1
|
Yoo J, Ahn J, Ha H, Claud Jonas J, Kim C, Ham Kim H. Single-Beam Acoustic Tweezers for Cell Biology: Molecular to In Vivo Level. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:1269-1288. [PMID: 39250365 DOI: 10.1109/tuffc.2024.3456083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Acoustic tweezers have attracted attention in various fields of cell biology, including in vitro single-cell and intercellular mechanics. Compared with other tweezing technologies such as optical and magnetic tweezers, acoustic tweezers possess stronger forces and are safer for use in biological systems. However, due to the limited spatial resolution or limited size of target objects, acoustic tweezers have primarily been used to manipulate cells in vitro. To extend the advantages of acoustic tweezers to other levels (e.g., molecular and in vivo levels), researchers have recently developed various types of acoustic tweezers such as single-beam acoustic tweezers (SBATs), surface acoustic wave (SAW) tweezers, and acoustic-streaming tweezers. Among these, SBATs utilize a single-focused beam, making the transducer and system simple, noninvasive, and capable of producing strong forces compared with other types of tweezers. Depending on the acoustic beam pattern, SBATs can be classified into Rayleigh regime, Mie regime, and acoustic vortex with different trapping dynamics and application levels. In this review, we provide an overview of the principles and configuration of each type of SBAT, their applications ranging from molecular to in vivo studies, and their limitations and prospects. Thus, this review demonstrates the significance and potential of SBAT technology in biophysics and biomedical engineering.
Collapse
|
2
|
Song M, Sapozhnikov OA, Khokhlova VA, Son H, Totten S, Wang YN, Khokhlova TD. Dynamic mode decomposition based Doppler monitoring of de novo cavitation induced by pulsed HIFU: an in vivo feasibility study. Sci Rep 2024; 14:22295. [PMID: 39333771 PMCID: PMC11436727 DOI: 10.1038/s41598-024-73787-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Pulsed high-intensity focused ultrasound (pHIFU) has the capability to induce de novo cavitation bubbles, offering potential applications for enhancing drug delivery and modulating tissue microenvironments. However, imaging and monitoring these cavitation bubbles during the treatment presents a challenge due to their transient nature immediately following pHIFU pulses. A planewave bubble Doppler technique demonstrated its potential, yet this Doppler technique used conventional clutter filter that was originally designed for blood flow imaging. Our recent study introduced a new approach employing dynamic mode decomposition (DMD) to address this in an ex vivo setting. This study demonstrates the feasibility of the application of DMD for in vivo Doppler monitoring of the cavitation bubbles in porcine liver and identifies the candidate monitoring metrics for pHIFU treatment. We propose a fully automated bubble mode identification method using k-means clustering and an image contrast-based algorithm, leading to the generation of DMD-filtered bubble images and corresponding Doppler power maps after each HIFU pulse. These power Doppler maps are then correlated with the extent of tissue damage determined by histological analysis. The results indicate that DMD-enhanced power Doppler map can effectively visualize the bubble distribution with high contrast, and the Doppler power level correlates with the severity of tissue damage by cavitation. Further, the temporal characteristics of the bubble modes, specifically the decay rates derived from DMD, provide information of the bubble dissolution rate, which are correlated with tissue damage level-slower rates imply more severe tissue damage.
Collapse
Affiliation(s)
- Minho Song
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA.
- Department of Radiology, Stanford University, Stanford, USA.
| | - Oleg A Sapozhnikov
- Applied Physics Laboratory, Center for Industrial and Medical Ultrasound, University of Washington, Seattle, WA, 98195, USA
- Physics Faculty, Moscow State University, Moscow, 119991, Russia
| | - Vera A Khokhlova
- Applied Physics Laboratory, Center for Industrial and Medical Ultrasound, University of Washington, Seattle, WA, 98195, USA
- Physics Faculty, Moscow State University, Moscow, 119991, Russia
| | - Helena Son
- Division of Gastroenterology, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Stephanie Totten
- Applied Physics Laboratory, Center for Industrial and Medical Ultrasound, University of Washington, Seattle, WA, 98195, USA
| | - Yak-Nam Wang
- Applied Physics Laboratory, Center for Industrial and Medical Ultrasound, University of Washington, Seattle, WA, 98195, USA
| | - Tatiana D Khokhlova
- Applied Physics Laboratory, Center for Industrial and Medical Ultrasound, University of Washington, Seattle, WA, 98195, USA
- Division of Gastroenterology, University of Washington School of Medicine, Seattle, WA, 98195, USA
| |
Collapse
|
3
|
Heo J, Park JH, Kim HJ, Pahk K, Pahk KJ. Sonothrombolysis with an acoustic net-assisted boiling histotripsy: A proof-of-concept study. ULTRASONICS SONOCHEMISTRY 2023; 96:106435. [PMID: 37178667 DOI: 10.1016/j.ultsonch.2023.106435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Whilst sonothrombolysis is a promising and noninvasive ultrasound technique for treating blood clots, bleeding caused by thrombolytic agents used for dissolving clots and potential obstruction of blood flow by detached clots (i.e., embolus) are the major limitations of the current approach. In the present study, a new sonothrombolysis method is proposed for treating embolus without the use of thrombolytic drugs. Our proposed method involves (a) generating a spatially localised acoustic radiation force in a blood vessel against the blood flow to trap moving blood clots (i.e., generation of an acoustic net), (b) producing acoustic cavitation to mechanically destroy the trapped embolus, and (c) acoustically monitoring the trapping and mechanical fractionation processes. Three different ultrasound transducers with different purposes were employed in the proposed method: (1) 1-MHz dual focused ultrasound (dFUS) transducers