1
|
Liu Z, Zhang H, Yao J. Metabolomic Profiling and Network Toxicology: Mechanistic Insights into Effect of Gossypol Acetate Isomers in Uterine Fibroids and Liver Injury. Pharmaceuticals (Basel) 2024; 17:1363. [PMID: 39459003 PMCID: PMC11510579 DOI: 10.3390/ph17101363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
OBJECTIVE Gossypol is a natural polyphenolic dialdehyde product that is primarily isolated from cottonseed. It is a racemized mixture of (-)-gossypol and (+)-gossypol that has anti-infection, antimalarial, antiviral, antifertility, antitumor and antioxidant activities, among others. Gossypol optical isomers have been reported to differ in their biological activities and toxic effects. METHOD In this study, we performed a metabolomics analysis of rat serum using 1H-NMR technology to investigate gossypol optical isomers' mechanism of action on uterine fibroids. Network toxicology was used to explore the mechanism of the liver injury caused by gossypol optical isomers. SD rats were randomly divided into a normal control group; model control group; a drug-positive group (compound gossypol acetate tablets); high-, medium- and low-dose (-)-gossypol acetate groups; and high-, medium- and low-dose (+)-gossypol acetate groups. RESULT Serum metabolomics showed that gossypol optical isomers' pharmacodynamic effect on rats' uterine fibroids affected their lactic acid, cholesterol, leucine, alanine, glutamate, glutamine, arginine, proline, glucose, etc. According to network toxicology, the targets of the liver injury caused by gossypol optical isomers included HSP90AA1, SRC, MAPK1, AKT1, EGFR, BCL2, CASP3, etc. KEGG enrichment showed that the toxicity mechanism may be related to pathways active in cancer, such as the PPAR signaling pathway, glycolysis/glycolysis gluconeogenesis, Th17 cell differentiation, and 91 other closely related signaling pathways. CONCLUSIONS (-)-gossypol acetate and (+)-gossypol acetate play positive roles in the treatment and prevention of uterine fibroids. Gossypol optical isomers cause liver damage through multiple targets and pathways.
Collapse
Affiliation(s)
- Zishuo Liu
- School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China; (Z.L.); (H.Z.)
- Key Laboratory of Active Components and Drug Release Technology of Natural Medicines in Xinjiang, Xinjiang Medical University, Urumqi 830017, China
| | - Hui Zhang
- School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China; (Z.L.); (H.Z.)
- Key Laboratory of Active Components and Drug Release Technology of Natural Medicines in Xinjiang, Xinjiang Medical University, Urumqi 830017, China
| | - Jun Yao
- School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China; (Z.L.); (H.Z.)
- Key Laboratory of Active Components and Drug Release Technology of Natural Medicines in Xinjiang, Xinjiang Medical University, Urumqi 830017, China
| |
Collapse
|
2
|
Kumar YN, Singh Z, Wang YN, Kanabolo D, Chen L, Bruce M, Vlaisavljevich E, True L, Maxwell AD, Schade GR. A comparative study of histotripsy parameters for the treatment of fibrotic ex-vivo human benign prostatic hyperplasia tissue. Sci Rep 2024; 14:20365. [PMID: 39223181 PMCID: PMC11369199 DOI: 10.1038/s41598-024-71163-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Histotripsy is a noninvasive focused ultrasound therapy that mechanically fractionates tissue to create well-defined lesions. In a previous clinical pilot trial to treat benign prostatic hyperplasia (BPH), histotripsy did not result in consistent objective improvements in symptoms, potentially because of the fibrotic and mechanically tough nature of this tissue. In this study, we aimed to identify the dosage required to homogenize BPH tissue by different histotripsy modalities, including boiling histotripsy (BH) and cavitation histotripsy (CH). A method for histotripsy lesion quantification via entropy (HLQE) analysis was developed and utilized to quantify lesion area of the respective treatments. These data were correlated to changes in mechanical stiffness measured by ultrasound shear-wave elastography before and after treatment with each parameter set and dose. Time points corresponding to histologically observed complete lesions were qualitatively evaluated and quantitatively measured. For the BH treatment, complete lesions occurred with > = 30 s treatment time, with a corresponding maximum reduction in stiffness of -90.9 ± 7.2(s.d.)%. High pulse repetition frequency (PRF) CH achieved a similar reduction to that of BH at 288 s (-91.6 ± 6.0(s.d.)%), and low-PRF CH achieved a (-82.1 ± 5.1(s.d.)%) reduction in stiffness at dose > = 144 s. Receiver operating characteristic curve analysis showed that a > ~ 75% reduction in stiffness positively correlated with complete lesions observed histologically, and can provide an alternative metric to track treatment progression.
