1
|
Lin Z, Huang L, Abker AM, Oh DH, Kassem JM, Salama M, Shi R, Fu X. Magnetic polydopamine nanoparticles as stabilisers for enzyme-Pickering emulsions: Application in the interfacial catalytic reaction of olive oil. Food Chem 2025; 463:141315. [PMID: 39306998 DOI: 10.1016/j.foodchem.2024.141315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/07/2024] [Accepted: 09/14/2024] [Indexed: 11/14/2024]
Abstract
Solid particles are essential for stabilising Pickering emulsions and improving interfacial catalytic reactions. We constructed magnetic polydopamine nanoparticles to stabilise lipase-Pickering emulsions for olive oil deacidification. The results showed that the nanoparticles had a core-shell structure with an average particle size of 605.8 nm, a zeta potential of -39.3 mV and a contact angle of 55.9°, which effectively stabilised the emulsion. The particles were added to the lipase solution and sonicated to construct the emulsion system. The emulsion droplets were the smallest and most uniformly distributed under 400 W ultrasonic irradiation for 10 min. The lipase adsorbed on the oil-water interface and promoted the hydrolysis of olive oil. The released fatty acid content increased 1.7-fold compared with the non-emulsion. This study not only provides a new immobilisation method for the interfacial catalysis of lipase but also provides ideas for the high-value utilisation of high acid-value oil resources.
Collapse
Affiliation(s)
- Ziqi Lin
- National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Linhua Huang
- Citrus Research Institute, Southwest University, Chongqing 400700, China.
| | - Adil Mohamed Abker
- National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 200701, South Korea
| | | | - Mohamed Salama
- Dairy Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Ran Shi
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Xing Fu
- National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
2
|
Yao D, Sun LC, Zhang LJ, Chen YL, Miao S, Cao MJ, Lin D. Emulsion Structural Remodeling in Milk and Its Gelling Products: A Review. Gels 2024; 10:671. [PMID: 39451324 PMCID: PMC11507225 DOI: 10.3390/gels10100671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
The fat covered by fat globule membrane is scattered in a water phase rich in lactose and milky protein, forming the original emulsion structure of milk. In order to develop low-fat milk products with good performance or dairy products with nutritional reinforcement, the original emulsion structure of milk can be restructured. According to the type of lipid and emulsion structure in milk, the remolded emulsion structure can be divided into three types: restructured single emulsion structure, mixed emulsion structure, and double emulsion structure. The restructured single emulsion structure refers to the introduction of another kind of lipid to skim milk, and the mixed emulsion structure refers to adding another type of oil or oil-in-water (O/W) emulsion to milk containing certain levels of milk fat, whose final emulsion structure is still O/W emulsion. In contrast, the double emulsion structure of milk is a more complicated structural remodeling method, which is usually performed by introducing W/O emulsion into skim milk (W2) to obtain milk containing (water-in-oil-in-water) W1/O/W2 emulsion structure in order to encapsulate more diverse nutrients. Causal statistical analysis was used in this review, based on previous studies on remodeling the emulsion structures in milk and its gelling products. In addition, some common processing technologies (including heat treatment, high-pressure treatment, homogenization, ultrasonic treatment, micro-fluidization, freezing and membrane emulsification) may also have a certain impact on the microstructure and properties of milk and its gelling products with four different emulsion structures. These processing technologies can change the size of the dispersed phase of milk, the composition and structure of the interfacial layer, and the composition and morphology of the aqueous phase substance, so as to regulate the shelf-life, stability, and sensory properties of the final milk products. This research on the restructuring of the emulsion structure of milk is not only a cutting-edge topic in the field of food science, but also a powerful driving force in promoting the transformation and upgrading of the dairy industry to achieve high-quality and multi-functional dairy products, in order to meet the diversified needs of consumers for health and taste.
