1
|
Chen J, Liu T, Zhang Y, Zheng L, Goh KL, Zivkovic V, Zheng M. Ultrasound-assisted enzymatic synthesis of cinnamyl acetate by immobilized lipase on ordered mesoporous silicon with CFD simulation and molecular docking analysis. Food Chem 2025; 464:141843. [PMID: 39509880 DOI: 10.1016/j.foodchem.2024.141843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/11/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024]
Abstract
Flavor esters are used in food and cosmetic industries, but sustainable production remains a big challenging. This study proposed the ultrasound-assisted biosynthesis of cinnamyl acetate using self-made immobilized lipase CSL@OMS-C8, with computational fluid dynamics (CFD) and molecular simulations revealing the hydrodynamic properties and lipase-catalytic mechanisms. The results demonstrate that ultrasonication-intensified enzymatic reaction facilitated 96.6 % conversion of cinnamic alcohol, due to the ultrasound-assisted catalytic efficiency of 13.7 mmol/g·min. Molecular docking analysis identifies the lowest binding energy of -3.7 kcal·mol-1 between lipase and vinyl acetate, contributing to the highest conversion rates compared to acetic acid, ethyl acetate. CFD simulation indicates that ultrasonic energy waves promote substrate diffusion and mixing with lower shear stress. The catalytic stability of CSL@OMS-C8 was confirmed by 60.1 % of relative activity after 10-time reuse. This paper theoretically and experimentally studied the ultrasonic-assisted enzymatic synthesis of cinnamyl acetate, showcasing huge potential for sustainable production of flavor esters.
Collapse
Affiliation(s)
- Jinhang Chen
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China
| | - Tieliang Liu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China
| | - Yi Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China.
| | - Lu Zheng
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Kheng-Lim Goh
- Newcastle University in Singapore, 567739, Singapore
| | - Vladimir Zivkovic
- School of Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
| | - Mingming Zheng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China.
| |
Collapse
|
2
|
Ng WZ, Chan ES, Gourich W, Adiiba SH, Liow MY, Ooi CW, Tey BT, Song CP. Unveiling the role of mechanical process intensifications and chemical additives in boosting lipase-catalyzed hydrolysis of vegetable oil for fatty acid production: A comprehensive review. Int J Biol Macromol 2025; 284:138144. [PMID: 39613062 DOI: 10.1016/j.ijbiomac.2024.138144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
The enzymatic production of fatty acids from vegetable oils is becoming a preferred method due to its mild conditions, simplicity, and scalability. This review analyzes studies on enzymatic hydrolysis, exploring various feedstocks, lipases, reaction conditions, and conversion yields. However, a key limitation is the longer reaction time compared to conventional methods. This limitation is primarily due to the immiscibility of triacylglycerols (TAGs) with water at low temperatures and pressures, as well as the lower activity of enzymes compared to chemical catalysts. To overcome these issues, chemical additives are identified as the most effective process intensification strategy. They are easy to implement, cause less damage to lipases, and are more efficient than mechanical methods. The impact of various chemical additives was thoroughly examined for potential improvements in the enzymatic hydrolysis of vegetable oils. A synergistic combination of chemical additives comprising ionic liquids (ILs) and polyols, along with ultrasound, as well as the consideration of immobilization techniques were explored. Overall, this review highlights the potential of chemical additives and their synergistic feasibility in enhancing the enzymatic performance of lipase-catalyzed hydrolysis reactions.
Collapse
Affiliation(s)
- Wei Zhe Ng
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Eng-Seng Chan
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| | - Wail Gourich
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Siti Hanifah Adiiba
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Min Ying Liow
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Chien Wei Ooi
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Beng Ti Tey
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Cher Pin Song
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
3
|
Kasihmuddin SM, Cob ZC, Noor NM, Das SK. Effect of different temperature variations on the physiological state of catfish species: a systematic review. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:413-434. [PMID: 38367084 DOI: 10.1007/s10695-024-01323-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/10/2024] [Indexed: 02/19/2024]
Abstract
Catfish are a highly diverse group of fish that are found in various regions across the globe. The significance of catfish culture extends to various aspects, including food security, economic advancement, preservation of cultural legacy, and ecological stewardship. The catfish industry is presently encountering unprecedented challenges as a consequence of the variability in water temperature caused by climate change. Temperature is a significant abiotic component that regulates and restricts fish physiology throughout their life cycle. The impact of severe temperatures on various species of catfish is dependent upon the magnitude of the stressor and additional influencing factors. This paper presents an analysis of the effects of temperature fluctuations on various aspects of catfish species, including growth and survival, blood parameters, enzymatic and hormone response, oxygen consumption rates, sound generation and hearing skills, nutritional requirements, and other phenotypic attributes. While this review is certainly not exhaustive, it offers a broad synopsis of the ideal temperature ranges that are most favorable for several catfish species. In-depth research to investigate the interacting impacts of severe temperature occurrences in conjunction with other associated environmental stresses on a wider variety of catfish species is crucial in order to further our understanding of how catfish species will respond to the anticipated climate change in the future.