for capturing moving blood clots, (2) a 2-MHz High Intensity Focused Ultrasound (HIFU) source for fractionating blood clots and (3) a passive acoustic emission detector with broad bandwidth (10 kHz to 20 MHz) for receiving and analysing acoustic waves scattered from a trapped embolus and acoustic cavitation. To demonstrate the feasibility of the proposed method, in vitro experiments with an optically transparent blood vessel-mimicking phantom filled with a blood mimicking fluid and a blood clot (1.2 to 5 mm in diameter) were performed with varying the dFUS and HIFU exposure conditions under various flow conditions (from 1.77 to 6.19 cm/s). A high-speed camera was used to observe the production of acoustic fields, acoustic cavitation formation and blood clot fragmentation within a blood vessel by the proposed method. Numerical simulations of acoustic and temperature fields generated under a given exposure condition were also conducted to further interpret experimental results on the proposed sonothrombolysis. Our results clearly showed that fringe pattern-like acoustic pressure fields (fringe width of 1 mm) produced in a blood vessel by the dFUS captured an embolus (1.2 to 5 mm in diameter) at the flow velocity up to 6.19 cm/s. This was likely to be due to the greater magnitude of the dFUS-induced acoustic radiation force exerted on an embolus in the opposite direction to the flow in a blood vessel than that of the drag force produced by the flow. The acoustically trapped embolus was then mechanically destructed into small pieces of debris (18 to 60 μm sized residual fragments) by the HIFU-induced strong cavitation without damaging the blood vessel walls. We also observed that acoustic emissions emitted from a blood clot captured by the dFUS and cavitation produced by the HIFU were clearly distinguished in the frequency domain. Taken together, these results can suggest that our proposed sonothrombolysis method could be used as a promising tool for treating thrombosis and embolism through capturing and destroying blood clots effectively.
Collapse
Affiliation(s)
- Jeongmin Heo
- Bionics Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Jun Hong Park
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Hyo Jun Kim
- LAAS-CNRS, University of Toulouse, CNRS, Toulouse, France
| | - Kisoo Pahk
- Department of Nuclear Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Ki Joo Pahk
- Department of Biomedical Engineering, Kyung Hee University, Yongin 17104, Republic of Korea.
| |
Collapse
|
4
|
Liang M, Liu J, Guo C, Zong Y, Wan M. Velocity field estimation in transcranial small vessel using super-resolution ultrasound imaging velocimetry. ULTRASONICS 2023; 132:107016. [PMID: 37094521 DOI: 10.1016/j.ultras.2023.107016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
Based on the diameter and position information of small vessels obtained by transcranial super-resolution imaging using 3 MHz low-frequency chirp plane waves, a Gaussian-like non-linear compression was adopted to compress the blood flow signals in spatiotemporal filtering (STF) data to a precise region, and then estimate the blood flow velocity field inside the region over the adjacent time intervals using ultrasound imaging velocimetry (UIV). Imaging parameters, such as the mechanical index (MI), frame rate, and microbubble (MB) concentration, are critical during the estimation of velocity fields over a short time at high MB contrast agent concentrations. These were optimized through experiments and algorithms, in which dividing the connected domain was proposed to calculate MB cluster spot centroid spacing (SCS) and the spot-to-flow area ratio (SFAR) to determine the suitable MB concentration. The results of the in vitro experiments showed that the estimation of the small vessel flow velocity field was consistent with the theoretical results; the velocity field resolution for vessels with diameters of 0.5 mm and 0.3 mm was 36 μm and 21 μm, and the error between the mean velocity and the theoretical value was 0.7 % and 0.67 %, respectively.
Collapse
Affiliation(s)
- Meiling Liang
- College of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jiacheng Liu
- College of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Chao Guo
- College of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yujin Zong
- College of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China.
| | - Mingxi Wan
- College of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
5
|
Guo S, Ya Z, Wu P, Zhang L, Wan M. Enhanced Sonothrombolysis Induced by High-Intensity Focused Acoustic Vortex. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:1907-1917. [PMID: 35764456 DOI: 10.1016/j.ultrasmedbio.2022.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/30/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
High-intensity focused ultrasound (HIFU) thrombolysis provides a targeted and non-invasive therapy for thrombosis-related diseases. Rapid thrombolysis and restoration of blood flow are vital to reduce the disability and death rate. The objective of this study was to explore the feasibility of using a high-intensity focused acoustic vortex (HIFAV) to enhance sonothrombolysis. The in vitro clots were treated with HIFU with a peak negative pressure (PNP) of 2.86 MPa (HIFU A) or 3.27 MPa (HIFU B) or HIFAV with a PNP of 2.14 MPa. The results revealed that HIFAV thrombolysis could achieve a significantly higher efficiency than HIFU (HIFAV: 65.4%, HIFU A: 24.1%, HIFU B: 31.6%, p < 0.01), even at a lower intensity. The average size of the debris particles generated in HIFAV thrombolysis was similar to that in HIFU. Additionally, the cavitation activities were found to be more intense in HIFAV thrombolysis. Although the efficiency of HIFAV thrombolysis was higher when the pulse repetition frequency increased from 100 to 500 Hz (41.4% vs. 65.4%, p < 0.05), it decreased when the PRF reached 1000 Hz (29.9%). Lastly, it was found that increasing the duty cycle from 5% to 15% led to a higher efficiency in HIFAV thrombolysis (40.3% vs. 75.2%, p < 0.001). This study illustrated that HIFAV provided enhanced thrombolysis and that its efficiency could be further increased by optimizing the ultrasound parameters.
