1
|
Rezaei M, Esmailzadeh A, Shanei A. Bystander Effect of Therapeutic Ultrasound in the Presence of Cisplatin: An in Vitro Study on Human Melanoma Cells. J Biomed Phys Eng 2023; 13:433-442. [PMID: 37868940 PMCID: PMC10589695 DOI: 10.31661/jbpe.v0i0.2105-1337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 12/11/2021] [Indexed: 10/24/2023]
Abstract
Background In the bystander effect, non-irradiated cells receive biological signals from adjacent irradiated cells and undergo a variety of alterations, considered recently in non-ionizing irradiation like ultrasound waves. In this study, the bystander effect of therapeutic ultrasound exposure alone and in combination with cisplatin was determined. Objective This study aims to determine the bystander effect caused by ultrasound and cisplatin. Material and Methods This experimental study was conducted on the human melanoma cell line including two groups of target and bystander cells. The target cell group was divided into three sub-groups of ultrasound irradiation alone, cisplatin alone, and ultrasound irradiation in the presence of cisplatin that the culture medium of these three groups of cells was transferred to the bystander cell group using the medium transfer technique. Then, apoptotic bystander cells and the expression of P53 and HO-1 in target and bystander groups were measured. Results The results of the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and apoptosis assay showed that cell death in target and bystander groups receiving the ultrasound with cisplatin is higher than in the ultrasound without cisplatin. PCR (the polymerase chain reaction) results in the target and bystander groups receiving treatments with increased expression of the P53 gene. Target and bystander groups receiving the ultrasound without cisplatin showed a decrease in HO-1 gene expression, while the ultrasound with cisplatin showed an increase in the HO-1 gene compared to the control group. Conclusion Combining ultrasound with ultrasound and without it can transfer bystander signals to the cells that are not directly treated.
Collapse
Affiliation(s)
- Masumeh Rezaei
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arman Esmailzadeh
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ahmad Shanei
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
2
|
He Z, Du J, Miao Y, Li Y. Recent Developments of Inorganic Nanosensitizers for Sonodynamic Therapy. Adv Healthc Mater 2023; 12:e2300234. [PMID: 37070721 DOI: 10.1002/adhm.202300234] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/07/2023] [Indexed: 04/19/2023]
Abstract
As a noninvasive treatment, sonodynamic therapy (SDT) has been widely used in the treatment of tumors because of its ability to penetrate deep tissue with few side effects. As the key factor of SDT, it is meaningful to design and synthesize efficient sonosensitizers. Compared with organic sonosensitizers, inorganic sonosensitizers can be easily excited by ultrasound. In addition, inorganic sonosensitizers with stable properties, good dispersion, and long blood circulation time, have great development potential in SDT. This review summarizes possible mechanisms of SDT (sonoexcitation and ultrasonic cavitation) in detail. Based on these mechanisms, the design and synthesis of inorganic nanosonosensitizers can be divided into three categories: traditional inorganic semiconductor sonosensitizers, enhanced inorganic semiconductor sonosensitizers, and cavitation-enhanced sonosensitizers. Subsequently, the current efficient construction methods of sonosensitizers are summarized including accelerated semiconductor charge separation and enhanced production of reactive oxygen species through ultrasonic cavitation. Furthermore, the advantages and disadvantages of different inorganic sonosensitizers and detailed strategies are systematically discussed on how to enhance SDT. Hopefully, this review could provide new insights into the design and synthesis of efficient inorganic nano-sonosensitizers for SDT.