Collapse
Affiliation(s)
- Sonia Mohd Kasihmuddin
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor Darul Ehsan, Malaysia
| | - Zaidi Che Cob
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor Darul Ehsan, Malaysia
- Marine Ecosystem Research Centre (EKOMAR), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor Darul Ehsan, Malaysia
| | - Noorashikin Md Noor
- Earth Observation Centre, Institute of Climate Change, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor Darul Ehsan, Malaysia.
| | - Simon Kumar Das
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor Darul Ehsan, Malaysia
- Marine Ecosystem Research Centre (EKOMAR), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
4
|
Abdel-Mageed HM, Nada D, Radwan RA, Mohamed SA, Gohary NAEL. Optimization of catalytic properties of Mucor racemosus lipase through immobilization in a biocompatible alginate gelatin hydrogel matrix for free fatty acid production: a sustainable robust biocatalyst for ultrasound-assisted olive oil hydrolysis. 3 Biotech 2022; 12:285. [PMID: 36276456 PMCID: PMC9485409 DOI: 10.1007/s13205-022-03319-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 08/15/2022] [Indexed: 12/22/2022] Open
Abstract
AbstractImmobilization is a key technology that improves the operational stability of enzymes. In this study, alginate-gelatin (Alg-Gel) hydrogel matrix was synthesized and used as immobilization support for Mucor racemosus lipase (Lip). Enzyme catalyzed ultrasound-assisted hydrolysis of olive oil was also investigated. Alg-Gel matrix exhibited high entrapment efficiency (94.5%) with a degradation rate of 42% after 30 days. The hydrolysis of olive oil using Alg-Gel-Lip increased significantly (P < 0.05) as compared to free Lip. Optimum pH and temperature were determined as pH 5.0 and 40 °C, respectively. The Vmax values for free and immobilized Lip were determined to be 5.5 mM and 5.8 mM oleic acid/min/ml, respectively, and the Km values were 2.2 and 2.58 mM/ml respectively. Thermal stability was highly improved for Alg-Gel-Lip (t1/2 650 min and Ed 87.96 kJ/mol) over free Lip (t1/2 150 min and Ed 23.36 kJ/mol). The enzymatic activity of Alg-Gel-Lip was preserved at 96% after four consecutive cycles and 90% of the initial activity after storage for 60 days at 4 °C. Alg-Gel-Lip catalyzed olive oil hydrolysis using ultrasound showed a significant (P < 0.05) increase in hydrolysis rate compared to free Lip (from 0.0 to 58.2%, within the first 2 h). In contrast to traditional methodology, using ultrasonic improved temperature-dependent enzymatic catalyzed reactions and delivered greater reaction yields. Results suggest that Alg-Gel-Lip biocatalyst has great industrial application potential, particularly for free fatty acid production. In addition, the combined use of enzyme and ultrasound has the potential of eco-friendly technology.
Collapse
Affiliation(s)
| | - Dina Nada
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
| | - Rasha Ali Radwan
- Center for Drug Research and Development (CDRD), The British University in Egypt (BUE), Cairo, Egypt
| | - Saleh Ahmed Mohamed
- Molecular Biology Department, National Research Centre (NRC), El Behoth St Dokki, Cairo, Egypt
| | | |
Collapse
|
5
|
Silva HDA, Feiten M, Raspe D, Silva CDA. Hydrolysis of macauba kernel oil: ultrasound application in the substrates pre-emulsion step and effect of the process variables. AN ACAD BRAS CIENC 2022; 94:e20211267. [PMID: 35857967 DOI: 10.1590/0001-3765202220211267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/05/2021] [Indexed: 11/22/2022] Open
Abstract
The main goal of the present work was to evaluate the application of ultrasound as a previous step to promote the substrates pre-emulsion in the hydrolysis reaction of macauba kernel oil (MKO). The ultrasound effect on the substrates pre-emulsion was evaluated on the free fatty acid (FFA) content, as well as the process variables (reaction time, percentage of catalyst Lipozyme® RM IM, and buffer solution). Reactions carried out with the substrates pre-emulsion presented higher FFA production, up to a 40 wt% increase in 1 hour of reaction, yielding 80 wt% of FFAs in 8 hours. The use of catalyst in the reaction medium, from 5 to 15 wt%, favored the FFAs production in 2 hours of reaction. Addition of 25 to 100 wt% of buffer solution led to 86 wt% of FFAs in 4 hours of reaction. Enzyme recycling resulted in a slight decrease in the FFA content, although the catalyst had maintained 85% of its initial activity after 30 h of use. Therefore, the ultrasound pre-emulsion previous step allowed a more efficient hydrolysis reaction of MKO, leading to an increase of up to 40 wt% on the FFA content, when compared to the hydrolysis without such step.