Collapse
Affiliation(s)
- Shifang Guo
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Zhen Ya
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Pengying Wu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Lei Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Mingxi Wan
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
6
|
Wermer A, Kerwin J, Welsh K, Mejia-Alvarez R, Tartis M, Willis A. Materials Characterization of Cranial Simulants for Blast-Induced Traumatic Brain Injury. Mil Med 2020; 185:205-213. [PMID: 32074306 DOI: 10.1093/milmed/usz228] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 01/01/2019] [Accepted: 01/01/2019] [Indexed: 01/28/2023] Open
Abstract
INTRODUCTION The mechanical response of brain tissue to high-speed forces in the blast and blunt traumatic brain injury is poorly understood. Object-to-object variation and interspecies differences are current limitations in animal and cadaver studies conducted to study damage mechanisms. Biofidelic and transparent tissue simulants allow the use of high-speed optical diagnostics during a blast event, making it possible to observe deformations and damage patterns for comparison to observed injuries seen post-mortem in traumatic brain injury victims. METHODS Material properties of several tissue simulants were quantified using standard mechanical characterization techniques, that is, shear rheometric, tensile, and compressive testing. RESULTS Polyacrylamide simulants exhibited the best optical and mechanical property matching with the fewest trade-offs in the design of a cranial test object. Polyacrylamide gels yielded densities of ~1.04 g/cc and shear moduli ranging 1.3-14.55 kPa, allowing gray and white matter simulant tuning to a 30-35% difference in shear for biofidelity. CONCLUSIONS These materials are intended for use as layered cranial phantoms in a shock tube and open field blasts, with focus on observing phenomena occurring at the interfaces of adjacent tissue simulant types or material-fluid boundaries. Mechanistic findings from these studies may be used to inform the design of protective gear to mitigate blast injuries.
Collapse
Affiliation(s)
- Anna Wermer
- Department of Chemical Engineering, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801
| | - Joseph Kerwin
- Department of Mechanical Engineering, Michigan State University, 1449 Engineering Research Ct. A117, East Lansing, MI 48824
| | - Kelsea Welsh
- Department of Chemical Engineering, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801
| | - Ricardo Mejia-Alvarez
- Department of Mechanical Engineering, Michigan State University, 1449 Engineering Research Ct. A117, East Lansing, MI 48824
| | - Michaelann Tartis
- Department of Chemical Engineering, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801
| | - Adam Willis
- Department of Neurology, San Antonio Military Medical Center, 3551 Roger Brooke Dr, San Antonio, TX 78219
| |
Collapse
|
7
|
Zhang Q, Jin H, Chen L, Chen Q, He Y, Yang Y, Ma S, Xiao S, Xi F, Luo Q, Liu J. Effect of Ultrasound Combined With Microbubble Therapy on Interstitial Fluid Pressure and VX2 Tumor Structure in Rabbit. Front Pharmacol 2019; 10:716. [PMID: 31293427 PMCID: PMC6606793 DOI: 10.3389/fphar.2019.00716] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/05/2019] [Indexed: 11/13/2022] Open
Abstract
Interstitial fluid pressure (IFP) in tumor tissue is significantly higher than that in normal tissue, which reduces the effectiveness of therapeutic drugs. There are several methods to decrease the IFP, such as normalizing blood vessel, decreasing hyaluronic acid and collagen fiber content in the extracellular matrix (ECM), and recovering lymphatic function. Reducing tumor IFP might be developed as a novel approach in cancer therapy. In this study, we aimed to elucidate the relationship between ultrasound combined with microbubble therapy and IFP, and the associated mechanism. VX2 tumor in rabbit was treated with ultrasound combined with microbubbles at different intensities. The IFP was measured using the wick-in-needle (WIN) method. The collagen and reticular fibers were stained by Masson and Gordon-Sweets, respectively. The results showed that low-frequency non-focus ultrasound combined with microbubbles therapy influences the IFP in tumor tissues; low-frequency non-focus ultrasound with low pressure increased the IFP, whereas middle-high pressure decreased the IFP. The results showed that the structure and content of collagen and reticular fibers in tumor tissue were rarely influenced by the treatment. Our study provides a novel approach of reduced IFP antitumor therapy.