Collapse
Affiliation(s)
- Zongyan He
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jun Du
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuqing Miao
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuhao Li
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
3
|
Tavira M, Mousavi-Khattat M, Shakeran Z, Zarrabi A. PCL/gelatin nanofibers embedded with doxorubicin-loaded mesoporous silica nanoparticles/silver nanoparticles as an antibacterial and anti-melanoma cancer. Int J Pharm 2023; 642:123162. [PMID: 37343778 DOI: 10.1016/j.ijpharm.2023.123162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/15/2023] [Accepted: 06/18/2023] [Indexed: 06/23/2023]
Abstract
Melanoma cancer wound healing is critical and complex and poses a significant challenge to researchers. Drug resistance, adverse side effects, and inefficient localization of chemotherapeutic drugs limit common treatment strategies in melanoma cancer. Using drug delivery nanostructures with low side effects and high efficiency, besides having antibacterial and antiseptic properties, can effectively repair the damage caused by the disease. To this end, this study aimed to develop a drug delivery nanosystem based on doxorubicin (DOX)-loaded amine-functionalized mesoporous silica nanoparticles (MSNs), linked with green synthesized silver nanoparticles (AgNPs). Characterization methods including microscopic methods and X-ray diffraction (XRD) confirmed the synthesis and functionalization of the well-dispersed nanoparticles with nanosized and uniform structures. The poly(ε-caprolactone) (PCL) nanofibers as a strong scaffold were produced by the blow spinning method and DOX-loaded nanoparticles were blow spun on PCL nanofibers along with gelatin solution. The resulting nanosystem including nanofibers and nanoparticles (NFs/NPS) showed a fine loading percent with a proper release profile of DOX and AgNPs and low hemolysis activity. Moreover, besides preventing infection by AgNPs, the DOX-loaded NFs/NPs could effectively destroy melanoma cancer cells. The attachment of normal cells to the nanoparticles-loaded nanofibers scaffold revealed the possibility of healing wounds caused by melanoma cancer.
Collapse
Affiliation(s)
- Melika Tavira
- Department of Biochemistry, Faculty of Medicine, Najafabad Branch, Islamic Azad University, Najafabad, Isfahan, Iran
| | - Mohammad Mousavi-Khattat
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Zahra Shakeran
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Türkiye.
| |
Collapse
|
4
|
Bhattacharya S, Sharma S. Dacarbazine-encapsulated solid lipid nanoparticles for skin cancer: physical characterization, stability, in-vivo activity, histopathology, and immunohistochemistry. Front Oncol 2023; 13:1102269. [PMID: 37152046 PMCID: PMC10160449 DOI: 10.3389/fonc.2023.1102269] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/04/2023] [Indexed: 05/09/2023] Open
Abstract
Background This study examined the use of solid lipid nanoparticles (SLNs) to administer Dacarbazine (DTIC) to skin melanoma cells with minimal adverse effects. Melanoma is a tricky skin cancer to cure, and standard chemotherapy has many negative effects. Encapsulating DTIC in SLNs may allow the drug to target melanoma cells without harming healthy cells. The study developed and tested DTIC-loaded SLNs for skin melanoma treatment. Methods This study encapsulated Dacarbazine (DTIC) in solid lipid nanoparticles (SLNs). SLNs with reversed micelles were produced utilizing specified ratios of the surfactant Kolliphor® P188 and phosphatidylcholine. To track SLN drug localisation, gold nanoparticles were conjugated to the DTIC. Nanoparticle size and form were examined using DLS and TEM. These approaches ensured SLNs had the correct size and shape for drug delivery. Significant findings In the study, various parameters of the developed solid lipid nanoparticles (SLNs) were evaluated, including particle size, zeta potential, polydispersity index (PDI), entrapment efficacy, and cumulative drug permeation. The values for these parameters varied across the different formulations, with particle size ranging from 146 ± 4.71 nm to 715 ± 7.36 nm, zeta potential from -12.45 ± 2.78 mV to -30.78 ± 2.83 mV, PDI from 0.17 ± 0.013 to 0.51 ± 0.023, entrapment efficacy from 37.78 ± 2.78% to 87.45 ± 4.78%, and cumulative drug permeation from 117 ± 4.77 μg/cm2 to 275 ± 5.67 μg/cm2. To determine the optimal anti-cancer formulation, the DTIC-SLNs-8 nanoparticles were mixed with an optimized concentration of Gellan gum (0.01% w/v) and applied to DMBA-induced skin tumors in rats for six weeks, twice daily. Histopathology demonstrated that DTIC-SLNs-8-treated rats had less keratosis, inflammatory responses, and angiogenesis than free DTIC-treated rats. The development of SLNs may be a promising approach for melanoma treatment due to their improved drug retention over the skin. The optimised anti-cancer formulation DTIC-SLNs-8 showed improved efficacy with minimal side effects as compared to free DTIC.