Collapse
Affiliation(s)
- Heloísa DA Silva
- Universidade Estadual de Maringá, Departamento de Tecnologia, Avenida Ângelo Moreira da Fonseca, 1800, Parque Danielle, 87506-370 Umuarama, PR, Brazil
| | - Mirian Feiten
- Universidade Estadual de Maringá, Departamento de Tecnologia, Avenida Ângelo Moreira da Fonseca, 1800, Parque Danielle, 87506-370 Umuarama, PR, Brazil
| | - Djéssica Raspe
- Universidade Estadual de Maringá, Centro de Ciências Agrárias, Avenida Colombo, 5790, Zona 7, 87020-900 Maringá, PR, Brazil
| | - Camila DA Silva
- Universidade Estadual de Maringá, Departamento de Tecnologia, Avenida Ângelo Moreira da Fonseca, 1800, Parque Danielle, 87506-370 Umuarama, PR, Brazil
| |
Collapse
|
6
|
Deng Y, Wang W, Zhao S, Yang X, Xu W, Guo M, Xu E, Ding T, Ye X, Liu D. Ultrasound-assisted extraction of lipids as food components: Mechanism, solvent, feedstock, quality evaluation and coupled technologies – A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Jaiswal KS, Rathod VK. Microwave-assisted synthesis of ethyl laurate using immobilized lipase: Optimization, mechanism and thermodynamic studies. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
8
|
Zhang C, Liang X, Abdo AAA, Kaddour B, Li X, Teng C, Wan C. Ultrasound-assisted lipase-catalyzed synthesis of ethyl acetate: process optimization and kinetic study. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2020.1868331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Chengnan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, PR China
- School of Food and Health, Beijing Technology and Business University, Beijing, PR China
| | - Xin Liang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, PR China
- School of Food and Health, Beijing Technology and Business University, Beijing, PR China
| | - Abdullah Abdulaziz Abbod Abdo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, PR China
- School of Food and Health, Beijing Technology and Business University, Beijing, PR China
- Department of Food Science and Technology, IBB University, Ibb, Yemen
| | - Benariba Kaddour
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, PR China
- School of Food and Health, Beijing Technology and Business University, Beijing, PR China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, PR China
- School of Food and Health, Beijing Technology and Business University, Beijing, PR China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing, PR China
| | - Chao Teng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, PR China
- School of Food and Health, Beijing Technology and Business University, Beijing, PR China
| | - Chengyin Wan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, PR China
- School of Food and Health, Beijing Technology and Business University, Beijing, PR China
| |
Collapse
|
9
|
Luo X, Gong H, He Z, Zhang P, He L. Recent advances in applications of power ultrasound for petroleum industry. ULTRASONICS SONOCHEMISTRY 2021; 70:105337. [PMID: 32916430 PMCID: PMC7786608 DOI: 10.1016/j.ultsonch.2020.105337] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/29/2020] [Accepted: 08/30/2020] [Indexed: 05/28/2023]
Abstract
Power ultrasound, as an emerging green technology has received increasing attention of the petroleum industry. The physical and chemical effects of the periodic oscillation and implosion of acoustic cavitation bubbles can be employed to perform a variety of functions. Herein, the mechanisms and effects of acoustic cavitation are presented. In addition, the applications of power ultrasound in the petroleum industry are discussed in detail, including enhanced oil recovery, oil sand extraction, demulsification, viscosity reduction, oily wastewater treatment and oily sludge treatment. From the perspective of industrial background, key issue and resolution mechanism, current applications and future development of power ultrasound are discussed. In addition, the effects of acoustic parameters on treatment efficiency, such as frequency, acoustic intensity and treatment time are analyzed. Finally, the challenges and outlook for industrial application of power ultrasound are discussed.
Collapse
Affiliation(s)
- Xiaoming Luo
- Shandong Key Laboratory of Oil & Gas Storage and Transportation Safety, China University of Petroleum (East China), Qingdao 266580, China.
| | - Haiyang Gong
- Shandong Key Laboratory of Oil & Gas Storage and Transportation Safety, China University of Petroleum (East China), Qingdao 266580, China
| | - Ziling He
- Shandong Key Laboratory of Oil & Gas Storage and Transportation Safety, China University of Petroleum (East China), Qingdao 266580, China
| | - Peng Zhang
- Shandong Key Laboratory of Oil & Gas Storage and Transportation Safety, China University of Petroleum (East China), Qingdao 266580, China
| | - Limin He
- Shandong Key Laboratory of Oil & Gas Storage and Transportation Safety, China University of Petroleum (East China), Qingdao 266580, China; Surface Engineering Pilot Test Center, China National Petroleum Corporation, Daqing 163453, China
| |
Collapse
|
10
|
Unugul T, Kutluk T, Gürkaya Kutluk B, Kapucu N. Environmentally friendly processes from coffee wastes to trimethylolpropane esters to be considered biolubricants. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2020; 70:1198-1215. [PMID: 32644908 DOI: 10.1080/10962247.2020.1788664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/18/2020] [Accepted: 06/21/2020] [Indexed: 06/11/2023]
Abstract
In this study, an eco-friendly renewable biodegradable alternative to petroleum-based oil lubricants was produced using espresso coffee wastes. Waste coffee oil used as raw material was extracted from Espresso coffee wastes by Soxhlet and conventional solvent extraction. Free fatty acids (FFA) were obtained by hydrolysis of the obtained waste oil using Lipozyme TL IM (Thermomyces lanuginosus). The byproduct, glycerol, was also separated from the reaction medium using a separatory funnel. The obtained FFA was used as a raw material in the production of TMP esters. Polyol esters of fatty acids were synthesized as a result of the esterification reaction between FFA and polyol alcohol (trimethylolpropane (TMP)) using Novozyme 435 (Candida antarctica). The amount of FFA in the medium and the FFA conversion was determined by titration with NaOH solution according to ASTM D 5555-95 standard and the FFA composition of espresso coffee oil by GC. The oil content of espresso coffee extract was found to be rich by 16% and the FFA composition was rich in palmitic acid (C16:0 43% by weight) and linoleic acid (C18:2 31% by weight). 31% of FFA was obtained from the coffee oil. Experimental studies have shown that the highest FFA conversion of 88% with 93% TMP tri-ester content was obtained at a temperature of 55°C, 5% enzyme (w/w), non-aqueous media, 3/1 FFA/TMP mole ratio, 500 rpm mixing speed and 24 hours. Implications: Filter coffee wastes, which have become one of the most important biological wastes with an annual production capacity of 6 million tons worldwide; It is targeted to be transformed into environmentally friendly products, as it is important in terms of economy and policies of many developing countries, it is a renewable resource and there is a high amount of waste accumulation day by day. Evaluation of waste filter coffees and oils with this research article; It is envisaged that the bio-lubricating oil used in many sectors will be synthesized and commercialized with an environmentally friendly process.
