1
|
Nordenfur T, Caidahl K, Grishenkov D, Maksuti E, Marlevi D, Urban MW, Larsson M. Safety of arterial shear wave elastography- ex-vivoassessment of induced strain and strain rates. Biomed Phys Eng Express 2022; 8. [PMID: 35797069 DOI: 10.1088/2057-1976/ac7f39] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/06/2022] [Indexed: 01/18/2023]
Abstract
Shear wave elastography (SWE) is a promising technique for characterizing carotid plaques and assessing local arterial stiffness. The mechanical stress to which the tissue is subjected during SWE using acoustic radiation force (ARF), leading to strain at a certain strain rate, is still relatively unknown. Because SWE is increasingly used for arterial applications where the mechanical stress could potentially lead to significant consequences, it is important to understand the risks of SWE- induced strain and strain rate. The aim of this study was to investigate the safety of SWE in terms of induced arterial strain and strain rateex-vivoand in a human carotid arteryin-vivo. SWE was performed on six porcine aortae as a model of the human carotid artery using different combinations of ARF push parameters (push voltage: 60/90 V, aperture width: f/1.0/1.5, push length: 100/150/200 μs) and distance to push position. The largest induced strain and strain rate were 1.46 % and 54 s-1(90 V, f/1.0, 200 μs), respectively. Moreover, the SWE-induced strains and strain rates increased with increasing push voltage, aperture, push length, and decreasing distance between the region of interest and the push. In the human carotid artery, the SWE-induced maximum strain was 0.06 % and the maximum strain rate was 1.58 s-1, compared with the maximum absolute strain and strain rate of 12.61 % and 5.12 s-1, respectively, induced by blood pressure variations in the cardiac cycle. Our results indicate thatex-vivoarterial SWE does not expose the artery to higher strain rate than normal blood pressure variations, and to strain one order of magnitude higher than normal blood pressure variations, at the push settings and distances from the region of interest used in this study.
Collapse
Affiliation(s)
- Tim Nordenfur
- Department of Biomedical Engineering and Health Systems, KTH, Kungliga Tekniska högskolan, Stockholm, 100 44, SWEDEN
| | - Kenneth Caidahl
- Department of Clinical Physiology, Karolinska University Hospital, Solnavägen 1, Solna, 171 77, SWEDEN
| | - Dmitry Grishenkov
- Department of Biomedical Engineering and Health Systems, KTH, KTH, Stockholm, 100 44, SWEDEN
| | - Elira Maksuti
- Dept. of Physiology and Pharmacology, Anaesthesiology and Intensive Care, Karolinska Institute, Solnavägen 1, Solna, 171 77, SWEDEN
| | - David Marlevi
- Dept. Molecular Medicine and Surgery, Karolinska Institute, Solnavägen 1, Solna, 171 77, SWEDEN
| | - Matthew W Urban
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, Minnesota, 55905, UNITED STATES
| | - Matilda Larsson
- Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, KTH, Stockholm, 100 44, SWEDEN
| |
Collapse
|
2
|
Nitta N, Ishiguro Y, Sasanuma H, Takayama N, Rifu K, Taniguchi N, Akiyama I. In Vivo Temperature Rise Measurements of Rabbit Liver and Femur Bone Surface Exposed to an Acoustic Radiation Force Impulse. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:1240-1255. [PMID: 35422349 DOI: 10.1016/j.ultrasmedbio.2022.02.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 01/14/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Acoustic radiation force impulse (ARFI) imaging and shear wave elastography use a "push pulse." The push pulse, which is referenced as an ARFI in this study, has a longer duration than that of conventional diagnostic pulses (several microseconds). Therefore, there are concerns regarding thermal safety in vivo. However, few in vivo studies have been conducted using living animals. In this study, to suggest a concept for deciding an ARFI output and cooling time while considering thermal safety, the liver (with and without an ultrasound contrast agent) and femur bone surface of living rabbits were exposed to an ARFI, and the maximum temperature rise, temperature rise for 5-min duration, and cooling time were measured via a thermocouple. While testing within the regulation limits of diagnostic ultrasound outputs, a maximum temperature rise on the femur bone surface exceeded the allowable temperature rise (1.5°C) in the British Medical Ultrasound Society (BMUS) statement. However, using the linear relationships between the pulse intensity integral (PII) of a single pulse and the above three temperature parameters, PII may be determined so that the maximum temperature rise is within the allowable temperature rise in the BMUS statement. The cooling time can be estimated from the PII.
