1
|
Bala VM, Lampropoulou DI, Grammatikaki S, Kouloulias V, Lagopati N, Aravantinos G, Gazouli M. Nanoparticle-Mediated Hyperthermia and Cytotoxicity Mechanisms in Cancer. Int J Mol Sci 2023; 25:296. [PMID: 38203467 PMCID: PMC10779099 DOI: 10.3390/ijms25010296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Hyperthermia has the potential to damage cancerous tissue by increasing the body temperature. However, targeting cancer cells whilst protecting the surrounding tissues is often challenging, especially when implemented in clinical practice. In this direction, there are data showing that the combination of nanotechnology and hyperthermia offers more successful penetration of nanoparticles in the tumor environment, thus allowing targeted hyperthermia in the region of interest. At the same time, unlike radiotherapy, the use of non-ionizing radiation makes hyperthermia an attractive therapeutic option. This review summarizes the existing literature regarding the use of hyperthermia and nanoparticles in cancer, with a focus on nanoparticle-induced cytotoxicity mechanisms.
Collapse
Affiliation(s)
| | | | - Stamatiki Grammatikaki
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.G.); (N.L.)
| | - Vassilios Kouloulias
- Radiation Oncology Unit, 2nd Department of Radiology, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Nefeli Lagopati
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.G.); (N.L.)
| | | | - Maria Gazouli
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.G.); (N.L.)
| |
Collapse
|
2
|
Jiang X, Hu Z, Wang S, Zhang Y. Deep Learning for Medical Image-Based Cancer Diagnosis. Cancers (Basel) 2023; 15:3608. [PMID: 37509272 PMCID: PMC10377683 DOI: 10.3390/cancers15143608] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
(1) Background: The application of deep learning technology to realize cancer diagnosis based on medical images is one of the research hotspots in the field of artificial intelligence and computer vision. Due to the rapid development of deep learning methods, cancer diagnosis requires very high accuracy and timeliness as well as the inherent particularity and complexity of medical imaging. A comprehensive review of relevant studies is necessary to help readers better understand the current research status and ideas. (2) Methods: Five radiological images, including X-ray, ultrasound (US), computed tomography (CT), magnetic resonance imaging (MRI), positron emission computed tomography (PET), and histopathological images, are reviewed in this paper. The basic architecture of deep learning and classical pretrained models are comprehensively reviewed. In particular, advanced neural networks emerging in recent years, including transfer learning, ensemble learning (EL), graph neural network, and vision transformer (ViT), are introduced. Five overfitting prevention methods are summarized: batch normalization, dropout, weight initialization, and data augmentation. The application of deep learning technology in medical image-based cancer analysis is sorted out. (3) Results: Deep learning has achieved great success in medical image-based cancer diagnosis, showing good results in image classification, image reconstruction, image detection, image segmentation, image registration, and image synthesis. However, the lack of high-quality labeled datasets limits the role of deep learning and faces challenges in rare cancer diagnosis, multi-modal image fusion, model explainability, and generalization. (4) Conclusions: There is a need for more public standard databases for cancer. The pre-training model based on deep neural networks has the potential to be improved, and special attention should be paid to the research of multimodal data fusion and supervised paradigm. Technologies such as ViT, ensemble learning, and few-shot learning will bring surprises to cancer diagnosis based on medical images.
Collapse
Grants
- RM32G0178B8 BBSRC
- MC_PC_17171 MRC, UK
- RP202G0230 Royal Society, UK
- AA/18/3/34220 BHF, UK
- RM60G0680 Hope Foundation for Cancer Research, UK
- P202PF11 GCRF, UK
- RP202G0289 Sino-UK Industrial Fund, UK
- P202ED10, P202RE969 LIAS, UK
- P202RE237 Data Science Enhancement Fund, UK
- 24NN201 Fight for Sight, UK
- OP202006 Sino-UK Education Fund, UK
- RM32G0178B8 BBSRC, UK
- 2023SJZD125 Major project of philosophy and social science research in colleges and universities in Jiangsu Province, China
Collapse
Affiliation(s)
- Xiaoyan Jiang
- School of Mathematics and Information Science, Nanjing Normal University of Special Education, Nanjing 210038, China; (X.J.); (Z.H.)
| | - Zuojin Hu
- School of Mathematics and Information Science, Nanjing Normal University of Special Education, Nanjing 210038, China; (X.J.); (Z.H.)