Collapse
Affiliation(s)
- Dexing Yao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Le-Chang Sun
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Ling-Jing Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Yu-Lei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Song Miao
- Teagasc Food Research Centre, Moorepark, P61 C996 Fermoy, Co. Cork, Ireland;
| | - Ming-Jie Cao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Duanquan Lin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| |
Collapse
|
3
|
Arya SS, More PR, Ladole MR, Pegu K, Pandit AB. Non-thermal, energy efficient hydrodynamic cavitation for food processing, process intensification and extraction of natural bioactives: A review. ULTRASONICS SONOCHEMISTRY 2023; 98:106504. [PMID: 37406541 PMCID: PMC10339045 DOI: 10.1016/j.ultsonch.2023.106504] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/07/2023]
Abstract
Hydrodynamic cavitation (HC) is the process of bubbles formation, expansion, and violent collapse, which results in the generation of high pressures in the order of 100-5000 bar and temperatures in the range of 727-9727 °C for just a fraction of seconds. Increasing consumer demand for high-quality foods with higher nutritive values and fresh-like sensory attributes, food processors, scientists, and process engineers are pushed to develop innovative and effective non-thermal methods as an alternative to conventional heat treatments. Hydrodynamic cavitation can play a significant role in non-thermal food processing as it has the potential to destroy microbes and reduce enzyme activity while retaining essential nutritional and physicochemical properties. As hydrodynamic cavitation occurs in a flowing liquid, there is a decrease in local pressure followed by its recovery; hence it can be used for liquid foods. It can also be used to create stable emulsions and homogenize food constituents. Moreover, this technology can extract food constituents such as polyphenols, essential oils, pigments, etc., via biomass pretreatment, cell disruption for selective enzyme release, waste valorization, and beer brewing. Other applications related to food production include water treatment, biodiesel, and biogas production. The present review discusses the application of HC in the preservation, processing, and quality improvement of food and other related applications. The reviewed examples in this paper demonstrate the potential of hydrodynamic cavitation with further expansion toward the scaling up, which looks at commercialization as a driving force.
Collapse
Affiliation(s)
- Shalini S Arya
- Food Engineering and Technology Department, Institute of Chemical Technology, NM Parekh Marg, Matunga, Mumbai, India.
| | - Pavankumar R More
- Food Engineering and Technology Department, Institute of Chemical Technology, NM Parekh Marg, Matunga, Mumbai, India
| | - Mayur R Ladole
- School of Chemical and Bioprocess Engineering, University College Dublin, Ireland
| | - Kakoli Pegu
- Food Engineering and Technology Department, Institute of Chemical Technology, NM Parekh Marg, Matunga, Mumbai, India
| | - Aniruddha B Pandit
- Chemical Engineering Department, Institute of Chemical Technology, NM Parekh Marg, Matunga, Mumbai, India
| |
Collapse
|
4
|
Silva M, Kadam MR, Munasinghe D, Shanmugam A, Chandrapala J. Encapsulation of Nutraceuticals in Yoghurt and Beverage Products Using the Ultrasound and High-Pressure Processing Technologies. Foods 2022; 11:2999. [PMID: 36230075 PMCID: PMC9564056 DOI: 10.3390/foods11192999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/09/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Dairy and beverage products are considered highly nutritious. The increase demand for added nutritional benefits within the food systems consumed by the consumers paves the pathway towards fortifying nutraceuticals into these products. However, nutraceuticals are highly unstable towards harsh processing conditions. In addition, the safety of dairy and beverage products plays a very important role. Therefore, various heat treatments are in practice. As the heat-treated dairy and beverage products tends to illustrate several alterations in their organoleptic characteristics and nutritional properties, the demand for alternative non-thermal processing technologies has increased extensively within the food industry. Ultrasound and high-pressure processing technologies are desirable for this purpose as well as a safe and non-destructive technology towards encapsulation of nutraceuticals into food systems. There are benefits in implementing these two technologies in the production of dairy and beverage products with encapsulants, such as manufacturing high-quality products with improved nutritional value while simultaneously enhancing the sensory characteristics such as flavour, taste, texture, and colour and attaining the microbial quality. The primary objective of this review is to provide detailed information on the encapsulation of nutraceuticals and mechanisms involved with using US and HPP technologies on producing encapsulated yoghurt and beverage products.
Collapse
Affiliation(s)
- Mayumi Silva
- School of Science, RMIT University, Bundoora, VIC 3083, Australia
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Pitipana 10206, Sri Lanka
| | - Mayur Raghunath Kadam
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur 613005, India
| | - Dilusha Munasinghe
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Akalya Shanmugam
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur 613005, India
- Centre for Excellence in Non-Thermal Processing, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur 613005, India
| | | |
Collapse
|
5
|
Zhang R, Luo L, Yang Z, Ashokkumar M, Hemar Y. Formation by high power ultrasound of aggregated emulsions stabilised with milk protein concentrate (MPC70). ULTRASONICS SONOCHEMISTRY 2021; 81:105852. [PMID: 34875554 PMCID: PMC8651996 DOI: 10.1016/j.ultsonch.2021.105852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/18/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
In this work, oil-in-water emulsions stabilised by milk protein concentrate (MPC70) were investigated. The MPC70 concentration was kept constant at 5% (close to the protein content found in skim milk) and the oil volume fraction was varied from 20 to 65%. Sonication was performed at 20 kHz and at a constant power of 14.4 W for a total emulsion volume of 10 mL. Under certain oil concentration (≥35%) and sonication times (≥3s) the emulsion aggregated and formed high-viscosity pseudo plastic materials. However, the viscosity behaviour of the emulsion made with 35% oil reverted to that of a liquid if sonicated for longer times (≥15 s). Confocal laser scanning microscopy showed clearly that the oil droplets are aggregated under the sonication conditions and oil concentrations indicated above. An attempt to explain this behaviour through a simple model based on the bridging of oil droplets by the MPC70 particles and, taking into account the oil droplet and MPC70 particle sizes as well as the oil volume fraction, was made. The model fails to describe in details the aggregation behaviour of these emulsions, likely due to the inhomogeneous protein layer, where both free caseins and casein micelles are adsorbed, and to the packing of the oil droplets at concentrations ≤55%. Nonetheless, this work demonstrates the potential of ultrasound processing for the formation of dairy emulsions with tailored textures.