Collapse
Affiliation(s)
- Yashwanth Nanda Kumar
- Center for Industrial and Medical Ultrasound, University of Washington, Seattle, 98105, USA.
| | - Zorawar Singh
- Department of Urology, University of Washington, Seattle, 98195, USA
| | - Yak-Nam Wang
- Center for Industrial and Medical Ultrasound, University of Washington, Seattle, 98105, USA
| | - Diboro Kanabolo
- Department of Urology, University of Washington, Seattle, 98195, USA
| | - Lucas Chen
- Department of Urology, University of Washington, Seattle, 98195, USA
| | - Matthew Bruce
- Center for Industrial and Medical Ultrasound, University of Washington, Seattle, 98105, USA
| | - Eli Vlaisavljevich
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, 24061, USA
| | - Lawrence True
- Department of Pathology, University of Washington, Seattle, 98195, USA
| | - Adam D Maxwell
- Center for Industrial and Medical Ultrasound, University of Washington, Seattle, 98105, USA
- Department of Urology, University of Washington, Seattle, 98195, USA
| | - George R Schade
- Department of Urology, University of Washington, Seattle, 98195, USA
| |
Collapse
|
3
|
Ponomarchuk E, Tsysar S, Kvashennikova A, Chupova D, Pestova P, Danilova N, Malkov P, Buravkov S, Khokhlova V. Pilot Study on Boiling Histotripsy Treatment of Human Leiomyoma Ex Vivo. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:1255-1261. [PMID: 38762389 DOI: 10.1016/j.ultrasmedbio.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/20/2024]
Abstract
OBJECTIVE As an alternative to surgical excision and magnetic resonance-guided thermal high-intensity focused ultrasound ablation of uterine leiomyoma, this work was aimed at pilot feasibility demonstration of use of ultrasound-guided boiling histotripsy for non-invasive non-thermal fractionation of human uterine leiomyoma ex vivo. METHODS A custom-made sector ultrasound transducer of 1.5-MHz operating frequency and nominal f-number F# = 0.75 was used to produce a volumetric lesion (two layers of 5 × 5 foci with a 1 mm step) in surgically resected human leiomyoma ex vivo. A sequence of 10 ms pulses (P+/P-/As = 157/-25/170 MPa in situ) with 1% duty cycle was delivered N = 30 times per focus under B-mode guidance. The treatment outcome was evaluated via B-mode imaging and histologically with hematoxylin and eosin and Masson's trichrome staining. RESULTS The treatment was successfully performed in less than 30 min and resulted in formation of a rectangular lesion visualized on B-mode images during the sonication as an echogenic region, which sustained for about 10 min post-treatment. Histology revealed loss of cellular structure, necrotic debris and globules of degenerated collagen in the target volume surrounded by injured smooth muscle cells. CONCLUSION The pilot experiment described here indicates that boiling histotripsy is feasible for non-invasive mechanical disintegration of human uterine leiomyoma ex vivo under B-mode guidance, encouraging further investigation and optimization of this potential clinical application of boiling histotripsy.