Collapse
Affiliation(s)
- Qianyun Zhang
- Department of Medical Ultrasound, Guangzhou First People's Hospital, Guangzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China.,Department of Medical Ultrasound, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Hai Jin
- Department of Medical Ultrasound, Guangzhou First People's Hospital, Guangzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China
| | - Liping Chen
- Department of Medical Ultrasound, Guangzhou First People's Hospital, Guangzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China
| | - Qiaoli Chen
- Department of Medical Ultrasound, Guangzhou First People's Hospital, Guangzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China
| | - Yan He
- Department of Medical Ultrasound, Guangzhou First People's Hospital, Guangzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China
| | - Yuwen Yang
- Department of Medical Ultrasound, Guangzhou First People's Hospital, Guangzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China
| | - Suihong Ma
- Department of Medical Ultrasound, Guangzhou First People's Hospital, Guangzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China
| | - Shuyi Xiao
- Department of Medical Ultrasound, Guangzhou First People's Hospital, Guangzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China
| | - Fen Xi
- Department of Medical Ultrasound, Guangzhou First People's Hospital, Guangzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China
| | - Qiong Luo
- Department of Medical Ultrasound, Guangzhou First People's Hospital, Guangzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China
| | - Jianhua Liu
- Department of Medical Ultrasound, Guangzhou First People's Hospital, Guangzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
8
|
Ultrasound Combined With Microbubbles Increase the Delivery of Doxorubicin by Reducing the Interstitial Fluid Pressure. Ultrasound Q 2019; 35:103-109. [DOI: 10.1097/ruq.0000000000000381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Guo S, Guo X, Wang X, Zhou D, Du X, Han M, Zong Y, Wan M. Reduced clot debris size in sonothrombolysis assisted with phase-change nanodroplets. ULTRASONICS SONOCHEMISTRY 2019; 54:183-191. [PMID: 30773494 DOI: 10.1016/j.ultsonch.2019.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 01/10/2019] [Accepted: 02/01/2019] [Indexed: 05/06/2023]
Abstract
Thrombosis-related diseases such as stroke, deep vein thrombosis, and others represent leading causes of mortality and morbidity around the globe. Current clinical thrombolytic treatments are limited by either slow reperfusion (drugs) or invasiveness (catheters) and carry significant risks of bleeding. High intensity focused ultrasound (HIFU) has been demonstrated to be a non-pharmacological, non-invasive but yet efficient thrombolytic approach. However, clinical concerns still remain related to the clot debris produced via fragmentation of the original clot potentially being too large and hence occluding downstream vessels, causing hazardous emboli. In this study, we introduced phase-change nanodroplets into pulse HIFU-mediated thrombolysis. The size distribution of the clot debris generated in sonothrombolysis with and without nanodroplets was compared. The effects of nanodroplet concentration, acoustic power and pulse repetition frequency on the clot debris size were further evaluated. It was found that the volume percentage of the large clot debris particles (above 10 μm in diameter) was smaller and the average diameter of the clot debris reduced significantly in nanodroplets-assisted sonothrombolysis. The stable cavitation dose was higher in sonothrombolysis without nanodroplets but the inertial cavitation dose showed no significant differences under two conditions. Besides, the average diameter decreased with increasing nanodroplet concentration and acoustic power when calculated by number percentage, but was found to be similar when calculated by volume percentage. In addition, the number percentage of the clot debris above 30 μm was demonstrated to be larger upon applying a higher pulse repetition frequency. Taken in concert, this study demonstrated that the introduction of phase-change nanodroplets could provide a safer sonothrombolysis method by reducing the overall clot debris size.
Collapse
Affiliation(s)
- Shifang Guo
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Xuyan Guo
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Xin Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Di Zhou
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Xuan Du
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Meng Han
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Yujin Zong
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China.
| | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China.
| |
Collapse
|
10
|
Su Z, Xu T, Wang Y, Guo X, Tu J, Zhang D, Kong X, Sheng Y, Sun W. Low‑intensity pulsed ultrasound promotes apoptosis and inhibits angiogenesis via p38 signaling‑mediated endoplasmic reticulum stress in human endothelial cells. Mol Med Rep 2019; 19:4645-4654. [PMID: 30957188 PMCID: PMC6522835 DOI: 10.3892/mmr.2019.10136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 03/26/2019] [Indexed: 12/20/2022] Open
Abstract
Aberrant increase in angiogenesis contributes to the progression of malignant solid tumors. An alternative anti-angiogenesis therapy is critical for cancer, since the current anti-angiogenesis drugs lack specificity for tumor cells. In the present study, the effects and mechanisms of low-intensity pulsed ultrasound (LIPUS) on human umbilical vein endothelial cells (HUVECs) and human microvascular endothelial cells (HMECs) were investigated, and the therapeutic potential of this technology was assessed. HUVECs and HMECs were treated with LIPUS (0.5 MHz; 210 mW/cm2) for 1 min and cultured for 24 h. Flow cytometry and Cell Counting Kit-8 assays demonstrated that LIPUS treatment at a dose of 210 mW/cm2 promoted apoptosis and decreased the viability in HUVECs and HMECs. Real-time cell analysis also revealed that LIPUS did not affect the proliferation or migration of HUVECs. An endothelial cell tube formation assay indicated that LIPUS treatment inhibited the angiogenic ability of HUVECs and HMECs. Furthermore, LIPUS increased the protein levels of the apoptosis-associated cleaved Caspase-3 and decreased the B-cell lymphoma-2 levels. LIPUS increased the phosphorylation of p38 mitogen-activated protein kinase (MAPK), and the levels of endoplasmic reticulum (ER) stress-associated markers, including activating transcription factor-4 (ATF-4) and phosphorylated eukaryotic initiation factor 2α (eIF2α). The p38 inhibitor SB203580 reversed the pro-apoptotic and anti-angiogenic effects of LIPUS in cells. Finally, inhibition of p38 decreased the LIPUS-induced elevation of p-eIF2α and ATF-4 levels. Taken together, these results suggested that LIPUS promoted apoptosis and inhibited angiogenesis in human endothelial cells via the activation of p38 MAPK-mediated ER stress signaling.