Collapse
Affiliation(s)
- Tuba Unugul
- Department of Chemical Engineering, Kocaeli University , Kocaeli, Turkey
| | - Togayhan Kutluk
- Department of Chemical Engineering, Kocaeli University , Kocaeli, Turkey
| | | | - Nurcan Kapucu
- Department of Chemical Engineering, Kocaeli University , Kocaeli, Turkey
| |
Collapse
|
11
|
Microwave mediated lipase-catalyzed synthesis of n-butyl palmitate and thermodynamic studies. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101741] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Khodadadi MR, Malpartida I, Tsang CW, Lin CSK, Len C. Recent advances on the catalytic conversion of waste cooking oil. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111128] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Rocha TG, de L. Gomes PH, de Souza MCM, Monteiro RRC, dos Santos JCS. Lipase Cocktail for Optimized Biodiesel Production of Free Fatty Acids from Residual Chicken Oil. Catal Letters 2020. [DOI: 10.1007/s10562-020-03367-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
The Effectively Simultaneous Production of Cello-oligosaccharide and Glucose Mono-decanoate from Lignocellulose by Enzymatic Esterification. Appl Biochem Biotechnol 2020; 192:600-615. [PMID: 32500429 DOI: 10.1007/s12010-020-03356-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/22/2020] [Indexed: 10/24/2022]
Abstract
Cello-oligosaccharide has drawn an increasing attention as the nutritional ingredients of dietary supplements, whose quality is affected by the concentration of monosaccharide. In the present study, an effective process was developed for the simultaneous production of cello-oligosaccharide and glucose mono-decanoate from lignocellulose by enzymatic esterification. During the process, the excessive glucose in cello-oligosaccharide was converted into glucose mono-decanoate, which is a well-known biodegradable nonionic surfactant. The filter paper was initially used as the model to investigate the feasibility of the process, in which the purity of resultant cello-oligosaccharide was increased from 33.3% to 74.3%, simultaneously producing glucose mono-decanoate with a purity of 92.3%. Further verification of 3 kinds of lignocelluloses (switchgrass, cornstalk, and reed) also indicated a good performance of the process. The present process provided an effective strategy to increase the purity of resultant cello-oligosaccharide with the simultaneous production of high value-added products of sugar monoester. Graphical Abstract Simultaneous production of cello-oligosaccharide and glucose mono-decanoate from lignocellulose.
Collapse
|
15
|
Souza JES, Monteiro RRC, Rocha TG, Moreira KS, Cavalcante FTT, de Sousa Braz AK, de Souza MCM, Dos Santos JCS. Sonohydrolysis using an enzymatic cocktail in the preparation of free fatty acid. 3 Biotech 2020; 10:254. [PMID: 32426206 DOI: 10.1007/s13205-020-02227-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/24/2020] [Indexed: 11/29/2022] Open
Abstract
In this work, the concept of lipase cocktail has been proposed in the ultrasound-assisted hydrolysis of coconut oil. Lipase from Thermomyces lanuginosus (TLL), lipase from Rhizomucor miehei (RML), and lipase B from Candida antarctica (CALB) were evaluated as biocatalysts in different combinations. The best conversion (33.66%) was achieved using only RML; however, the best lipase cocktail (75% RML and 25% CALB) proposed by the triangular response surface was used to achieve higher conversions. At the best lipase cocktail, reaction parameters [temperature, biocatalyst content and molar ratio (water/oil)] were optimized by a Central Composite Design, allowing to obtain more than 98% of conversion in the hydrolysis of coconut oil in 3 h of incubation at 37 kHz, 300 W and 45 °C by using 20% of the lipase cocktail (w/w) and a molar ratio of 7.5:1 (water/oil). The lipase cocktail retained about 50% of its initial activity after three consecutive cycles of hydrolysis. To the authors' knowledge, up to date, this communication is the first report in the literature for the ultrasound-assisted hydrolysis of coconut oil catalyzed by a cocktail of lipases. Under ultrasound irradiation, the concept of lipase cocktail was successfully applied, and this strategy could be useful for the other types of reactions using heterogeneous substrates.
Collapse
Affiliation(s)
- José E S Souza
- 1Instituto de Engenharias E Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus da Auroras, Redenção, CE 62790970 Brazil
| | - Rodolpho R C Monteiro
- 2Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, Fortaleza, CE 60455760 Brazil
| | - Thales G Rocha
- 1Instituto de Engenharias E Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus da Auroras, Redenção, CE 62790970 Brazil
| | - Katerine S Moreira
- 2Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, Fortaleza, CE 60455760 Brazil
| | - Francisco T T Cavalcante
- 2Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, Fortaleza, CE 60455760 Brazil
| | - Ana K de Sousa Braz
- 1Instituto de Engenharias E Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus da Auroras, Redenção, CE 62790970 Brazil
| | - Maria C M de Souza
- 1Instituto de Engenharias E Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus da Auroras, Redenção, CE 62790970 Brazil
| | - José C S Dos Santos
- 1Instituto de Engenharias E Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus da Auroras, Redenção, CE 62790970 Brazil
| |
Collapse
|
16
|
Kinetics and Thermodynamics Study of Ultrasound-Assisted Depolymerization of k-Carrageenan in Acidic Solution. BULLETIN OF CHEMICAL REACTION ENGINEERING & CATALYSIS 2020. [DOI: 10.9767/bcrec.15.1.6738.280-289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