Collapse
Affiliation(s)
- Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM’S NMIMS Deemed-to-be University, Shirpur, Maharashtra, India
| | - Satyam Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Export Promotion Industrial Park (EPIP), Hajipur, Bihar, India
| |
Collapse
|
5
|
Liao S, Cai M, Zhu R, Fu T, Du Y, Kong J, Zhang Y, Qu C, Dong X, Ni J, Yin X. Antitumor Effect of Photodynamic Therapy/Sonodynamic Therapy/Sono-Photodynamic Therapy of Chlorin e6 and Other Applications. Mol Pharm 2023; 20:875-885. [PMID: 36689197 DOI: 10.1021/acs.molpharmaceut.2c00824] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Chlorin e6 (Ce6) has been extensively researched and developed as an antitumor therapy. Ce6 is a highly effective photosensitizer and sonosensitizer with promising future applications in photodynamic therapy, dynamic acoustic therapy, and combined acoustic and light therapy for tumors. Ce6 is also being studied for other applications in fluorescence navigation, antibacterials, and plant growth regulation. Here we review the role and research status of Ce6 in tumor therapy and the problems and challenges of its clinical application. Other biomedical effects of Ce6 are also briefly discussed. Despite the difficulties in clinical application, Ce6 has significant advantages in photodynamic therapy (PDT)/sonodynamic therapy (SDT) against cancer and offers several possibilities in clinical utility.
Collapse
Affiliation(s)
- Shilang Liao
- Beijing University of Chinese Medicine, Beijing 102488, China
| | - Mengru Cai
- Beijing University of Chinese Medicine, Beijing 102488, China
| | - Rongyue Zhu
- Beijing University of Chinese Medicine, Beijing 102488, China
| | - Tingting Fu
- Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yuji Du
- Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jiahui Kong
- Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yongqiang Zhang
- Beijing University of Chinese Medicine, Beijing 102488, China
| | - Changhai Qu
- Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaoxv Dong
- Beijing University of Chinese Medicine, Beijing 102488, China
| | | | | |
Collapse
|
6
|
Wang H, Tran TT, Duong KT, Nguyen T, Le UM. Options of Therapeutics and Novel Delivery Systems of Drugs for the Treatment of Melanoma. Mol Pharm 2022; 19:4487-4505. [PMID: 36305753 DOI: 10.1021/acs.molpharmaceut.2c00775] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Melanoma is one of the most severe cancerous diseases. The cells employ multiple signaling pathways, such as ERK, HGF/c-MET, WNT, and COX-2 to cause the cell proliferation, survival, and metastasis. Treatment of melanoma, including surgery, chemotherapy, immunotherapy, radiation, and targeted therapy, is based on 4 major or 11 substages of the disease. Fourteen drugs, including dacarbazine, interferon α-2b, interleukin-12, ipilimumab, peginterferon α-2b, vemurafenib, trametinib, talimogene laherparepvec, cobimetinib, pembrolizumab, dabrafenib, binimetinib, encorafenib, and nivolumab, have been approved by the FDA for the treatment of melanoma. All of them are in conventional dosage forms of injection solutions, suspensions, oral tablets, or capsules. Major drawbacks of the treatment are side effects of the drugs and patients' incompliance to them. These are consequences of high doses and long-term treatments for the diseases. Currently more than 350 NCI-registered clinical trials are being carried out to treat advanced and/or metastatic melanoma using novel treatment methods, such as immune cell therapy, cancer vaccines, and new therapeutic targets. In addition, novel delivery systems using biomaterials of the approved drugs have been developed attempting to increase the drug delivery, targeting, stability, bioavailability, thus potentially reducing the toxicity and increasing the treatment effectiveness. Nanoparticles and liposomes have been emerging as advanced delivery systems which can improve drug stability and systemic circulation time. In this review, the most recent findings in the options for treatment and development of novel drug delivery systems for the treatment of melanoma are comprehensively discussed.