Collapse
Affiliation(s)
| | - Sergey Tsysar
- Physics Faculty, Lomonosov Moscow State University, Moscow, Russia
| | | | - Daria Chupova
- Physics Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Polina Pestova
- Physics Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Natalia Danilova
- Lomonosov Moscow State University, Medical Research and Educational Center, Moscow, Russia
| | - Pavel Malkov
- Lomonosov Moscow State University, Medical Research and Educational Center, Moscow, Russia
| | - Sergey Buravkov
- Lomonosov Moscow State University, Faculty of Fundamental Medicine, Moscow, Russia
| | - Vera Khokhlova
- Physics Faculty, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
4
|
Kumar YN, Singh Z, Wang YN, Kanabolo D, Chen L, Bruce M, Vlaisavljevich E, True L, Maxwell AD, Schade GR. A Comparative Study of Histotripsy Parameters for the Treatment of Fibrotic ex-vivo Human Benign Prostatic Hyperplasia Tissue. RESEARCH SQUARE 2024:rs.3.rs-4549536. [PMID: 39011101 PMCID: PMC11247946 DOI: 10.21203/rs.3.rs-4549536/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Histotripsy is a noninvasive focused ultrasound therapy that mechanically fractionates tissue to create well-defined lesions. In a previous clinical pilot trial to treat benign prostatic hyperplasia (BPH), histotripsy did not result in consistent objective improvements in symptoms, potentially because of the fibrotic and mechanically tough nature of this tissue. In this study, we aimed to identify the dosage required to homogenize BPH tissue by different histotripsy modalities, including boiling histotripsy (BH) and cavitation histotripsy (CH). A method for histotripsy lesion quantification via entropy (HLQE) analysis was developed and utilized to quantify lesion area of the respective treatments. These data were correlated to changes in mechanical stiffness measured by ultrasound shear-wave elastography before and after treatment with each parameter set and dose. Time points corresponding to histologically observed complete lesions were qualitatively evaluated and quantitatively measured. For the BH treatment, complete lesions occurred with >=30s treatment time, with a corresponding maximum reduction in stiffness of -90.9±7.2(s.d.)%. High pulse repetition frequency (PRF) CH achieved a similar reduction to that of BH at 288s (-91.6±6.0(s.d.)%), and low-PRF CH achieved a (-82.1±5.1(s.d.)%) reduction in stiffness at dose >=144s. Receiver operating characteristic curve analysis showed that a >~75% reduction in stiffness positively correlated with complete lesions observed histologically, and can provide an alternative metric to track treatment progression.
Collapse
|
5
|
Maxwell AD, Vlaisavljevich E. Cavitation-induced pressure saturation: a mechanism governing bubble nucleation density in histotripsy. Phys Med Biol 2024; 69:10.1088/1361-6560/ad3721. [PMID: 38518377 PMCID: PMC11212395 DOI: 10.1088/1361-6560/ad3721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/22/2024] [Indexed: 03/24/2024]
Abstract
Objective.Histotripsy is a noninvasive focused ultrasound therapy that mechanically disintegrates tissue by acoustic cavitation clouds. In this study, we investigate a mechanism limiting the density of bubbles that can nucleate during a histotripsy pulse. In this mechanism, the pressure generated by the initial bubble expansion effectively negates the incident pressure in the vicinity of the bubble. From this effect, the immediately adjacent tissue is prevented from experiencing the transient tension to nucleate bubbles. Approach.A Keller-Miksis-type single-bubble model was employed to evaluate the dependency of this effect on ultrasound pressure amplitude and frequency, viscoelastic medium properties, bubble nucleus size, and transducer geometric focusing. This model was further combined with a spatial propagation model to predict the peak negative pressure field as a function of position from a cavitating bubble.Main results. The single-bubble model showed the peak negative pressure near the bubble surface is limited to the inertial cavitation threshold. The predicted bubble density increased with increasing frequency, tissue viscosity, and transducer focusing angle. The simulated results were consistent with the trends observed experimentally in prior studies, including changes in density with ultrasound frequency and transducerF-number.Significance.The efficacy of the therapy is dependent on several factors, including the density of bubbles nucleated within the cavitation cloud formed at the focus. These results provide insight into controlling the density of nucleated bubbles during histotripsy and the therapeutic efficacy.
