1
|
Góral D, Marczuk A, Góral-Kowalczyk M, Koval I, Andrejko D. Application of Iron Nanoparticle-Based Materials in the Food Industry. MATERIALS (BASEL, SWITZERLAND) 2023; 16:780. [PMID: 36676517 PMCID: PMC9862918 DOI: 10.3390/ma16020780] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Due to their different properties compared to other materials, nanoparticles of iron and iron oxides are increasingly used in the food industry. Food technologists have especially paid attention to their ease of separation by magnetic fields and biocompatibility. Unfortunately, the consumption of increasing amounts of nanoparticles has raised concerns about their biotoxicity. Hence, knowledge about the applicability of iron nanoparticle-based materials in the food industry is needed not only among scientists, but also among all individuals who are involved in food production. The first part of this article describes typical methods of obtaining iron nanoparticles using chemical synthesis and so-called green chemistry. The second part of this article describes the use of iron nanoparticles and iron nanoparticle-based materials for active packaging, including the ability to eliminate oxygen and antimicrobial activity. Then, the possibilities of using the magnetic properties of iron nano-oxides for enzyme immobilization, food analysis, protein purification and mycotoxin and histamine removal from food are described. Other described applications of materials based on iron nanoparticles are the production of artificial enzymes, process control, food fortification and preserving food in a supercooled state. The third part of the article analyzes the biocompatibility of iron nanoparticles, their impact on the human body and the safety of their use.
Collapse
Affiliation(s)
- Dariusz Góral
- Department of Biological Bases of Food and Feed Technologies, Faculty of Production Engineering, University of Life Sciences in Lublin, 20-612 Lublin, Poland
| | - Andrzej Marczuk
- Department of Agricultural Forestry and Transport Machines, Faculty of Production Engineering, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Małgorzata Góral-Kowalczyk
- Department of Agricultural Forestry and Transport Machines, Faculty of Production Engineering, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Iryna Koval
- Department of Physical, Analytical and General Chemistry, Lviv Polytechnic National University, 79013 Lviv, Ukraine
| | - Dariusz Andrejko
- Department of Biological Bases of Food and Feed Technologies, Faculty of Production Engineering, University of Life Sciences in Lublin, 20-612 Lublin, Poland
| |
Collapse
|
2
|
Mehdaoui R, Agren S, Dhahri A, El Haskouri J, Beyou E, Lahcini M, Baouab MHV. New sonochemical magnetite nanoparticles functionalization approach of dithiooxamide–formaldehyde developed cellulose: From easy synthesis to recyclable 4‐nitrophenol reduction. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Rahma Mehdaoui
- Research Unit Materials and Organic Synthesis (UR17ES31), Preparatory Institute for Engineering Studies of Monastir University of Monastir Monastir Tunisia
| | - Soumaya Agren
- Research Unit Materials and Organic Synthesis (UR17ES31), Preparatory Institute for Engineering Studies of Monastir University of Monastir Monastir Tunisia
- Department of Inorganic Chemistry Instituto de Ciencias de Los Materiales de la Universitad de Valencia Paterna Spain
| | - Abdelwahab Dhahri
- Research Unit Materials and Organic Synthesis (UR17ES31), Preparatory Institute for Engineering Studies of Monastir University of Monastir Monastir Tunisia
| | - Jamal El Haskouri
- Department of Inorganic Chemistry Instituto de Ciencias de Los Materiales de la Universitad de Valencia Paterna Spain
| | - Emmanuel Beyou
- Department of Material's Engineering Université Lyon 1, UMR CNRS5223, Ingénierie des Matériaux Polymères Villeurbanne France
| | - Mohammed Lahcini
- Laboratory of organometallic and macromolecular chemistry‐composites Materials, Faculty of Sciences and Technologies Cadi Ayyad University Marrakech Morocco
- Department of Inorganic Chemistry Mohamed VI Polytechnic University Ben Guerir Morocco
| | - Mohamed Hassen V. Baouab
- Research Unit Materials and Organic Synthesis (UR17ES31), Preparatory Institute for Engineering Studies of Monastir University of Monastir Monastir Tunisia