Collapse
Affiliation(s)
- Zhongping Su
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Tianhua Xu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yaqing Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xiasheng Guo
- Key Laboratory of Modern Acoustics, Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Juan Tu
- Key Laboratory of Modern Acoustics, Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Dong Zhang
- Key Laboratory of Modern Acoustics, Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Xiangqing Kong
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yanhui Sheng
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wei Sun
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
11
|
Chang N, Lu S, Qin D, Xu T, Han M, Wang S, Wan M. Efficient and controllable thermal ablation induced by short-pulsed HIFU sequence assisted with perfluorohexane nanodroplets. ULTRASONICS SONOCHEMISTRY 2018; 45:57-64. [PMID: 29705325 DOI: 10.1016/j.ultsonch.2018.02.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/05/2018] [Accepted: 02/19/2018] [Indexed: 06/08/2023]
Abstract
A HIFU sequence with extremely short pulse duration and high pulse repetition frequency can achieve thermal ablation at a low acoustic power using inertial cavitation. Because of its cavitation-dependent property, the therapeutic outcome is unreliable when the treatment zone lacks cavitation nuclei. To overcome this intrinsic limitation, we introduced perfluorocarbon nanodroplets as extra cavitation nuclei into short-pulsed HIFU-mediated thermal ablation. Two types of nanodroplets were used with perfluorohexane (PFH) as the core material coated with bovine serum albumin (BSA) or an anionic fluorosurfactant (FS) to demonstrate the feasibility of this study. The thermal ablation process was recorded by high-speed photography. The inertial cavitation activity during the ablation was revealed by sonoluminescence (SL). The high-speed photography results show that the thermal ablation volume increased by ∼643% and 596% with BSA-PFH and FS-PFH, respectively, than the short-pulsed HIFU alone at an acoustic power of 19.5 W. Using nanodroplets, much larger ablation volumes were created even at a much lower acoustic power. Meanwhile, the treatment time for ablating a desired volume significantly reduced in the presence of nanodroplets. Moreover, by adjusting the treatment time, lesion migration towards the HIFU transducer could also be avoided. The SL results show that the thermal lesion shape was significantly dependent on the inertial cavitation in this short-pulsed HIFU-mediated thermal ablation. The inertial cavitation activity became more predictable by using nanodroplets. Therefore, the introduction of PFH nanodroplets as extra cavitation nuclei made the short-pulsed HIFU thermal ablation more efficient by increasing the ablation volume and speed, and more controllable by reducing the acoustic power and preventing lesion migration.
Collapse
Affiliation(s)
- Nan Chang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Shukuan Lu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Dui Qin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Tianqi Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Meng Han
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Supin Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|
12
|
Shen ZY, Jiang YM, Zhou YF, Si HF, Wang L. High-speed photographic observation of the sonication of a rabbit carotid artery filled with microbubbles by 20-kHz low frequency ultrasound. ULTRASONICS SONOCHEMISTRY 2018; 40:980-987. [PMID: 28946510 DOI: 10.1016/j.ultsonch.2017.09.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/29/2017] [Accepted: 09/08/2017] [Indexed: 06/07/2023]
Abstract
The aim of this study is to assess the physical damage of cavitation effects induced by low frequency ultrasound and microbubbles (MBs) to an in vitro vessel. A rabbit carotid artery filled with SonoVue MBs and methylene blue was irradiated with 20-kHz ultrasound, and the results were recorded by high-speed photography at 3000 frames per second. The carotid artery filled with MBs experienced a slight tremor during ultrasonication. Six intermittent blue flow events occurred in two places on the artery wall during the 5-s process. The duration of each leakage event was 90-360ms with an average of 200ms. Hematoxylin-eosin (H-E) staining demonstrated the separation of the carotid artery elastic membrane, local blood vessel wall defects and hole formation, and the surface of the ruptured area was rough and irregular. Another carotid artery was filled with a 0.9% NaCl solution and methylene blue as a control and irradiated with 20-kHz ultrasound. No blue liquid flow was seen, and no holes in the vessel were observed. H-E staining revealed intact vascular endothelial cells and smooth muscles with no vascular wall defects. Low-frequency ultrasound combined with MBs can cause a vessel to rupture and holes to form in a short time. High-speed photography is useful for observing transient changes caused by the effects of ultrasound cavitation on an in vitro vessel.
Collapse
Affiliation(s)
- Zhi Yong Shen
- Department of Radiology, Nantong University affiliated Nantong Tumor Hospital, 226361, PR China.
| | - Ying Mei Jiang
- Nantong University Affiliated Laboratory Animal Center, 226001, PR China
| | - Yu Feng Zhou
- Department of Radiology, Nantong University affiliated Nantong Tumor Hospital, 226361, PR China
| | - Hai Feng Si
- Department of Radiology, Nantong University affiliated Nantong Tumor Hospital, 226361, PR China
| | - Li Wang
- Department of Radiology, Nantong University affiliated Nantong Tumor Hospital, 226361, PR China
| |
Collapse
|
13
|
Guo X, Cai C, Xu G, Yang Y, Tu J, Huang P, Zhang D. Interaction between cavitation microbubble and cell: A simulation of sonoporation using boundary element method (BEM). ULTRASONICS SONOCHEMISTRY 2017; 39:863-871. [PMID: 28733016 DOI: 10.1016/j.ultsonch.2017.06.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/17/2017] [Accepted: 06/18/2017] [Indexed: 05/07/2023]
Abstract
Sonoporation has been widely accepted as a significant tool for gene delivery as well as some bio-effects like hemolysis, bringing in high demands of looking into its underlying mechanism. A two-dimensional (2D) boundary element method (BEM) model was developed to investigate microbubble-cell interaction, especially the morphological and mechanical characteristics around the close-to-bubble point (CP) on cell membrane. Based on time evolution analysis of sonoporation, detailed information was extracted from the model for analysis, including volume expansion ratio of the bubble, areal expansion ratio of the cell, jet velocity and CP displacement. Parametric studies were carried out, revealing the influence of different ultrasound parameters (i.e., driving frequency and acoustic pressure) and geometrical configurations (i.e., bubble-cell distance and initial bubble radius). This model could become a powerful tool not only for understanding bubble-cell interactions, but also for optimizing the strategy of sonoporation, such that it could be safer and of higher efficiency for biological and medical studies especially in clinics.
