology, University of California, San Francisco, CA, USA
| | - Aaron D Losey
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Chris J Diederich
- Department of Radiation Oncology, University of California, San Francisco, CA, USA
| | - Eugene Ozhinsky
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Viola Rieke
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Matthew D Bucknor
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| |
Collapse
|
16
|
Zhou Y, Zhao L, Zhong X, Ding J, Zhou H, Wang F, Jing X. A thermochromic tissue-mimicking phantom model for verification of ablation plans in thermal ablation. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:354. [PMID: 33708981 PMCID: PMC7944255 DOI: 10.21037/atm-21-523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Background Our study aims to develop a novel tissue-mimicking thermochromic with tumor model for visualization of thermal ablation and verification of ablation plans. Methods Polyacrylamide gel was mixed with thermochromic ink to produce a phantom model. A phantom model embedded in a tumor model was constructed and used to evaluate the ablation procedure. The phantom models were randomly divided into complete ablation group and incomplete ablation group. The ablation planning of the tumor was on the 3D US and performed on a phantom model. We guide the ablation procedures according to the ablation planning. The results measured in a gross specimen of the phantom model were compared with the expected results in ablation planning. Results The color of the model changes from cream white to magenta after heating. The mono-site ablation area is a spheroid after thermal ablation with a size of 3.0×1.8 cm at 60 W, 5 minutes, 3.5×2.5 cm at 60 W, 10 minutes, and 4.0×3.5 cm at 60 W, 15 minutes, respectively. According to the ablation planning, a total of 4 ablation points were needed to retrieve the complete ablation of a 3.0 cm tumor. The complete ablation and incomplete ablation were proved by a gross specimen of the phantom model as we expected. Conclusions A novel thermochromic tissue-mimicking phantom model with a spherical tumor model has been designed and developed. The ablation area can be visualized on this phantom model by the permanent color change. This phantom model can assess the ablation planning system's accuracy and train operators for ultrasound-guided thermal ablation.
Collapse
Affiliation(s)
- Yan Zhou
- School of Medicine, Nankai University, Tianjin, China.,Department of Ultrasound, Tianjin Third Central Hospital, Tianjin, China.,Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Third Central Hospital, Tianjin, China
| | - Lin Zhao
- Department of Ultrasound, Tianjin Third Central Hospital, Tianjin, China.,Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Third Central Hospital, Tianjin, China
| | - Xinyu Zhong
- The Third Affiliated Hospital of Tianjin Medical University, Tianjin, China
| | - Jianmin Ding
- Department of Ultrasound, Tianjin Third Central Hospital, Tianjin, China.,Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Third Central Hospital, Tianjin, China
| | - Hongyu Zhou
- Department of Ultrasound, Tianjin Third Central Hospital, Tianjin, China.,Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Third Central Hospital, Tianjin, China
| | - Fengmei Wang
- Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Third Central Hospital, Tianjin, China.,Department of Gastroenterology and Hepatology, Tianjin Third Central Hospital, Tianjin, China
| | - Xiang Jing
- Department of Ultrasound, Tianjin Third Central Hospital, Tianjin, China.,Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Third Central Hospital, Tianjin, China
| |
Collapse
|