| |
Collapse
|
3
|
Ali Dheyab M, Aziz AA, Jameel MS. Recent Advances in Inorganic Nanomaterials Synthesis Using Sonochemistry: A Comprehensive Review on Iron Oxide, Gold and Iron Oxide Coated Gold Nanoparticles. Molecules 2021; 26:2453. [PMID: 33922347 PMCID: PMC8122858 DOI: 10.3390/molecules26092453] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/06/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
Sonochemistry uses ultrasound to improve or modify chemical reactions. Sonochemistry occurs when the ultrasound causes chemical effects on the reaction system, such as the formation of free radicals, that intensify the reaction. Many studies have investigated the synthesis of nanomaterials by the sonochemical method, but there is still very limited information on the detailed characterization of these physicochemical and morphological nanoparticles. In this comprehensive review, recent advances in the sonochemical synthesis of nanomaterials based on iron oxide nanoparticles (Fe3O4NP), gold nanoparticles (AuNP) and iron oxide-coated gold nanoparticles (Fe3O4@Au NP) are discussed. These materials are the most studied materials for various applications, such as medical and commercial uses. This review will: (1) address the simple processing and observations on the principles of sonochemistry as a starting point for understanding the fundamental mechanisms, (2) summarize and review the most relevant publications and (3) describe the typical shape of the products provided in sonochemistry. All in all, this review's main outcome will provide a comprehensive overview of the available literature knowledge that promotes and encourages future sonochemical work.
Collapse
Affiliation(s)
- Mohammed Ali Dheyab
- Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia;
- Nano-Optoelectronics Research and Technology Lab (NORLab), School of Physics, Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia
| | - Azlan Abdul Aziz
- Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia;
- Nano-Optoelectronics Research and Technology Lab (NORLab), School of Physics, Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia
| | - Mahmood S. Jameel
- Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia;
- Nano-Optoelectronics Research and Technology Lab (NORLab), School of Physics, Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia
| |
Collapse
|
4
|
Almessiere MA, Slimani Y, Auwal İA, Shirsath SE, Manikandan A, Baykal A, Özçelik B, Ercan İ, Trukhanov SV, Vinnik DA, Trukhanov AV. Impact of Tm 3+ and Tb 3+ Rare Earth Cations Substitution on the Structure and Magnetic Parameters of Co-Ni Nanospinel Ferrite. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2384. [PMID: 33260444 PMCID: PMC7760020 DOI: 10.3390/nano10122384] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 01/31/2023]
Abstract
Tm-Tb co-substituted Co-Ni nanospinel ferrites (NSFs) as (Co0.5Ni0.5) [TmxTbxFe2-2x]O4 (x = 0.00-0.05) NSFs were attained via the ultrasound irradiation technique. The phase identification and morphologies of the NSFs were explored using X-rays diffraction (XRD), selected area electron diffraction (SAED), and transmission and scanning electronic microscopes (TEM and SEM). The magnetization measurements against the applied magnetic field (M-H) were made at 300 and 10 K with a vibrating sample magnetometer (VSM). The various prepared nanoparticles revealed a ferrimagnetic character at both 300 and 10 K. The saturation magnetization (Ms), the remanence (Mr), and magneton number (nB) were found to decrease upon the Tb-Tm substitution effect. On the other hand, the coercivity (Hc) was found to diminish with increasing x up to 0.03 and then begins to increase with further rising Tb-Tm content. The Hc values are in the range of 346.7-441.7 Oe at 300 K to 4044.4-5378.7 Oe at 10 K. The variations in magnetic parameters were described based on redistribution of cations, crystallites and/or grains size, canting effects, surface spins effects, super-exchange interaction strength, etc. The observed magnetic results indicated that the synthesized (Co0.5Ni0.5)[TmxTbxFe2-x]O4 NSFs could be considered as promising candidates to be used for room temperature magnetic applications and magnetic recording media.