Collapse
Affiliation(s)
- Hongbin Wang
- College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, California 95757, United States.,Master of Pharmaceutical Sciences College of Graduate Study, California Northstate University, 9700 West Taron Drive, Elk Grove, California 95757, United States
| | - Tuan T Tran
- College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, California 95757, United States
| | - Katherine T Duong
- CVS Pharmacy, 18872 Beach Boulevard, Huntington Beach, California 92648, United States
| | - Trieu Nguyen
- College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, California 95757, United States
| | - Uyen M Le
- College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, California 95757, United States
| |
Collapse
|
7
|
Marzi M, Osanloo M, Vakil MK, Mansoori Y, Ghasemian A, Dehghan A, Zarenezhad E. Applications of Metallic Nanoparticles in the Skin Cancer Treatment. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2346941. [PMID: 36420097 PMCID: PMC9678447 DOI: 10.1155/2022/2346941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/20/2022] [Accepted: 11/01/2022] [Indexed: 04/03/2024]
Abstract
Skin cancer is one of leading cancers globally, divided into two major categories including melanoma and nonmelanoma. Skin cancer is a global concern with an increasing trend, hence novel therapies are essential. The local treatment strategies play a key role in skin cancer therapy. Nanoparticles (NPs) exert potential applications in medicine with huge advantages and have the ability to overcome common chemotherapy problems. Recently, NPs have been used in nanomedicine as promising drug delivery systems. They can enhance the solubility of poorly water-soluble drugs, improve pharmacokinetic properties, modify bioavailability, and reduce drug metabolism. The high-efficient, nontoxic, low-cost, and specific cancer therapy is a promising goal, which can be achieved by the development of nanotechnology. Metallic NPs (MNPs) can act as important platforms. MNPs development seeks to enhance the therapeutic efficiency of medicines through site specificity, prevention of multidrug resistance, and effective delivery of therapeutic factors. MNPs are used as potential arms in the case of cancer recognition, such as Magnetic Resonance Imaging (MRI) and colloidal mediators for magnetic hyperthermia of cancer. The applications of MNPs in the cancer treatment studies are mostly due to their potential to carry a large dose of drug, resulting in a high concentration of anticancer drugs at the target site. Therefore, off-target toxicity and suffering side effects caused by high concentration of the drug in other parts of the body are avoided. MNPs have been applied as drug carriers for the of improvement of skin cancer treatment and drug delivery. The development of MNPs improves the results of many cancer treatments. Different types of NPs, such as inorganic and organic NPs have been investigated in vitro and in vivo for the skin cancer therapy. MNPs advantages mostly include biodegradability, electrostatic charge, good biocompatibility, high drug payload, and low toxicity. However, the use of controlled-release systems stimulated by electromagnetic waves, temperature, pH, and light improves the accumulation in tumor tissues and improves therapeutic outcomes. This study (2019-2022) is aimed at reviewing applications of MNPs in the skin cancer therapy.
Collapse
Affiliation(s)
- Mahrokh Marzi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Mahmoud Osanloo
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Mohammad Kazem Vakil
- Department of Internal Medicine, School of Medicine, Fasa University of Medical Science, Fasa, Iran
| | - Yaser Mansoori
- Department of Medical Genetics, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Azizallah Dehghan
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Elham Zarenezhad
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|