K-carrageenan is a natural polymer with high molecular weight ranging from 100 to 1000 kDa. The oligocarrageenan with low molecular weight is widely used in biomedical application. The aim of this work was to depolymerize k-carrageenan in an acidic solution with the assistance of ultrasound irradiation. The ultrasonication was conducted at various pH (3 and 6), temperatures (30-60 °C), and depolymerization time (0-24 minutes). The results show that the depolymerization reaction follows pseudo-first-order kinetic model with reaction rate constant of 1.856×10-7 to 2.138×10-6 s-1. The reaction rate constant increases at higher temperature and lower pH. The Q10-temperature coefficients of the depolymerization are 1.25 and 1.51 for pH 6 and 3, respectively. The enthalpy of activation (ΔH‡) and the Gibbs energy of activation (ΔG‡) are positive, while the entropy of activation (ΔS‡) is negative, indicating that the activation step of the ultrasound-assisted depolymerization of k-carrageenan is endothermic, non-spontaneous, and the molecules at the transition state is more ordered than at the ground state. The ΔH‡ and the ΔS‡ are not affected by temperature, while the ΔG‡ is a weak function of temperature. The ΔH‡ and ΔS‡ become smaller at higher pH, while the ΔG‡ increases with the increase of pH. The kinetics and thermodynamics analysis show that the ultrasound-assisted depolymerization of k-carrageenan in acidic solution is possibly through three mechanisms, i.e. bond cleavage due to cavitational effect of microbubbles, hydroxyl radical and hydrogen peroxide, as well as proton. Copyright © 2020 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Collapse
|
17
|
Waghmare GV, Mudaliar C, Rathod VK. Optimization of the enzyme catalyzed ultrasound assisted synthesis of cinnamyl butyrate using response surface methodology. REACTION KINETICS MECHANISMS AND CATALYSIS 2020. [DOI: 10.1007/s11144-019-01697-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Gawas SD, Khan N, Rathod VK. APPLICATION OF RESPONSE SURFACE METHODOLOGY FOR LIPASE CATALYZED SYNTHESIS OF 2-ETHYLHEXYL PALMITATE IN A SOLVENT FREE SYSTEM USING ULTRASOUND. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2019. [DOI: 10.1590/0104-6632.20190362s20180453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Ortiz C, Ferreira ML, Barbosa O, dos Santos JCS, Rodrigues RC, Berenguer-Murcia Á, Briand LE, Fernandez-Lafuente R. Novozym 435: the “perfect” lipase immobilized biocatalyst? Catal Sci Technol 2019. [DOI: 10.1039/c9cy00415g] [Citation(s) in RCA: 263] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Novozym 435 (N435) is a commercially available immobilized lipase produced by Novozymes with its advantages and drawbacks.
Collapse
Affiliation(s)
- Claudia Ortiz
- Escuela de Microbiología
- Universidad Industrial de Santander
- Bucaramanga
- Colombia
| | - María Luján Ferreira
- Planta Piloto de Ingeniería Química – PLAPIQUI
- CONICET
- Universidad Nacional del Sur
- 8000 Bahía Blanca
- Argentina
| | - Oveimar Barbosa
- Departamento de Química
- Facultad de Ciencias
- Universidad del Tolima
- Ibagué
- Colombia
| | - José C. S. dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável
- Universidade da Integração Internacional da Lusofonia Afro-Brasileira
- Redenção
- Brazil
| | - Rafael C. Rodrigues
- Biotechnology, Bioprocess, and Biocatalysis Group, Food Science and Technology Institute
- Federal University of Rio Grande do Sul
- Porto Alegre
- Brazil
| | - Ángel Berenguer-Murcia
- Instituto Universitario de Materiales
- Departamento de Química Inorgánica
- Universidad de Alicante
- Alicante
- Spain
| | - Laura E. Briand
- Centro de Investigación y Desarrollo en Ciencias Aplicadas-Dr. Jorge J. Ronco
- Universidad Nacional de La Plata
- CONICET
- Buenos Aires
- Argentina
| | | |
Collapse
|
20
|
Rao P, Rathod V. Valorization of Food and Agricultural Waste: A Step towards Greener Future. CHEM REC 2018; 19:1858-1871. [DOI: 10.1002/tcr.201800094] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Priyanka Rao
- Department of Chemical Engineering Institute of Chemical Technology N.M Parekh MargNear Khalsa College, Matunga Mumbai 400019
| | - Virendra Rathod
- Department of Chemical Engineering Institute of Chemical Technology N.M Parekh MargNear Khalsa College, Matunga Mumbai 400019
| |
Collapse
|
21
|
Transforming food waste: how immobilized enzymes can valorize waste streams into revenue streams. NPJ Sci Food 2018; 2:19. [PMID: 31304269 PMCID: PMC6550151 DOI: 10.1038/s41538-018-0028-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 10/11/2018] [Indexed: 11/08/2022] Open
Abstract
Food processing generates byproduct and waste streams rich in lipids, carbohydrates, and proteins, which contribute to its negative environmental impact. However, these compounds hold significant economic potential if transformed into revenue streams such as biofuels and ingredients. Indeed, the high protein, sugar, and fat content of many food waste streams makes them ideal feedstocks for enzymatic valorization. Compared to synthetic catalysts, enzymes have higher specificity, lower energy requirement, and improved environmental sustainability in performing chemical transformations, yet their poor stability and recovery limits their performance in their native state. This review article surveys the current state-of-the-art in enzyme stabilization & immobilization technologies, summarizes opportunities in enzyme-catalyzed valorization of waste streams with emphasis on streams rich in mono- and disaccharides, polysaccharides, lipids, and proteins, and highlights challenges and opportunities in designing commercially translatable immobilized enzyme systems towards the ultimate goals of sustainable food production and reduced food waste.