Collapse
Affiliation(s)
- Munirah A. Almessiere
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (Y.S.); (İ.E.)
| | - Yassine Slimani
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (Y.S.); (İ.E.)
| | - İsmail A. Auwal
- Department of Chemistry, Sule Lamido University, P.M.B 048 Kafin Hausa, Jigawa State, Nigeria;
| | - Sagar E. Shirsath
- School of Materials Science and Engineering, University of New South Wales, Sydney 2052, Australia;
| | - Ayyar Manikandan
- Department of Chemistry, Bharath Institute of Higher Education and Research (BIHER), Bharat University, Chennai 600073, India;
| | - Abdulhadi Baykal
- Department of Nanomedicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Bekir Özçelik
- Department of Physics, Faculty of Science, Çukurova University, Adana 01330, Turkey;
| | - İsmail Ercan
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (Y.S.); (İ.E.)
| | - Sergei V. Trukhanov
- Laboratory of Magnetic Films Physics, SSPA “Scientific and Practical Materials Research Centre of NAS of Belarus”, 220072 Minsk, Belarus;
| | - Denis A. Vinnik
- Laboratory of Single Crystals Growth, Scientific and Educational Center “Nanotechnology”, South Ural State University, 454080 Chelyabinsk, Russia;
| | - Alex V. Trukhanov
- Laboratory of Magnetic Films Physics, SSPA “Scientific and Practical Materials Research Centre of NAS of Belarus”, 220072 Minsk, Belarus;
- Laboratory of Single Crystals Growth, Scientific and Educational Center “Nanotechnology”, South Ural State University, 454080 Chelyabinsk, Russia;
- Department of Electronic Materials Technology, Institute of New Materials and Nanotechnology, National University of Science and Technology MISiS, 119049 Moscow, Russia
| |
Collapse
|
5
|
Fuentes-García JA, Carvalho Alavarse A, Moreno Maldonado AC, Toro-Córdova A, Ibarra MR, Goya GF. Simple Sonochemical Method to Optimize the Heating Efficiency of Magnetic Nanoparticles for Magnetic Fluid Hyperthermia. ACS OMEGA 2020; 5:26357-26364. [PMID: 33110963 PMCID: PMC7581078 DOI: 10.1021/acsomega.0c02212] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/15/2020] [Indexed: 05/02/2023]
Abstract
We developed a fast, single-step sonochemical strategy for the green manufacturing of magnetite (Fe3O4) magnetic nanoparticles (MNPs), using iron sulfate (FeSO4) as the sole source of iron and sodium hydroxide (Na(OH)) as the reducing agent in an aqueous medium. The designed methodology reduces the environmental impact of toxic chemical compounds and minimizes the infrastructure requirements and reaction times down to minutes. The Na(OH) concentration has been varied to optimize the final size and magnetic properties of the MNPs and to minimize the amount of corrosive byproducts of the reaction. The change in the starting FeSO4 concentration (from 5.4 to 43.1 mM) changed the particle sizes from (20 ± 3) to (58 ± 8) nm. These magnetite MNPs are promising for biomedical applications due to their negative surface charge, good heating properties (≈324 ± 2 W/g), and low cytotoxic effects. These results indicate the potential of this controlled, easy, and rapid ultrasonic irradiation method to prepare nanomaterials with enhanced properties and good potential for use as magnetic hyperthermia agents.