Collapse
Affiliation(s)
- Xiasheng Guo
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Chenliang Cai
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Guangyao Xu
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Yanye Yang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Juan Tu
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China.
| | - PinTong Huang
- Department of Ultrasound, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Dong Zhang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China; The State Key Laboratory of Acoustics, Chinese Academy of Science, Beijing 10080, China.
| |
Collapse
|
14
|
Lu S, Shi A, Jing B, Du X, Wan M. Real-time monitoring of controllable cavitation erosion in a vessel phantom with passive acoustic mapping. ULTRASONICS SONOCHEMISTRY 2017; 39:291-300. [PMID: 28732948 DOI: 10.1016/j.ultsonch.2017.03.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 06/07/2023]
Abstract
Cavitation erosion in blood vessel plays an important role in ultrasound thrombolysis, drug delivery, and other clinical applications. The controllable superficial vessel erosion based on ultrasonic standing wave (USW) has been used to effectively prevent vessel ruptures and haemorrhages, and optical method is used to observe the experiments. But optical method can only work in transparent media. Compared with standard B-mode imaging, passive acoustic mapping (PAM) can monitor erosion in real time and has better sensitivity of cavitation detection. However, the conventionally used PAM has limitations in imaging resolution and artifacts. In this study, a unique PAM method that combined the robust Capon beamformer (RCB) with the sign coherence factor (SCF) was proposed to monitor the superficial vessel erosion in real time. The performance of the proposed method was validated by simulations. In vitro experiments showed that the lateral (axial) resolution of the proposed PAM was 2.31±0.51 (3.19±0.38) times higher than time exposure acoustics (TEA)-based PAM and 1.73±0.38 (1.76±0.48) times higher than RCB-based PAM, and the cavitation-to-artifact ratio (CAR) of the proposed PAM could be improved by 22.5±3.2dB and 7.1±1.2dB compared with TEA and RCB-based PAM. These results showed that the proposed PAM can precisely monitor the superficial vessel erosion and the erosion shift after USW modulation. This work may have the potential of developing a useful tool for precise spatial control and real-time monitoring of the superficial vessel erosion.
Collapse
Affiliation(s)
- Shukuan Lu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Aiwei Shi
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Bowen Jing
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Xuan Du
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China.
| |
Collapse
|
15
|
Yin H, Chang N, Xu S, Wan M. Sonoluminescence characterization of inertial cavitation inside a BSA phantom treated by pulsed HIFU. ULTRASONICS SONOCHEMISTRY 2016; 32:158-164. [PMID: 27150756 DOI: 10.1016/j.ultsonch.2016.02.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 02/28/2016] [Accepted: 02/29/2016] [Indexed: 06/05/2023]
Abstract
The aim of this study was to investigate the inertial cavitation inside a phantom treated by pulsed HIFU (pHIFU). Basic bovine serum albumin (BSA) phantoms without any inherent ultrasound contrast agents (UCAs) or phase-shift nano-emulsions (PSNEs) were used. During the treatment, sonoluminescence (SL) recordings were performed to characterize the spatial distribution of inertial cavitation adjacent to the focal region. High-speed photographs and thermal coagulations, comparing with the SL results, were also recorded and presented. A series of pulse parameters (pulse duration (PD) was between 1 and 23 cycles and pulse repetition frequency (PRF) was between 0.5kHz and 100kHz) were performed to make a systematic investigation under certain acoustic power (APW). Continuous HIFU (cHIFU) investigation was also performed to serve as control group. It was found that, when APW was 19.5W, pHIFU with short PD was much easier to form SL adjacent to the focal region inside the phantom, while it was difficult for cHIFU to generate cavitation bubbles. With appropriate PD and PRF, the residual bubbles of the previous pulses could be stimulated by the incident pulses to oscillate in a higher level and even violently collapse, resulting to enhanced physical thermogenesis. The experimental results showed that the most violent inertial cavitation occurs when PD was set to 6 cycles (5μs) and PRF to 10kHz, while the highest level of thermal coagulation was observed when PD was set to 10 cycles. The cavitational and thermal characteristics were in good correspondence, exhibiting significant potentiality regarding to inject-free cavitation bubble enhanced thermal ablation under lower APW, compared to the conventional thermotherapy.