Collapse
Affiliation(s)
- Adam D Maxwell
- Department of Urology, University of Washington School of Medicine, Seattle, WA, 98195, United States of America
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, United States of America
| | - Eli Vlaisavljevich
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, United States of America
| |
Collapse
|
6
|
Hay AN, Ruger L, Hsueh A, Vickers E, Klahn S, Vlaisavljevich E, Tuohy J. A review of the development of histotripsy for extremity tumor ablation with a canine comparative oncology model to inform human treatments. Int J Hyperthermia 2023; 40:2274802. [PMID: 37994796 PMCID: PMC10669778 DOI: 10.1080/02656736.2023.2274802] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/19/2023] [Indexed: 11/24/2023] Open
Abstract
Cancer is a devasting disease resulting in millions of deaths worldwide in both humans and companion animals, including dogs. Treatment of cancer is complex and challenging and therefore often multifaceted, as in the case of osteosarcoma (OS) and soft tissue sarcoma (STS). OS predominantly involves the appendicular skeleton and STS commonly develops in the extremities, resulting in treatment challenges due to the need to balance wide-margin resections to achieve local oncological control against the functional outcomes for the patient. To achieve wide tumor resection, invasive limb salvage surgery is often required, and the patient is at risk for numerous complications which can ultimately lead to impaired limb function and mobility. The advent of tumor ablation techniques offers the exciting potential of developing noninvasive or minimally invasive treatment options for extremity tumors. One promising innovative tumor ablation technique with strong potential to serve as a noninvasive limb salvage treatment for extremity tumor patients is histotripsy. Histotripsy is a novel, noninvasive, non-thermal, and non-ionizing focused ultrasound technique which uses controlled acoustic cavitation to mechanically disintegrate tissue with high precision. In this review, we present the ongoing development of histotripsy as a non-surgical alternative for extremity tumors and highlight the value of spontaneously occurring OS and STS in the pet dog as a comparative oncology research model to advance this field of histotripsy research.
Collapse
Affiliation(s)
- Alayna N. Hay
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA
- Virginia Tech Animal Cancer Care and Research Center, Virginia-Maryland College of Veterinary Medicine, Roanoke, VA
| | - Lauren Ruger
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Andy Hsueh
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA
- Virginia Tech Animal Cancer Care and Research Center, Virginia-Maryland College of Veterinary Medicine, Roanoke, VA
| | - Elliana Vickers
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA
- Virginia Tech Animal Cancer Care and Research Center, Virginia-Maryland College of Veterinary Medicine, Roanoke, VA
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA
- Graduate program in Translation Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA
| | - Shawna Klahn
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA
- Virginia Tech Animal Cancer Care and Research Center, Virginia-Maryland College of Veterinary Medicine, Roanoke, VA
| | - Eli Vlaisavljevich
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Joanne Tuohy
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA
- Virginia Tech Animal Cancer Care and Research Center, Virginia-Maryland College of Veterinary Medicine, Roanoke, VA
| |
Collapse
|
7
|
Sallam A, Shahab S. Nonlinear Acoustic Holography With Adaptive Sampling. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:1516-1526. [PMID: 37703162 DOI: 10.1109/tuffc.2023.3315011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Accurate and efficient numerical simulation of highly nonlinear ultrasound propagation is essential for a wide range of therapeutic and physical ultrasound applications. However, due to large domain sizes and the generation of higher harmonics, such simulations are computationally challenging, particularly in 3-D problems with shock waves. Current numerical methods are based on computationally inefficient uniform meshes that resolve the highest harmonics across the entire spatial domain. To address this challenge, we present an adaptive numerical algorithm for computationally efficient nonlinear acoustic holography. At each propagation step, the algorithm monitors the harmonic content of the acoustic signal and adjusts its discretization parameters accordingly. This enables efficient local resolution of higher harmonics in areas of high nonlinearity while avoiding unnecessary resolution elsewhere. Furthermore, the algorithm actively adapts to the signal's nonlinearity level, eliminating the need for prior reference simulations or information about the spatial distribution of the harmonic content of the acoustic field. The proposed algorithm incorporates an upsampling process in the frequency domain to accommodate the generation of higher harmonics in forward propagation and a downsampling process when higher harmonics are decimated in backward propagation. The efficiency of the algorithm was evaluated for highly nonlinear 3-D problems, demonstrating a significant reduction in computational cost with a nearly 50-fold speedup over a uniform mesh implementation. Our findings enable a more rapid and efficient approach to modeling nonlinear high-intensity focused ultrasound (HIFU) wave propagation.