Collapse
|
22
|
Su CH, Nguyen HC, Nguyen ML, Tran PT, Wang FM, Guan YL. Liquid lipase-catalyzed hydrolysis of gac oil for fatty acid production: Optimization using response surface methodology. Biotechnol Prog 2018; 34:1129-1136. [PMID: 30281955 DOI: 10.1002/btpr.2714] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 08/19/2018] [Accepted: 08/24/2018] [Indexed: 01/08/2023]
Abstract
Fatty acids are valuable products because they have wide industrial applications in the manufacture of detergents, cosmetics, food, and various biomedical applications. In enzyme-catalyzed hydrolysis, the use of immobilized lipase results in high production cost. To address this problem, Eversa Transform lipase, a new and low-cost liquid lipase formulation, was used for the first time in oil hydrolysis with gac oil as a triglyceride source in this study. Response surface methodology was employed to optimize the reaction conditions and establish a reliable mathematical model for predicting hydrolysis yield. A maximal yield of 94.16% was obtained at a water-to-oil molar ratio of 12.79:1, reaction temperature of 38.9 °C, enzyme loading of 13.88%, and reaction time of 8.41 h. Under this optimal reaction condition, Eversa Transform lipase could be reused for up to eight cycles without significant loss in enzyme activity. This study indicates that the use of liquid Eversa Transform lipase in enzyme-catalyzed oil hydrolysis could be a promising and cheap method of fatty acid production. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018.
Collapse
Affiliation(s)
- Chia-Hung Su
- Graduate School of Biochemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Hoang Chinh Nguyen
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - My Linh Nguyen
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Phung Thanh Tran
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Fu-Ming Wang
- Graduate Inst. of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Yu-Lin Guan
- Graduate School of Biochemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| |
Collapse
|
23
|
Wang D, Yan L, Ma X, Wang W, Zou M, Zhong J, Ding T, Ye X, Liu D. Ultrasound promotes enzymatic reactions by acting on different targets: Enzymes, substrates and enzymatic reaction systems. Int J Biol Macromol 2018; 119:453-461. [PMID: 30041035 DOI: 10.1016/j.ijbiomac.2018.07.133] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 12/24/2022]
Abstract
With the extensive application of enzyme-catalyzed reactions in numerous fields, improving enzymatic efficiency has attracted wide attention for reducing operating costs and increasing output. There are three targets throughout enzymatic reactions: the enzyme, substrate, and mixed reaction system. Ultrasound has been known to accelerate enzymatic reactions by acting on different targets. It can modify both enzyme and substrate macromolecules, which is helpful for enhancing enzyme activity and product yields. The synergistic effect of ultrasound and enzymes is widely reported to increase catalytic rates. The present review discusses the positive effect induced by ultrasound throughout the enzymatic process, including ultrasonic modification of enzymes, ultrasound assisted immobilization, ultrasonic pretreatment of substrates, and ultrasound assisted enzymatic reactions.
Collapse
Affiliation(s)
- Danli Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Lufeng Yan
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaobin Ma
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Wenjun Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Mingming Zou
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jianjun Zhong
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Tian Ding
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Hangzhou 310058, China; Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou 310058, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Hangzhou 310058, China; Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Hangzhou 310058, China; Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
24
|
Galgali A, Gawas SD, Rathod VK. Ultrasound assisted synthesis of citronellol laurate by using Novozym 435. Catal Today 2018. [DOI: 10.1016/j.cattod.2017.08.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Ghasemi YZ, Taghian Dinani S. Optimization of ultrasound-assisted enzymatic extraction of walnut kernel oil using response surface methodology. J FOOD PROCESS ENG 2018. [DOI: 10.1111/jfpe.12696] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
26
|
Kiss AA, Geertman R, Wierschem M, Skiborowski M, Gielen B, Jordens J, John JJ, Van Gerven T. Ultrasound-assisted emerging technologies for chemical processes. JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY (OXFORD, OXFORDSHIRE : 1986) 2018; 93:1219-1227. [PMID: 29780194 PMCID: PMC5947258 DOI: 10.1002/jctb.5555] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/18/2017] [Accepted: 12/18/2017] [Indexed: 05/11/2023]
Abstract
The chemical industry has witnessed many important developments during past decades largely enabled by process intensification techniques. Some of them are already proven at commercial scale (e.g. reactive distillation) while others (e.g. ultrasound-assisted extraction/crystallization/reaction) are on their way to becoming the next-generation technologies. This article focuses on the advances of ultrasound (US)-assisted technologies that could lead in the near future to significant improvements in commercial activities. The aim is to provide an authoritative discussion on US-assisted technologies that are currently emerging from the research environment into the chemical industry, as well as give an overview of the current state-of-the-art applications of US in chemical processing (e.g. enzymatic reactive distillation, crystallization of API). Sufficient information is included to allow the assessment of US-assisted technologies and the challenges for implementation, as well as their potential for commercial applications. © 2017 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Anton A Kiss
- School of Chemical Engineering and Analytical ScienceThe University of ManchesterManchesterUK
- Faculty of Science and TechnologyUniversity of TwenteEnschedeThe Netherlands
| | - Rob Geertman
- Janssen Pharmaceutical Companies of Johnson & JohnsonJanssen Research & DevelopmentBeerseBelgium
| | | | - Mirko Skiborowski
- Laboratory of Fluid SeparationsTU Dortmund UniversityDortmundGermany
| | - Bjorn Gielen
- Janssen Pharmaceutical Companies of Johnson & JohnsonJanssen Research & DevelopmentBeerseBelgium
- Department of Chemical EngineeringKU Leuven, LeuvenBelgium
| | - Jeroen Jordens
- Department of Chemical EngineeringKU Leuven, LeuvenBelgium
| | - Jinu J John
- Department of Chemical EngineeringKU Leuven, LeuvenBelgium
| | - Tom Van Gerven
- Department of Chemical EngineeringKU Leuven, LeuvenBelgium
| |
Collapse
|
27
|
Liquid Lipase-Catalyzed Esterification of Oleic Acid with Methanol for Biodiesel Production in the Presence of Superabsorbent Polymer: Optimization by Using Response Surface Methodology. ENERGIES 2018. [DOI: 10.3390/en11051085] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Andler SM, Goddard JM. Stabilization of Lipase in Polymerized High Internal Phase Emulsions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3619-3623. [PMID: 29582657 DOI: 10.1021/acs.jafc.8b00894] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Candida antarctica lipase B is stabilized in a porous, high internal phase emulsion (HIPE) of polydicyclopentadiene to enable biocatalytic waste stream upcycling. The immobilized lipase is subjected to thorough washing conditions and tested for stability in extreme environments and reusability. A porous internal microstructure is revealed through scanning electron microscopy. After preparation, lipase activity increased to 139 ± 9.7% of its original activity. After 10 cycles of reuse, immobilized lipase retains over 50% activity. Immobilized lipase retains activity after 24 h of exposure to temperatures ranging from 20 to 60 °C and pH values of 3, 7, and 10. In the most extreme environments tested, lipase retained 42.8 ± 21% relative activity after exposure to 60 °C and 49.4 ± 16% relative activity after exposure to pH 3. Polymerized HIPEs stabilize lipase and, thus, extend its working range. Further synthesis optimization has the potential to increase enzyme stability, immobilization efficiency, and uniformity. The reported hierarchical stabilization technique shows promise for use of immobilized lipase in non-ideal, industrially relevant conditions.