Collapse
Affiliation(s)
- Jesús Antonio Fuentes-García
- Instituto
de Nanociencia de Aragón (INA) & Laboratory of Advanced
Microscopies (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
- Unidad
Profesional Interdisciplinaria en Ingeniería y Tecnologías
Avanzadas del Instituto Politécnico Nacional, UPIITA-IPN, Av. IPN
2580, Ticoman 07340, Mexico
| | - Alex Carvalho Alavarse
- Centro
de Ciências Naturais e Humanas, Universidade
Federal do ABC, Santo André, 09210-580 São Paulo, Brazil
| | - Ana Carolina Moreno Maldonado
- Instituto
de Nanociencia de Aragón (INA) & Laboratory of Advanced
Microscopies (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Alfonso Toro-Córdova
- Instituto
de Nanociencia de Aragón (INA) & Laboratory of Advanced
Microscopies (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Manuel Ricardo Ibarra
- Instituto
de Nanociencia de Aragón (INA) & Laboratory of Advanced
Microscopies (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
- Departamento
de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Gerardo Fabián Goya
- Instituto
de Nanociencia de Aragón (INA) & Laboratory of Advanced
Microscopies (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
- Departamento
de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
6
|
Gennari A, Führ AJ, Volpato G, Volken de Souza CF. Magnetic cellulose: Versatile support for enzyme immobilization - A review. Carbohydr Polym 2020; 246:116646. [DOI: 10.1016/j.carbpol.2020.116646] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 12/20/2022]
|
7
|
|
8
|
Preparation, surface functionalization and application of Fe 3O 4 magnetic nanoparticles. Adv Colloid Interface Sci 2020; 281:102165. [PMID: 32361408 DOI: 10.1016/j.cis.2020.102165] [Citation(s) in RCA: 215] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/18/2020] [Accepted: 04/18/2020] [Indexed: 11/23/2022]
Abstract
This paper reviews recent developments in the preparation, surface functionalization, and applications of Fe3O4 magnetic nanoparticles. Especially, it includes preparation methods (such as electrodeposition, polyol methods, etc.), organic materials (such as polymers, small molecules, surfactants, biomolecules, etc.) or inorganic materials (such as silica, metals, and metal oxidation/sulfide, functionalized coating of carbon surface, graphene, etc.) and its applications (such as magnetic separation, protein fixation, magnetic catalyst, environmental treatment, medical research, etc.). In the end, some existing challenges and possible future trends in the field were discussed.
Collapse
|
9
|
Noor Mohammadi N, Pajootan E, Bahrami H, Arami M. Magnetization of TiO2 nanofibrous spheres by one-step ultrasonic-assisted electrochemical technique. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.04.067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
10
|
Balachandramohan J, Anandan S, Sivasankar T. A simple approach for the sonochemical synthesis of Fe 3O 4-guargum nanocomposite and its catalytic reduction of p-nitroaniline. ULTRASONICS SONOCHEMISTRY 2018; 40:1-10. [PMID: 28946395 DOI: 10.1016/j.ultsonch.2017.06.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 06/16/2017] [Accepted: 06/16/2017] [Indexed: 05/18/2023]
Abstract
In this present study, a facile and green method to synthesize highly stable Fe3O4-guar gum nanocomposite using ultrasound was reported. Thermal gravimetric analysis, fourier transform infrared spectroscopy, X-ray diffractometry, field emission scanning electron microscopy, energy dispersive spectroscopy, high resolution transmission electron microscopy and X-ray photoelectron spectroscopy were used to characterize the crystal structure, size and morphology, elemental composition, metal-metal and metal-oxygen bonds of the synthesized nanocomposites. Fe3O4-guar gum nanocomposite with a size of ∼48nm was obtained as from TEM. The physicochemical characterization supports the feasibility of guar gum as an efficient stabilizing agent for the formation of nanocomposite; guar gum acts as a capping agent with a zeta potential value of -34.8 which was found to be beneficial for achieving lower particle size. Guar gum serves as a matrix for both reduction and stabilization of nanocomposite. The HR-TEM and XPS shows that Fe3O4 nanoparticles are encapsulated by the guar gum polymeric networks or Fe3O4-guar gum core-shell structure. The guar gum encapsulated magnetite nanocomposite has performed better in terms of catalytic activity for the liquid phase reduction of p-nitroaniline. The simple catalytic reduction of p-nitroaniline showed an efficiency of 47% and further exceptional improvement of up to 98% reduction within 60min with the addition of sodium borohydride was achieved. The sonochemical synthesis of Fe3O4-guar gum nanocomposite does not require stringent experimental conditions or any toxic agents, and thus, a straightforward, rapid, efficient and green method for the fabrication of highly active catalysts for treating environmental pollutants.