Collapse
Affiliation(s)
- Hui Yin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, PR China
| | - Nan Chang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, PR China
| | - Shanshan Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, PR China
| | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, PR China.
| |
Collapse
|
16
|
Ding T, Hu H, Bai C, Guo S, Yang M, Wang S, Wan M. Spatial-temporal three-dimensional ultrasound plane-by-plane active cavitation mapping for high-intensity focused ultrasound in free field and pulsatile flow. ULTRASONICS 2016; 69:166-181. [PMID: 27111870 DOI: 10.1016/j.ultras.2016.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 03/22/2016] [Accepted: 04/11/2016] [Indexed: 06/05/2023]
Abstract
Cavitation plays important roles in almost all high-intensity focused ultrasound (HIFU) applications. However, current two-dimensional (2D) cavitation mapping could only provide cavitation activity in one plane. This study proposed a three-dimensional (3D) ultrasound plane-by-plane active cavitation mapping (3D-UPACM) for HIFU in free field and pulsatile flow. The acquisition of channel-domain raw radio-frequency (RF) data in 3D space was performed by sequential plane-by-plane 2D ultrafast active cavitation mapping. Between two adjacent unit locations, there was a waiting time to make cavitation nuclei distribution of the liquid back to the original state. The 3D cavitation map equivalent to the one detected at one time and over the entire volume could be reconstructed by Marching Cube algorithm. Minimum variance (MV) adaptive beamforming was combined with coherence factor (CF) weighting (MVCF) or compressive sensing (CS) method (MVCS) to process the raw RF data for improved beamforming or more rapid data processing. The feasibility of 3D-UPACM was demonstrated in tap-water and a phantom vessel with pulsatile flow. The time interval between temporal evolutions of cavitation bubble cloud could be several microseconds. MVCF beamformer had a signal-to-noise ratio (SNR) at 14.17dB higher, lateral and axial resolution at 2.88times and 1.88times, respectively, which were compared with those of B-mode active cavitation mapping. MVCS beamformer had only 14.94% time penalty of that of MVCF beamformer. This 3D-UPACM technique employs the linear array of a current ultrasound diagnosis system rather than a 2D array transducer to decrease the cost of the instrument. Moreover, although the application is limited by the requirement for a gassy fluid medium or a constant supply of new cavitation nuclei that allows replenishment of nuclei between HIFU exposures, this technique may exhibit a useful tool in 3D cavitation mapping for HIFU with high speed, precision and resolution, especially in a laboratory environment where more careful analysis may be required under controlled conditions.
Collapse
Affiliation(s)
- Ting Ding
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China; National Key Laboratory for Electronic Measurement Technology, Department of Biomedical Engineering, School of Information and Communication Engineering, North University of China, Taiyuan, Shanxi 030051, China
| | - Hong Hu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Chen Bai
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shifang Guo
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Miao Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Supin Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
17
|
Shi A, Huang P, Guo S, Zhao L, Jia Y, Zong Y, Wan M. Precise spatial control of cavitation erosion in a vessel phantom by using an ultrasonic standing wave. ULTRASONICS SONOCHEMISTRY 2016; 31:163-172. [PMID: 26964937 DOI: 10.1016/j.ultsonch.2015.12.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/20/2015] [Accepted: 12/21/2015] [Indexed: 06/05/2023]
Abstract
In atherosclerotic inducement in animal models, the conventionally used balloon injury is invasive, produces excessive vessel injuries at unpredictable locations and is inconvenient in arterioles. Fortunately, cavitation erosion, which plays an important role in therapeutic ultrasound in blood vessels, has the potential to induce atherosclerosis noninvasively at predictable sites. In this study, precise spatial control of cavitation erosion for superficial lesions in a vessel phantom was realised by using an ultrasonic standing wave (USW) with the participation of cavitation nuclei and medium-intensity ultrasound pulses. The superficial vessel erosions were restricted between adjacent pressure nodes, which were 0.87 mm apart in the USW field of 1 MHz. The erosion positions could be shifted along the vessel by nodal modulation under a submillimetre-scale accuracy without moving the ultrasound transducers. Moreover, the cavitation erosion of the proximal or distal wall could be determined by the types of cavitation nuclei and their corresponding cavitation pulses, i.e., phase-change microbubbles with cavitation pulses of 5 MHz and SonoVue microbubbles with cavitation pulses of 1 MHz. Effects of acoustic parameters of the cavitation pulses on the cavitation erosions were investigated. The flow conditions in the experiments were considered and discussed. Compared to only using travelling waves, the proposed method in this paper improves the controllability of the cavitation erosion and reduces the erosion depth, providing a more suitable approach for vessel endothelial injury while avoiding haemorrhage.
Collapse
Affiliation(s)
- Aiwei Shi
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Peixuan Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Shifang Guo
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Lu Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yingjie Jia
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yujin Zong
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|
18
|
Xu S, Zong Y, Feng Y, Liu R, Liu X, Hu Y, Han S, Wan M. Dependence of pulsed focused ultrasound induced thrombolysis on duty cycle and cavitation bubble size distribution. ULTRASONICS SONOCHEMISTRY 2015; 22:160-6. [PMID: 25043556 DOI: 10.1016/j.ultsonch.2014.06.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 06/16/2014] [Accepted: 06/30/2014] [Indexed: 05/06/2023]
Abstract
In this study, we investigated the relationship between the efficiency of pulsed, focused ultrasound (FUS)-induced thrombolysis, the duty cycle (2.3%, 9%, and 18%) and the size distribution of cavitation bubbles. The efficiency of thrombolysis was evaluated through the degree of mechanical fragmentation, namely the number, mass, and size of clot debris particles. First, we found that the total number and mass of clot debris particles were highest when a duty cycle of 9% was used and that the mean diameter of clot debris particles was smallest. Second, we found that the size distribution of cavitation bubbles was mainly centered around the linear resonance radius (2.5μm) of the emission frequency (1.2MHz) of the FUS transducer when a 9% duty cycle was used, while the majority of cavitation bubbles became smaller or larger than the linear resonance radius when a 2.3% or 18% duty cycle was used. In addition, the inertial cavitation dose from the treatment performed at 9% duty cycle was much higher than the dose obtained with the other two duty cycles. The data presented here suggest that there is an optimal duty cycle at which the thrombolysis efficiency and cavitation activity are strongest. They further indicate that using a pulsed FUS may help control the size distribution of cavitation nuclei within an active size range, which we found to be near the linear resonance radius of the emission frequency of the FUS transducer.