Collapse
|
8
|
Williams RP, Simon JC, Khokhlova VA, Sapozhnikov OA, Khokhlova TD. The histotripsy spectrum: differences and similarities in techniques and instrumentation. Int J Hyperthermia 2023; 40:2233720. [PMID: 37460101 PMCID: PMC10479943 DOI: 10.1080/02656736.2023.2233720] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/15/2023] [Accepted: 07/02/2023] [Indexed: 07/20/2023] Open
Abstract
Since its inception about two decades ago, histotripsy - a non-thermal mechanical tissue ablation technique - has evolved into a spectrum of methods, each with distinct potentiating physical mechanisms: intrinsic threshold histotripsy, shock-scattering histotripsy, hybrid histotripsy, and boiling histotripsy. All methods utilize short, high-amplitude pulses of focused ultrasound delivered at a low duty cycle, and all involve excitation of violent bubble activity and acoustic streaming at the focus to fractionate tissue down to the subcellular level. The main differences are in pulse duration, which spans microseconds to milliseconds, and ultrasound waveform shape and corresponding peak acoustic pressures required to achieve the desired type of bubble activity. In addition, most types of histotripsy rely on the presence of high-amplitude shocks that develop in the pressure profile at the focus due to nonlinear propagation effects. Those requirements, in turn, dictate aspects of the instrument design, both in terms of driving electronics, transducer dimensions and intensity limitations at surface, shape (primarily, the F-number) and frequency. The combination of the optimized instrumentation and the bio-effects from bubble activity and streaming on different tissues, lead to target clinical applications for each histotripsy method. Here, the differences and similarities in the physical mechanisms and resulting bioeffects of each method are reviewed and tied to optimal instrumentation and clinical applications.
Collapse
Affiliation(s)
- Randall P Williams
- Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA, USA
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| | - Julianna C Simon
- Graduate Program in Acoustics, The Pennsylvania State University, University Park, PA, USA
| | - Vera A Khokhlova
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
- Department of Acoustics, Physics Faculty, Moscow State University, Moscow, Russia
| | - Oleg A Sapozhnikov
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
- Department of Acoustics, Physics Faculty, Moscow State University, Moscow, Russia
| | - Tatiana D Khokhlova
- Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA, USA
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| |
Collapse
|
9
|
Gannon J, Imran KM, Hendricks-Wenger A, Edwards M, Covell H, Ruger L, Singh N, Nagai-Singer M, Tintera B, Eden K, Mendiratta-Lala M, Vidal-Jove J, Luyimbazi D, Larson M, Clark-Deener S, Coutermarsh-Ott S, Allen IC, Vlaisavljevich E. Ultrasound-guided noninvasive pancreas ablation using histotripsy: feasibility study in an in vivo porcine model. Int J Hyperthermia 2023; 40:2247187. [PMID: 37643768 PMCID: PMC10839746 DOI: 10.1080/02656736.2023.2247187] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/21/2023] [Accepted: 08/07/2023] [Indexed: 08/31/2023] Open
Abstract
Pancreatic cancer is a malignant disease associated with poor survival and nearly 80% present with unresectable tumors. Treatments such as chemotherapy and radiation therapy have shown overall improved survival benefits, albeit limited. Histotripsy is a noninvasive, non-ionizing, and non-thermal focused ultrasound ablation modality that has shown efficacy in treating hepatic tumors and other malignancies. In this novel study, we investigate histotripsy for noninvasive pancreas ablation in a pig model. In two studies, histotripsy was applied to the healthy pancreas in 11 pigs using a custom 32-element, 500 kHz histotripsy transducer attached to a clinical histotripsy system, with treatments guided by real-time ultrasound imaging. A pilot study was conducted in 3 fasted pigs with histotripsy applied at a pulse repetition frequency (PRF) of 500 Hz. Results showed no pancreas visualization on coaxial ultrasound imaging due to overlying intestinal gas, resulting in off-target injury and no pancreas damage. To minimize gas, a second group of pigs (n = 8) were fed a custard diet containing simethicone and bisacodyl. Pigs were euthanized immediately (n = 4) or survived for 1 week (n = 4) post-treatment. Damage to the pancreas and surrounding tissue was characterized using gross morphology, histological analysis, and CT imaging. Results showed histotripsy bubble clouds were generated inside pancreases that were visually maintained on coaxial ultrasound (n = 4), with 2 pigs exhibiting off-target damage. For chronic animals, results showed the treatments were well-tolerated with no complication signs or changes in blood markers. This study provides initial evidence suggesting histotripsy's potential for noninvasive pancreas ablation and warrants further evaluation in more comprehensive studies.