Collapse
Affiliation(s)
| | - Sambandam Anandan
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, Tamilnadu, India
| | | |
Collapse
|
11
|
Montiel Schneider MG, Lassalle VL. Magnetic iron oxide nanoparticles as novel and efficient tools for atherosclerosis diagnosis. Biomed Pharmacother 2017; 93:1098-1115. [PMID: 28738519 DOI: 10.1016/j.biopha.2017.07.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/14/2017] [Accepted: 07/05/2017] [Indexed: 01/09/2023] Open
Abstract
Cardiovascular complications derivate from atherosclerosis are the main cause of death in western world. An early detection of vulnerable atherosclerotic plaques is primordial for a better care of patients suffering the pathology. In this context nanotechnology has emerged as a promising tool to achieve this goal. Nanoparticles based on magnetic iron oxide (MNPs) have been extensively studied in cardiovascular diseases diagnosis, as well as in the treatment and diagnostic of other pathologies. The present review aims to describe and analyze the most current literature regarding to this topic, offering the level of detail required to reproduce the experimental tasks providing a critical input of the latest available reports. The current diagnostic features are presented and compared, highlighting their advantages and disadvantages. Information on novel technology intended to this purpose is also recompiled and in deep analyzed. Special emphasis is placed in magnetic nanotechnology, remarking the possibility to assess selective and multifunctional systems to the early detection of artherosclerotic pathologies. Finally, in view of the state of the art, the future perspectives about the trends on MNPs in artherosclerorsis diagnostic and treatment have also been addressed.
Collapse
Affiliation(s)
| | - Verónica Leticia Lassalle
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Av. Alem 1253, 8000 Bahía Blanca, Argentina.
| |
Collapse
|
12
|
|
13
|
Rosu C, Balamurugan S, Cueto R, Roy A, Russo PS. Polypeptide-Coated Silica Particles Dispersed in Lyotropic Liquid Crystals of the Same Polypeptide. J Phys Chem B 2016; 120:7275-88. [DOI: 10.1021/acs.jpcb.6b03863] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cornelia Rosu
- School of Materials Science and
Engineering and Georgia Tech Polymer
Network, GTPN and ‡School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Department of Chemistry
and Macromolecular Studies Group and ∥Center for Advanced
Microstructures and Devices, CAMD, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Sreelatha Balamurugan
- School of Materials Science and
Engineering and Georgia Tech Polymer
Network, GTPN and ‡School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Department of Chemistry
and Macromolecular Studies Group and ∥Center for Advanced
Microstructures and Devices, CAMD, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Rafael Cueto
- School of Materials Science and
Engineering and Georgia Tech Polymer
Network, GTPN and ‡School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Department of Chemistry
and Macromolecular Studies Group and ∥Center for Advanced
Microstructures and Devices, CAMD, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Amitava Roy
- School of Materials Science and
Engineering and Georgia Tech Polymer
Network, GTPN and ‡School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Department of Chemistry
and Macromolecular Studies Group and ∥Center for Advanced
Microstructures and Devices, CAMD, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Paul S. Russo
- School of Materials Science and
Engineering and Georgia Tech Polymer
Network, GTPN and ‡School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Department of Chemistry
and Macromolecular Studies Group and ∥Center for Advanced
Microstructures and Devices, CAMD, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
14
|