Collapse
Affiliation(s)
- Shanshan Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yujin Zong
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yi Feng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Runna Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Xiaodong Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yaxin Hu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Shimin Han
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|
19
|
Kang ST, Lin YC, Yeh CK. Mechanical bioeffects of acoustic droplet vaporization in vessel-mimicking phantoms. ULTRASONICS SONOCHEMISTRY 2014; 21:1866-74. [PMID: 24690297 DOI: 10.1016/j.ultsonch.2014.03.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/10/2014] [Accepted: 03/10/2014] [Indexed: 05/13/2023]
Abstract
This study investigated the mechanical bioeffects exerted by acoustic droplet vaporization (ADV) under different experimental conditions using vessel phantoms with a 200-μm inner diameter but different stiffness for imitating the microvasculature in various tumors. High-speed microscopy, passive cavitation detection, and ultrasound attenuation measurement were conducted to determine the morphological characteristics of vascular damage and clarify the mechanisms by which the damage was initiated and developed. The results show that phantom erosion was initiated under successive ultrasound exposure (2 MHz, 3 cycles) at above 8-MPa peak negative pressures (PNPs) when ADV occurred with inertial cavitation (IC), producing lesions whose morphological characteristics were dependent on the amount of vaporized droplets. Slight injury occurred at droplet concentrations below (2.6±0.2)×10(6) droplets/mL, forming shallow and rugged surfaces on both sides of the vessel walls. Increasing the droplet concentration to up to (2.6±0.2)×10(7) droplets/mL gradually suppressed the damage on the distal wall, and turned the rugged surface on the proximal wall into tunnels rapidly elongating in the direction opposite to ultrasound propagation. Increasing the PNP did not increase the maximum tunnel depth after the ADV efficiency reached a plateau (about 71.6±2.7% at 10 MPa). Increasing the pulse duration effectively increased the maximum tunnel depth to more than 10 times the diameter of the vessel even though there was no marked enhancement in IC dose. It can be inferred that substantial bubble generation in single ADV events may simultaneously distort the acoustic pressure distribution. The backward ultrasound reinforcement and forward ultrasound shielding relative to the direction of wave propagation augment the propensity of backward erosion. The results of the present work provide information that is valuable for the prevention or utilization of ADV-mediated mechanical bioeffects in clinical applications.
Collapse
Affiliation(s)
- Shih-Tsung Kang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Chen Lin
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
20
|
Qiao Y, Zong Y, Yin H, Chang N, Li Z, Wan M. Spatial and temporal observation of phase-shift nano-emulsions assisted cavitation and ablation during focused ultrasound exposure. ULTRASONICS SONOCHEMISTRY 2014; 21:1745-1751. [PMID: 24746925 DOI: 10.1016/j.ultsonch.2014.03.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 03/29/2014] [Accepted: 03/29/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND Phase-shift nano-emulsions (PSNEs) with a small initial diameter in nanoscale have the potential to leak out of the blood vessels and to accumulate at the target point of tissue. At desired location, PSNEs can undergo acoustic droplet vaporization (ADV) process, change into gas bubbles and enhance focused ultrasound efficiency. The threshold of droplet vaporization and influence of acoustic parameters have always been research hotspots in order to spatially control the potential of bioeffects and optimize experimental conditions. However, when the pressure is much higher than PSNEs' vaporization threshold, there were little reports on their cavitation and thermal effects. OBJECT In this study, PSNEs induced cavitation and ablation effects during pulsed high-intensity focused ultrasound (HIFU) exposure were investigated, including the spatial and temporal information and the influence of acoustic parameters. METHODS Two kinds of tissue-mimicking phantoms with uniform PSNEs were prepared because of their optical transparency. The Sonoluminescence (SL) method was employed to visualize the cavitation activities. And the ablation process was observed as the heat deposition could produce white lesion. RESULTS Precisely controlled HIFU cavitation and ablation can be realized at a relatively low input power. But when the input power was high, PSNEs can accelerate cavitation and ablation in pre-focal region. The cavitation happened layer by layer advancing the transducer. While the lesion appeared to be separated into two parts, one in pre-focal region stemmed from one point and grew quickly, the other in focal region grew much more slowly. The influence of duty cycle has also been examined. Longer pulse off time would cause heat transfer to the surrounding media, and generate smaller lesion. On the other hand, this would give outer layer bubbles enough time to dissolve, and inner bubbles can undergo violent collapse and emit bright light.
Collapse
Affiliation(s)
- Yangzi Qiao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yujin Zong
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Hui Yin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Nan Chang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Zhaopeng Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|