Collapse
Affiliation(s)
- Jessica Gannon
- Department of Biomedical Engineering and Mechanics, VA Tech, Blacksburg, VA, USA
| | - Khan Mohammad Imran
- Department of Biomedical Sciences and Pathobiology, Virginia-MD College of Veterinary Medicine, Blacksburg, VA, USA
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, USA
| | - Alissa Hendricks-Wenger
- Department of Biomedical Engineering and Mechanics, VA Tech, Blacksburg, VA, USA
- Department of Biomedical Sciences and Pathobiology, Virginia-MD College of Veterinary Medicine, Blacksburg, VA, USA
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, USA
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN, USA
| | - Michael Edwards
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, US
| | - Hannah Covell
- Department of Biomedical Engineering and Mechanics, VA Tech, Blacksburg, VA, USA
| | - Lauren Ruger
- Department of Biomedical Engineering and Mechanics, VA Tech, Blacksburg, VA, USA
| | - Neha Singh
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | - Margaret Nagai-Singer
- Department of Biomedical Sciences and Pathobiology, Virginia-MD College of Veterinary Medicine, Blacksburg, VA, USA
| | - Benjamin Tintera
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | - Kristin Eden
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | | | - Joan Vidal-Jove
- Interventional Oncology Institute Khuab, Comprehensive Tumor Center, Barcelona, Spain
| | - David Luyimbazi
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
- Department of Surgery, Carilion Clinic, Roanoke, VA, USA
| | - Martha Larson
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Sherrie Clark-Deener
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Sheryl Coutermarsh-Ott
- Department of Biomedical Sciences and Pathobiology, Virginia-MD College of Veterinary Medicine, Blacksburg, VA, USA
| | - Irving C. Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-MD College of Veterinary Medicine, Blacksburg, VA, USA
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, USA
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
- ICTAS Center for Engineering Health, Virginia Tech, Blacksburg, VA
| | - Eli Vlaisavljevich
- Department of Biomedical Engineering and Mechanics, VA Tech, Blacksburg, VA, USA
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, USA
- ICTAS Center for Engineering Health, Virginia Tech, Blacksburg, VA
| |
Collapse
|
10
|
Hou Q, Li X, Huang L, Xiong Y, Feng D, Zhang Q, Zeng X, Yang Y, Liu T, Li Y, Lin Y, He L. Transvaginal natural orifice endoscopic surgery for myomectomy: Can it be a conventional surgery? Front Surg 2022; 9:1013918. [PMID: 36406374 PMCID: PMC9672342 DOI: 10.3389/fsurg.2022.1013918] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/10/2022] [Indexed: 06/21/2024] Open
Abstract
INTRODUCTION As a new minimally invasive surgery, transvaginal natural orifice transluminal endoscopic surgery (vNOTES) has been proved to be suitable for the treatment of a variety of gynecological benign diseases. However, compared with other minimally invasive surgeries that have been widely used, such as conventional multiport laparoscopy and transumbilical laparoendoscopic single-site surgery (LESS), their advantages and disadvantages and how to choose are still unknown. The purpose of our study is to compare the advantages and disadvantages of the three minimally invasive surgeries in myomectomy and to provide theoretical basis for the wider development of vNOTES surgery. MATERIAL AND METHODS This retrospective study included 282 patients at our hospital who underwent laparoscopic myomectomy from May 2021 to March 2022. Based on the surgical approach, patients were classified into multiport, transumbilical LESS, and vNOTES groups. The patients' demographic characteristics and follow-up data were collected during the perioperative period and at 1 month postoperatively. RESULTS Among the three procedures, vNOTES had the shortest anal exhaust time but also the highest postoperative infection rate. Multiple linear regression analysis showed that the operative time increased by 3.5 min for each 1 cm increase in myoma, and intraoperative bleeding increased by approximately 12 ml. The average duration of single pores increased by 25 min compared to that of multiports, and the operative duration increased by 10.48 min for each degree of adhesion. CONCLUSIONS For gynecologists who have mastered vNOTES, this procedure has the same efficacy and safety as the two existing minimally invasive surgeries in myomectomy, but it shows obvious advantages in postoperative recovery.
Collapse
Affiliation(s)
- Qiannan Hou
- Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xin Li
- Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lu Huang
- Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ying Xiong
- Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Dan Feng
- Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiang Zhang
- Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoyan Zeng
- Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yang Yang
- Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Tianjiao Liu
- Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yalan Li
- The Fourth People’s Hospital of Chengdu, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yonghong Lin
- Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Li He
- Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|