Collapse
Affiliation(s)
- Stephanie M Andler
- Department of Food Science , Cornell University , Ithaca , New York 14853 , United States
| | - Julie M Goddard
- Department of Food Science , Cornell University , Ithaca , New York 14853 , United States
| |
Collapse
|
29
|
Chen JJ, Gong PF, Liu YL, Liu BY, Eggert D, Guo YH, Zhao MX, Zhao QS, Zhao B. Postharvest Ultrasound-Assisted Freeze-Thaw Pretreatment Improves the Drying Efficiency, Physicochemical Properties, and Macamide Biosynthesis of Maca (Lepidium meyenii
). J Food Sci 2018. [DOI: 10.1111/1750-3841.14083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jin-Jin Chen
- State Key Laboratory of Biochemical Engineering, Inst. of Process Engineering; Chinese Acad. of Sciences; Beijing 100190 China
- Dept. of Food Science and Technology; Univ. of Nebraska-Lincoln; Lincoln N.E. 68588 U.S.A
| | - Peng-Fei Gong
- State Key Laboratory of Biochemical Engineering, Inst. of Process Engineering; Chinese Acad. of Sciences; Beijing 100190 China
- Univ. of Chinese Acad. of Sciences; Beijing 100049 China
| | - Yi-Lan Liu
- Dept. of Chemical and Biomolecular Engineering; Univ. of Nebraska-Lincoln; Lincoln N.E. 68588 U.S.A
| | - Bo-Yan Liu
- State Key Laboratory of Biochemical Engineering, Inst. of Process Engineering; Chinese Acad. of Sciences; Beijing 100190 China
- Univ. of Chinese Acad. of Sciences; Beijing 100049 China
| | - Dawn Eggert
- Dept. of Food Science and Technology; Univ. of Nebraska-Lincoln; Lincoln N.E. 68588 U.S.A
| | - Yuan-Heng Guo
- Univ. of Chinese Acad. of Sciences; Beijing 100049 China
| | - Ming-Xia Zhao
- State Key Laboratory of Biochemical Engineering, Inst. of Process Engineering; Chinese Acad. of Sciences; Beijing 100190 China
| | - Qing-Sheng Zhao
- State Key Laboratory of Biochemical Engineering, Inst. of Process Engineering; Chinese Acad. of Sciences; Beijing 100190 China
| | - Bing Zhao
- State Key Laboratory of Biochemical Engineering, Inst. of Process Engineering; Chinese Acad. of Sciences; Beijing 100190 China
| |
Collapse
|
30
|
Ultrasound-assisted enzyme catalyzed hydrolysis of olive waste and recovery of antioxidant phenolic compounds. INNOV FOOD SCI EMERG 2017. [DOI: 10.1016/j.ifset.2017.02.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
31
|
|
32
|
|
33
|
Bansode SR, Rathod VK. An investigation of lipase catalysed sonochemical synthesis: A review. ULTRASONICS SONOCHEMISTRY 2017. [PMID: 28633854 DOI: 10.1016/j.ultsonch.2017.02.028] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Ultrasonic irradiation has recently gained attention of researchers for its process intensification in numerous reactions. Earlier ultrasound was known for its application either to deactivate enzyme activity or to disrupt the cell. However, in recent years, practice of ultrasonic irradiation began to emerge as a tool for the activation of the enzymes under mild frequency conditions. The incorporation of ultrasound in any of enzymatic reactions not only increases yield but also accelerates the rate of reaction in the presence of mild conditions with better yield and less side-products. To attain maximum yield, it is crucial to understand the mechanism and effect of sonication on reaction especially for the lipase enzyme. Thus, the influence of ultrasound irradiation on reaction yield for different parameters including temperature, enzyme concentration, mole ratio of substrates, solvents ultrasonic frequency and power was reviewed and discussed. The physical effect of cavitation determined by bubble dynamics and rate of reaction through kinetic modelling also needs to be assessed for complete investigation and scale up of synthesis. Thus, prudish utilisation of ultrasound for enzymatic synthesis can serve better future for sustainable and green chemistry.