Mirabello G, Lenders JJM, Sommerdijk NAJM. Bioinspired synthesis of magnetite nanoparticles. Chem Soc Rev 2016; 45:5085-106. [PMID: 27385627 DOI: 10.1039/c6cs00432f] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Magnetite (Fe3O4) is a widespread magnetic iron oxide encountered in many biological and geological systems, and also in many technological applications. The magnetic properties of magnetite crystals depend strongly on the size and shape of its crystals. Hence, engineering magnetite nanoparticles with specific shapes and sizes allows tuning their properties to specific applications in a wide variety of fields, including catalysis, magnetic storage, targeted drug delivery, cancer diagnostics and magnetic resonance imaging (MRI). However, synthesis of magnetite with a specific size, shape and a narrow crystal size distribution is notoriously difficult without using high temperatures and non-aqueous media. Nevertheless, living organisms such as chitons and magnetotactic bacteria are able to form magnetite crystals with well controlled sizes and shapes under ambient conditions and in aqueous media. In these biomineralization processes the organisms use a twofold strategy to control magnetite formation: the mineral is formed from a poorly crystalline precursor phase, and nucleation and growth are controlled through the interaction of the mineral with biomolecular templates and additives. Taking inspiration from this biological strategy is a promising route to achieve control over the kinetics of magnetite crystallization under ambient conditions and in aqueous media. In this review we first summarize the main characteristics of magnetite and what is known about the mechanisms of magnetite biomineralization. We then describe the most common routes to synthesize magnetite and subsequently will introduce recent efforts in bioinspired magnetite synthesis. We describe how the use of poorly ordered, more soluble precursors such as ferrihydrite (FeH) or white rust (Fe(OH)2) can be employed to control the solution supersaturation, setting the conditions for continued growth. Further, we show how the use of various organic additives such as proteins, peptides and polymers allows for either the promotion or inhibition of magnetite nucleation and growth processes. At last we discuss how the formation of magnetite-based organic-inorganic hybrids leads to new functional nanomaterials.
Collapse
Affiliation(s)
- Giulia Mirabello
- Laboratory of Materials and Interface Chemistry & Centre for Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, PO box 513, 5600 MB Eindhoven, The Netherlands.
| | | | | |
Collapse
|
15
|
Rastgoo M, Montazer M, Malek RMA, Harifi T, Mahmoudi Rad M. Ultrasound mediation for one-pot sonosynthesis and deposition of magnetite nanoparticles on cotton/polyester fabric as a novel magnetic, photocatalytic, sonocatalytic, antibacterial and antifungal textile. ULTRASONICS SONOCHEMISTRY 2016; 31:257-266. [PMID: 26964948 DOI: 10.1016/j.ultsonch.2016.01.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 06/05/2023]
Abstract
A magnetic cotton/polyester fabric with photocatalytic, sonocatalytic, antibacterial and antifungal activities was successfully prepared through in-situ sonosynthesis method under ultrasound irradiation. The process involved the oxidation of Fe(2+) to Fe(3+) via hydroxyl radicals generated through bubbles collapse in ultrasonic bath. The treated samples were analyzed by X-ray diffraction, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy and vibrating sample magnetometry. Photocatalytic and sonocatalytic activities of magnetite treated fabrics were also evaluated toward Reactive Blue 2 decoloration under sunlight and ultrasound irradiation. Central composite design based on response surface methodology was applied to study the influence of iron precursor, pH and surfactant concentration to obtain appropriate amount for the best magnetism. Findings suggested the potential of one-pot sonochemical method to synthesize and fabricate Fe3O4 nanoparticles on cotton/polyester fabric possessing appropriate saturation magnetization, 95% antibacterial efficiency against Staphylococcus aureus and 99% antifungal effect against Candida albicans, 87% and 70% dye photocatalytic and sonocatalytic decoloration along with enhanced mechanical properties using only one iron rich precursor at low temperature.
Collapse
Affiliation(s)
- Madine Rastgoo
- Department of Textile Engineering, Functional Fibrous Structures & Environmental Enhancement (FFSEE), Amirkabir University of Technology, Tehran, Iran
| | - Majid Montazer
- Department of Textile Engineering, Functional Fibrous Structures & Environmental Enhancement (FFSEE), Amirkabir University of Technology, Tehran, Iran.
