Verma Y, Arachchige ASPM. Revolutionizing cardiovascular care: the power of histotripsy.
J Ultrasound 2024;
27:759-768. [PMID:
38217765 PMCID:
PMC11496427 DOI:
10.1007/s40477-023-00848-7]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/13/2023] [Indexed: 01/15/2024] Open
Abstract
Histotripsy, an innovative ultrasonic technique, is poised to transform the landscape of cardiovascular disease management. This review explores the multifaceted applications of histotripsy across various domains of cardiovascular medicine. In thrombolysis, histotripsy presents a non-invasive, drug-free, and precise method for recanalizing blood vessels obstructed by clots, minimizing the risk of vessel damage and embolism. Additionally, histotripsy showcases its potential in congenital heart defect management, offering a promising alternative to invasive procedures by creating intracardiac communications noninvasively. For patients with calcified aortic stenosis, histotripsy demonstrates its effectiveness in softening calcified bioprosthetic valves, potentially revolutionizing valve interventions. In the realm of arrhythmias, histotripsy could play an important role in scar-based ventricular tachycardia ablation, eliminating channel-like isthmuses of slowly conducting myocardium. Histotripsy`s potential applications also extend to structural heart interventions, enabling the safe sectioning of basal chordae and potentially addressing mitral regurgitation. Furthermore, it showcases its versatility by safely generating ventricular septal defects, providing a non-invasive means of creating intracardiac communications in neonates with congenital heart disease. Yet, most supporting studies are in-vitro or animal studies and there are possible challenges in translating experimental data on cardiac histotripsy to the clinical level. As histotripsy continues to evolve and mature, its remarkable potential in cardiovascular disease management holds promise for improving patient outcomes and reducing the burden of invasive procedures in the field of cardiology.
Collapse