Collapse
Affiliation(s)
- Naotaka Nitta
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan.
| | - Yasunao Ishiguro
- Department of Surgery, Division of Gastroenterological, General and Transplant Surgery, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Hideki Sasanuma
- Department of Surgery, Division of Gastroenterological, General and Transplant Surgery, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Noriya Takayama
- Department of Clinical Laboratory Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Kazuma Rifu
- Department of Surgery, Division of Gastroenterological, General and Transplant Surgery, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Nobuyuki Taniguchi
- Department of Clinical Laboratory Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Iwaki Akiyama
- Medical Ultrasound Research Center, Doshisha University, Kyotanabe, Kyoto, Japan
| |
Collapse
|
3
|
Nallet C, Pazart L, Cochet C, Vidal C, Metz JP, Jacquet E, Gorincour G, Mottet N. Prenatal quantification of human foetal lung and liver elasticities between 24 and 39 weeks of gestation using 2D shear wave elastography. Eur Radiol 2022; 32:5559-5567. [PMID: 35267093 PMCID: PMC9279217 DOI: 10.1007/s00330-022-08654-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 01/18/2023]
Abstract
Objectives To quantify and model normal foetal lung and liver elasticities between 24 and 39 weeks of gestation (WG) using two-dimensional shear wave elastography (2D-SWE). To assess the impact of the distance between the probe and the target organ on the estimation of elasticity values. Methods Measurements of normal foetal lungs and liver elasticity were prospectively repeated monthly between 24 and 39 WG in 72 foetuses using 2D-SWE. Elasticity was quantified in the proximal lung and in the region inside the hepatic portal sinus. The distance between the probe and the target organ was recorded. Trajectories representing foetal lung and liver maturation from at least 3 measurements over time were modelled. Results The average elasticity for the lung and liver was significantly different from 24 WG to 36 WG (p < 0.01). Liver elasticity increased during gestation (3.86 kPa at 24 WG versus 4.45 kPa at 39 WG). From 24 WG to 32 WG, lung elasticity gradually increased (4.12kPa at 24 WG, 4.91kPa at 28 WG, 5.03kPa at 32 WG, p < 0.002). After 32 WG, lung elasticity decreased to 4.54kPa at 36 WG and 3.94kPa at 39 WG. The dispersion of the average elasticity values was greater for the lung than for the liver (p < 0.0001). Variation in the elasticity values was less important for the liver than for the lung. The values were considered valid and repeatable except for a probe-lung distance above 8cm. Conclusion Foetal lung and liver elasticities evolve differently through gestation. This could reflect the tissue maturation of both organs during gestation. Trial registration clinicaltrials.gov identifier: NCT03834805 Key Points • Prenatal quantification of foetal lung elasticity using 2D shear wave elastography could be a new prenatal parameter for exploring foetal lung maturity. • Liver elasticity increased progressively from 24 weeks of gestation (WG) to 39 WG, while lung elasticity increased first between 24 and 32 WG and then decreased after 32 WG. • The values of elasticity are considered valid and repeatable except for a probe-lung distance above 8cm.