| | - Shuihua Wang
- School of Computing and Mathematical Sciences, University of Leicester, Leicester LE1 7RH, UK;
| | - Yudong Zhang
- School of Computing and Mathematical Sciences, University of Leicester, Leicester LE1 7RH, UK;
| |
Collapse
|
3
|
Aram E, Moeni M, Abedizadeh R, Sabour D, Sadeghi-Abandansari H, Gardy J, Hassanpour A. Smart and Multi-Functional Magnetic Nanoparticles for Cancer Treatment Applications: Clinical Challenges and Future Prospects. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12203567. [PMID: 36296756 PMCID: PMC9611246 DOI: 10.3390/nano12203567] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/16/2022] [Accepted: 09/27/2022] [Indexed: 05/14/2023]
Abstract
Iron oxide nanoparticle (IONPs) have become a subject of interest in various biomedical fields due to their magnetism and biocompatibility. They can be utilized as heat mediators in magnetic hyperthermia (MHT) or as contrast media in magnetic resonance imaging (MRI), and ultrasound (US). In addition, their high drug-loading capacity enabled them to be therapeutic agent transporters for malignancy treatment. Hence, smartening them allows for an intelligent controlled drug release (CDR) and targeted drug delivery (TDD). Smart magnetic nanoparticles (SMNPs) can overcome the impediments faced by classical chemo-treatment strategies, since they can be navigated and release drug via external or internal stimuli. Recently, they have been synchronized with other modalities, e.g., MRI, MHT, US, and for dual/multimodal theranostic applications in a single platform. Herein, we provide an overview of the attributes of MNPs for cancer theranostic application, fabrication procedures, surface coatings, targeting approaches, and recent advancement of SMNPs. Even though MNPs feature numerous privileges over chemotherapy agents, obstacles remain in clinical usage. This review in particular covers the clinical predicaments faced by SMNPs and future research scopes in the field of SMNPs for cancer theranostics.
Collapse
Affiliation(s)
- Elham Aram
- Department of Cancer Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Babol 47138-18981, Iran
- Department of Polymer Engineering, Faculty of Engineering, Golestan University, Gorgan 49188-88369, Iran
| | - Masome Moeni
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Roya Abedizadeh
- Department of Cancer Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Babol 47138-18981, Iran
| | - Davood Sabour
- Department of Cancer Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Babol 47138-18981, Iran
| | - Hamid Sadeghi-Abandansari
- Department of Cancer Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Babol 47138-18981, Iran
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Jabbar Gardy
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
- Correspondence: (J.G.); (A.H.)
| | - Ali Hassanpour
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
- Correspondence: (J.G.); (A.H.)
| |
Collapse
|
4
|
Khanom J, I Rezk A, Park CH, Kim CS. Near-Infrared Responsive Synergistic Chemo-Phototherapy from Surface-Functionalized Poly(ε-caprolactone)-Poly(d,l-lactic- co-glycolic acid) Composite Nanofibers for Postsurgical Cancer Treatment. Biomacromolecules 2022; 23:3582-3592. [PMID: 35949062 DOI: 10.1021/acs.biomac.2c00351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The combination of hyperthermia and chemotherapy has attracted significant attention in local cancer treatment following surgical resection. Pyrrole is a potent photothermal agent that can induce a temperature rise at different concentrations in the surrounding medium by absorbing near-infrared radiation (NIR). In this study, poly(ε-caprolactone) (PCL) and poly (d,l-lactic-co-glycolic acid) (PLGA) were used to make nanofibers using the electrospinning process. Then, pyrrole in different concentrations of (0.2, 0.4, and 0.6) M was attached to the surface of PCL-PLGA fiber mats by in situ polymerization, which was confirmed by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD) analysis. A concentration-dependent local temperature rise was observed using a FLIR camera under near-infrared (NIR) laser irradiation. For the hyperthermia effect, pyrrole concentration (0.06 M) was used for in vitro drug release studies and cell viability assays because under NIR irradiation (2 W/cm2, 3 min), it increased the local temperature to around 45 °C. In vitro drug release studies confirmed that NIR irradiation increased the diffusion rate of doxorubicin (DOX) by increasing the environmental temperature above the glass transition temperature of PLGA. In vitro cytotoxicity experiments further confirmed that PCL-PLGA-DOX/PPy fiber mats showed an enhanced inhibitory effect against CT26 and MCF7 cells by the combination of hyperthermia and chemotherapy.
Collapse
Affiliation(s)
- Jakia Khanom
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea.,Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Abdelrahman I Rezk
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea.,Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Chan Hee Park
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea.,Mechanical Design Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Cheol Sang Kim
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea.,Mechanical Design Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| |
Collapse
|
5
|
Nanomaterials in cancer: Reviewing the combination of hyperthermia and triggered chemotherapy. J Control Release 2022; 347:89-103. [PMID: 35513211 DOI: 10.1016/j.jconrel.2022.04.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 01/10/2023]
Abstract
Nanoparticle mediated hyperthermia has been explored as a method to increase cancer treatment efficacy by heating tumours inside-out. With that purpose, nanoparticles have been designed and their properties tailored to respond to external stimuli and convert the supplied energy into heat, therefore inducing damage to tumour cells. Moreover, the combination of hyperthermia with chemotherapy has been described as a more effective strategy due to the synergy between the high temperature and the drug's effects, also associated with a remote controlled and on-demand drug release. In this review, the methods behind nanoparticle mediated hyperthermia, namely material design, external stimuli response and energy conversion will be discussed and critically analysed. We will address the most relevant studies on hyperthermia and temperature triggered drug release for cancer treatment. Finally, the advantages, difficulties and challenges of this therapeutic strategy will be discussed, while giving insight for future developments.
Collapse
|