Collapse
Affiliation(s)
- Sneha R Bansode
- Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai 400 019, India
| | - Virendra K Rathod
- Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai 400 019, India.
| |
Collapse
|
34
|
Waghmare GV, Chatterji A, Rathod VK. Kinetics of Enzymatic Synthesis of Cinnamyl Butyrate by Immobilized Lipase. Appl Biochem Biotechnol 2017; 183:792-806. [DOI: 10.1007/s12010-017-2464-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 03/20/2017] [Indexed: 11/28/2022]
|
35
|
Gadalkar SM, Rathod VK. Pre-treatment of ferulic acid esterases immobilized on MNPs to enhance the extraction of ferulic acid from defatted rice bran in presence of ultrasound. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.03.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Mulinari J, Venturin B, Sbardelotto M, Dall Agnol A, Scapini T, Camargo AF, Baldissarelli DP, Modkovski TA, Rossetto V, Dalla Rosa C, Reichert FW, Golunski SM, Vieitez I, Vargas GDLP, Dalla Rosa C, Mossi AJ, Treichel H. Ultrasound-assisted hydrolysis of waste cooking oil catalyzed by homemade lipases. ULTRASONICS SONOCHEMISTRY 2017; 35:313-318. [PMID: 27746067 DOI: 10.1016/j.ultsonch.2016.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/07/2016] [Accepted: 10/07/2016] [Indexed: 06/06/2023]
Abstract
This study aimed to evaluate the waste cooking oil (WCO) hydrolysis in ultrasonic system using lipase as catalyst. Lipase was produced by the fungus Aspergillus niger via solid state fermentation (SSF) using canola meal as substrate. Prior to the hydrolysis reaction, the lipase behavior when subjected to ultrasound was evaluated by varying the temperature of the ultrasonic bath, the exposure time and the equipment power. Having optimized the treatment on ultrasound, the WCO hydrolysis reaction was carried out by evaluating the oil:water ratio and the lipase concentration. For a greater homogenization of the reaction medium, a mechanical stirrer at 170rpm was used. All steps were analyzed by experimental design technique. The lipase treatment in ultrasound generated an increase of about 320% in its hydrolytic activity using 50% of ultrasonic power for 25min. at 45°C. The results of the experimental design conducted for ultrasound-assisted hydrolysis showed that the best condition was using an oil:water ratio of 1:3 (v:v) and enzyme concentration of 15% (v/v), generating 62.67μmol/mL of free fatty acids (FFA) in 12h of reaction. Thus, the use of Aspergillus niger lipase as a catalyst for hydrolysis reaction of WCO can be considered as a possible pretreatment technique of the oil in order to accelerate its degradation.
Collapse
Affiliation(s)
- J Mulinari
- Environmental Science and Technology, Federal University of Fronteira Sul - Campus Erechim, RS 135, Km 72, 99700-000 Erechim, RS, Brazil
| | - B Venturin
- Environmental Science and Technology, Federal University of Fronteira Sul - Campus Erechim, RS 135, Km 72, 99700-000 Erechim, RS, Brazil
| | - M Sbardelotto
- Environmental Science and Technology, Federal University of Fronteira Sul - Campus Erechim, RS 135, Km 72, 99700-000 Erechim, RS, Brazil
| | - A Dall Agnol
- Environmental Science and Technology, Federal University of Fronteira Sul - Campus Erechim, RS 135, Km 72, 99700-000 Erechim, RS, Brazil
| | - T Scapini
- Environmental Science and Technology, Federal University of Fronteira Sul - Campus Erechim, RS 135, Km 72, 99700-000 Erechim, RS, Brazil
| | - A F Camargo
- Environmental Science and Technology, Federal University of Fronteira Sul - Campus Erechim, RS 135, Km 72, 99700-000 Erechim, RS, Brazil
| | - D P Baldissarelli
- Environmental Science and Technology, Federal University of Fronteira Sul - Campus Erechim, RS 135, Km 72, 99700-000 Erechim, RS, Brazil
| | - T A Modkovski
- Environmental Science and Technology, Federal University of Fronteira Sul - Campus Erechim, RS 135, Km 72, 99700-000 Erechim, RS, Brazil
| | - V Rossetto
- Environmental Science and Technology, Federal University of Fronteira Sul - Campus Erechim, RS 135, Km 72, 99700-000 Erechim, RS, Brazil
| | - C Dalla Rosa
- Environmental Science and Technology, Federal University of Fronteira Sul - Campus Erechim, RS 135, Km 72, 99700-000 Erechim, RS, Brazil
| | - F W Reichert
- Environmental Science and Technology, Federal University of Fronteira Sul - Campus Erechim, RS 135, Km 72, 99700-000 Erechim, RS, Brazil
| | - S M Golunski
- Environmental Science and Technology, Federal University of Fronteira Sul - Campus Erechim, RS 135, Km 72, 99700-000 Erechim, RS, Brazil
| | - I Vieitez
- Grupo de Derivados de la Industria Alimentaria, Departamento de Ciencia y Tecnología de Alimentos (CYTAL), Facultad de Química, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - G D L P Vargas
- Environmental Science and Technology, Federal University of Fronteira Sul - Campus Erechim, RS 135, Km 72, 99700-000 Erechim, RS, Brazil
| | - C Dalla Rosa
- Environmental Science and Technology, Federal University of Fronteira Sul - Campus Erechim, RS 135, Km 72, 99700-000 Erechim, RS, Brazil
| | - A J Mossi
- Environmental Science and Technology, Federal University of Fronteira Sul - Campus Erechim, RS 135, Km 72, 99700-000 Erechim, RS, Brazil
| | - H Treichel
- Environmental Science and Technology, Federal University of Fronteira Sul - Campus Erechim, RS 135, Km 72, 99700-000 Erechim, RS, Brazil.
| |
Collapse
|