Collapse
Affiliation(s)
- Camille Nallet
- Pôle Mère-Femme, Department of Obstetrics and Gynecology, University Hospital of Besancon, University of Franche-Comte, Boulevard Alexandre Fleming, 25000, Besançon, France.
| | - Lionel Pazart
- Centre d'investigation Clinique-Innovation Technologique 1431, INSERM, University Hospital of Besançon, 25000, Besançon, France
| | - Claire Cochet
- Pôle Mère-Femme, Department of Obstetrics and Gynecology, University Hospital of Besancon, University of Franche-Comte, Boulevard Alexandre Fleming, 25000, Besançon, France
| | - Chrystelle Vidal
- Centre d'investigation Clinique-Innovation Technologique 1431, INSERM, University Hospital of Besançon, 25000, Besançon, France
| | - Jean-Patrick Metz
- Pôle Mère-Femme, Department of Obstetrics and Gynecology, University Hospital of Besancon, University of Franche-Comte, Boulevard Alexandre Fleming, 25000, Besançon, France
| | - Emmanuelle Jacquet
- Department of Applied Mechanics, Université de Bourgogne Franche-Comté, FEMTO-ST Institute, UFC/CNRS/ENSMM/UTBM, 25000, Besançon, France
| | - Guillaume Gorincour
- Institut Méditerranéen d'Imagerie Médicale Appliquée à la Gynécologie, la Grossesse et l'Enfance (IMAGE 2), 6 Rue Rocca, 13008, Marseille, France
| | - Nicolas Mottet
- Pôle Mère-Femme, Department of Obstetrics and Gynecology, University Hospital of Besancon, University of Franche-Comte, Boulevard Alexandre Fleming, 25000, Besançon, France
- Nanomedicine Lab, Imagery and Therapeutics, EA4662, University of Franche-Comte, 25000, Besancon, France
| |
Collapse
|
4
|
Ambrogio S, Baêsso RM, Bosio F, Fedele F, Ramnarine KV, Zeqiri B, Miloro P. A standard test phantom for the performance assessment of magnetic resonance guided high intensity focused ultrasound (MRgHIFU) thermal therapy devices. Int J Hyperthermia 2021; 39:57-68. [PMID: 34936852 DOI: 10.1080/02656736.2021.2017023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Purpose: Test objects for High Intensity Focused Ultrasound (HIFU) are required for the standardization and definition of treatment, Quality Assurance (QA), comparison of results between centers and calibration of devices. This study describes a HIFU test object which provides temperature measurement as a function of time, in a reference material compatible with Magnetic Resonance (MR) and ultrasound.Materials and methods: T-Type fine wire thermocouples were used as sensors and 5 correction methods for viscous heating artifacts were assessed. The phantom was tested in a MR-HIFU Philips Sonalleve device over a period of 12 months, demonstrating stability and validity to evaluate the performance of the device.Results: The study furnished useful information regarding the MR-HIFU sessions and highlighted potential limitations of the existing QA and monitoring methods. The importance of temperature monitoring along the whole acoustic path was demonstrated as MR Thermometry readings differed in the three MR plane views (coronal, sagittal, transverse), in particular when the focus was near a soft-tissue/bone interface, where there can be an MR signal loss with significant temperature and thermal dose underestimation (138% variation between the three plane views).Conclusions: The test object was easy to use and has potential as a valid tool for training, QA, research and development for MR guided HIFU and potentially ultrasound guided devices.
Collapse
Affiliation(s)
- S Ambrogio
- Medical Physics Department, Guy's and St Thomas' NHS Foundation Trust, London, UK.,Ultrasound and Underwater Acoustics Division, National Physical Laboratory, Teddington, UK
| | - R M Baêsso
- Ultrasound and Underwater Acoustics Division, National Physical Laboratory, Teddington, UK
| | - F Bosio
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - F Fedele
- Medical Physics Department, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - K V Ramnarine
- Medical Physics Department, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - B Zeqiri
- Ultrasound and Underwater Acoustics Division, National Physical Laboratory, Teddington, UK
| | - P Miloro
- Ultrasound and Underwater Acoustics Division, National Physical Laboratory, Teddington, UK
| |
Collapse
|