| | - Reza M A Malek
- Department of Textile Engineering, Functional Fibrous Structures & Environmental Enhancement (FFSEE), Amirkabir University of Technology, Tehran, Iran
| | - Tina Harifi
- Department of Textile Engineering, Functional Fibrous Structures & Environmental Enhancement (FFSEE), Amirkabir University of Technology, Tehran, Iran
| | - Mahnaz Mahmoudi Rad
- Skin Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Palomino RL, Bolarín Miró AM, Tenorio FN, Sánchez De Jesús F, Cortés Escobedo CA, Ammar S. Sonochemical assisted synthesis of SrFe12O19 nanoparticles. ULTRASONICS SONOCHEMISTRY 2016; 29:470-5. [PMID: 26548841 DOI: 10.1016/j.ultsonch.2015.10.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/25/2015] [Accepted: 10/30/2015] [Indexed: 05/27/2023]
Abstract
We present the synthesis of M-type strontium hexaferrite by sonochemistry and annealing. The effects of the sonication time and thermal energy on the crystal structure and magnetic properties of the obtained powders are presented. Strontium hexagonal ferrite (SrFe12O19) was successfully prepared by the ultrasonic cavitation (sonochemistry) of a complexed polyol solution of metallic acetates and diethylene glycol. The obtained materials were subsequently annealed at temperatures from 300 to 900 °C. X-ray diffraction analysis shows that the sonochemical process yields an amorphous phase containing Fe(3+), Fe(2+) and Sr(2+) ions. This amorphous phase transforms into an intermediate phase of maghemite (γ-Fe2O3) at 300 °C. At 500 °C, the intermediate species is converted to hematite (α-Fe2O3) by a topotactic transition. The final product of strontium hexaferrite (SrFe12O19) is generated at 800 °C. The obtained strontium hexaferrite shows a magnetization of 62.3 emu/g, which is consistent with pure hexaferrite obtained by other methods, and a coercivity of 6.25 kOe, which is higher than expected for this hexaferrite. The powder morphology is composed of aggregates of rounded particles with an average particle size of 60 nm.
Collapse
Affiliation(s)
- R L Palomino
- Área Académica de Ciencias de la Tierra y Materiales, UAEH, Carr. Pachuca-Tulancingo Km. 4.5, C.P. 42184 Pachuca, Hidalgo, Mexico
| | - A M Bolarín Miró
- Área Académica de Ciencias de la Tierra y Materiales, UAEH, Carr. Pachuca-Tulancingo Km. 4.5, C.P. 42184 Pachuca, Hidalgo, Mexico
| | - F N Tenorio
- Área Académica de Ciencias de la Tierra y Materiales, UAEH, Carr. Pachuca-Tulancingo Km. 4.5, C.P. 42184 Pachuca, Hidalgo, Mexico
| | - F Sánchez De Jesús
- Área Académica de Ciencias de la Tierra y Materiales, UAEH, Carr. Pachuca-Tulancingo Km. 4.5, C.P. 42184 Pachuca, Hidalgo, Mexico.
| | - C A Cortés Escobedo
- Centro de Investigación e Innovación Tecnológica del Instituto Politécnico Nacional, Cerrada Cecati s/n Col Sta. Catarina, C.P. 02250 Azcapotzalco, D.F., Mexico
| | - S Ammar
- ITODYS, UMR-CNRS 7086, Université de Paris-Diderot, 75205 Cedex 13 Paris, France
| |
Collapse
|
17
|
Dolores R, Raquel S, Adianez GL. Sonochemical synthesis of iron oxide nanoparticles loaded with folate and cisplatin: effect of ultrasonic frequency. ULTRASONICS SONOCHEMISTRY 2015; 23:391-8. [PMID: 25218767 DOI: 10.1016/j.ultsonch.2014.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 07/02/2014] [Accepted: 08/11/2014] [Indexed: 05/18/2023]
Abstract
Simple preparative methods were used to sonosynthesize different magnetic iron oxide nanoparticles (FeNPs) via co-precipitation of aqueous solutions of ferrous salts in a basic aqueous solution of ethylene glycol (EG). Sonosynthesis was achieved using different frequencies of ultrasound: 581, 861, and 1141 kHz under the same acoustic power. The hydroxyl radicals generated by cavitational collapse, induced by the ultrasonic field, led to the oxidation of Fe(2+) to Fe(3+). The rate of sonochemical Fe(3+) production decreased linearly with the frequency. Three different systems of FeNPs were synthesized, all with the same core but a different shell: FeNPs capped with EG (EG/FeNPs), FeNPs capped with EG and folate (Fol/EG/FeNPs), and FeNPs capped with EG, folate and cisplatin (Pt/EG/FeNPs). The nanoparticles were characterized by transmission electron microscopy, fluorescence and Raman microspectroscopy, total-reflection X-ray fluorescence, and elemental analysis (C, N, and H). The magnetization hysteresis loops of these samples were also measured. The obtained values of saturation magnetization were within the interval between 60 and 93 Am(2)kg(-1). From the analysis of these results, it was found that the ultrasonic frequency did not affect the nanoparticle size (diameter of 21-31 nm). In contrast, the frequency affected the amount of drug loaded, as cisplatin loading increased proportionately with ultrasound frequency.
Collapse
Affiliation(s)
- Reyman Dolores
- Departamento de Química Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Serrano Raquel
- Departamento de Química Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Garcia-Leis Adianez
- Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, 28006 Madrid, Spain
| |
Collapse
|
18
|
|
19
|
Canfarotta F, Piletsky SA. Engineered magnetic nanoparticles for biomedical applications. Adv Healthc Mater 2014; 3:160-75. [PMID: 24497448 DOI: 10.1002/adhm.201300141] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Indexed: 12/11/2022]
Abstract
In the past decades, magnetic nanoparticles (MNPs) have been used in wide range of diverse applications, ranging from separation to sensing. Here, synthesis and applications of functionalized MNPs in the biomedical field are discussed, in particular in drug delivery, imaging, and cancer therapy, highlighting also recent progresses in the development of multifunctional and stimuli-responsive MNPs. The role of their size, composition, and surface functionalization is analyzed, together with their biocompatibility issues.
Collapse
|
20
|
Mukherjee J, Malhotra D, Gautam S, Gupta MN. Green synthesis of nanocomposites consisting of silver and protease alpha chymotrypsin. ULTRASONICS SONOCHEMISTRY 2013; 20:1054-1061. [PMID: 23411166 DOI: 10.1016/j.ultsonch.2013.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/11/2013] [Accepted: 01/17/2013] [Indexed: 06/01/2023]
Abstract
The synergy of ultrasonication and the exposure to light radiation was found to be necessary in the formation of nanocomposites of silver and a protease alpha chymotrypsin. The reaction was carried out in aqueous medium and the process took just less than 35 min. Ultrasonication alone formed very negligible number of nanoparticles of <100 nm size whereas light alone produced enough number but the size of the particles was >100 nm. The effects of pH (in the range of 3-5, 9-10), ultrasonication time periods (0-30 min), ultrasonication intensity (33-83 W cm(-2)), energy of light radiation (short UV, long UV and Fluorescent light) and time period of exposure (5-60 min) to different light radiations were studied. The formation of nanocomposites under these effects was followed by surface plasmon resonance (SPR) spectra, dynamic light scattering (DLS), transmission electron microscopy (TEM). Ag-chymotrypsin nanocomposites of sizes ranging from 13 to 72 nm were formed using the synergy of ultrasonication and exposure to short UV radiation. Results show that ultrasonication promoted nuclei formation, growth and reduction of polydispersity by Ostwald ripening.
Collapse
Affiliation(s)
- Joyeeta Mukherjee
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | | | | | | |
Collapse
|
21
|
An experimental investigation of aqueous-phase synthesis of magnetite nanoparticles via mechanochemical reduction of goethite. ADV POWDER TECHNOL 2013. [DOI: 10.1016/j.apt.2012.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Malhotra D, Mukherjee J, Gupta MN. Post-ultrasonic irradiation time is important in initiating citrate-coated α-Fe2O3 nanorod formation. RSC Adv 2013. [DOI: 10.1039/c3ra41593g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|