Collapse
Affiliation(s)
- Ruijia Zhang
- School of Food and Advanced Technology, Massey University, Auckland 0632, New Zealand
| | - Lan Luo
- School of Food and Advanced Technology, Massey University, Auckland 0632, New Zealand
| | - Zhi Yang
- School of Food and Advanced Technology, Massey University, Auckland 0632, New Zealand.
| | | | - Yacine Hemar
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
6
|
Advances and innovations associated with the use of acoustic energy in food processing: An updated review. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102863] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Bredihin S, Andreev V, Martekha A, Schenzle M, Korotkiy I. Erosion potential of ultrasonic food processing. FOODS AND RAW MATERIALS 2021. [DOI: 10.21603/2308-4057-2021-2-335-344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction. Cavitation is the most significant factor that affects liquid food products during ultrasound treatment. Ultrasonic treatment intensifies diffusion, dissolution, and chemical interactions. However, no physical model has yet been developed to unambiguously define the interaction between ultrasonic cavities and structural particles of liquid food media. Physical models used to describe ultrasonic interactions in liquid food media are diverse and, sometimes, contradictory. The research objective was to study ultrasonic devices in order to improve their operating modes and increase reliability.
Study objects and methods. The present research featured ultrasonic field generated in water by the cylindrical emitter, the intensity of flexural ultrasonic waves and their damping rate at various distances from the emitter.
Results and discussion. The paper offers a review of available publications on the theory of acoustic cavitation in various media. The experimental studies featured the distribution of cavities in the ultrasound field of rod vibrating systems in water. The research revealed the erosion capacity of ultrasonic waves generated by the cylindrical emitter. The article also contains a theoretical analysis of the cavitation damage to aluminum foil in water and the erosive effect of cavitation on highly rigid materials of ultrasonic vibration systems. The obtained results were illustrated by semi-graphical dependences.
Conclusion. The present research made it possible to assess the energy capabilities of cavities generated by ultrasonic field at different distances from the ultrasonic emitter. The size of the contact spot and the penetration depth can serve as a criterion for the erosion of the surface of the ultrasonic emitter.
Collapse
|
8
|
Lee CH, Lee TH, Ong PY, Wong SL, Hamdan N, Elgharbawy AA, Azmi NA. Integrated ultrasound-mechanical stirrer technique for extraction of total alkaloid content from Annona muricata. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Effects of ultrasound homogenization on the structural and sensorial attributes of ice cream: optimization with Taguchi and data envelopment analysis. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01044-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Silva M, Chandrapala J. Ultrasonic Emulsification of Milk Proteins Stabilized Primary and Double Emulsions: A Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1934006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Mayumi Silva
- School of Science, RMIT University, Bundoora, VIC, Australia
| | | |
Collapse
|
11
|
Jiang YS, Zhang SB, Zhang SY, Peng YX. Comparative study of high‐intensity ultrasound and high‐pressure homogenization on physicochemical properties of peanut protein‐stabilized emulsions and emulsion gels. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Yu Shan Jiang
- College of Food Science and Engineering Henan University of Technology Zhengzhou Henan Province China
| | - Shao Bing Zhang
- College of Food Science and Engineering Henan University of Technology Zhengzhou Henan Province China
| | - Shu Yan Zhang
- College of Food Science and Engineering Henan University of Technology Zhengzhou Henan Province China
| | - Yun Xuan Peng
- College of Food Science and Engineering Henan University of Technology Zhengzhou Henan Province China
| |
Collapse
|
12
|
Belgheisi S, Motamedzadegan A, Milani JM, Rashidi L, Rafe A. Impact of ultrasound processing parameters on physical characteristics of lycopene emulsion. Journal of Food Science and Technology 2021; 58:484-493. [PMID: 33568842 DOI: 10.1007/s13197-020-04557-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/07/2020] [Accepted: 05/26/2020] [Indexed: 11/26/2022]
Abstract
Using ultrasound technology for obtaining O/W lycopene emulsions needs analyzing the parameters for the enhanced application. To this end, O/W lycopene emulsions (30:70) were processed using ultrasound with powers of 240 W and 360 W in 5, 10, and 15 min. Afterward, the poly dispersity index, droplet size, ζ-potential, turbidity, phase separation, lycopene concentration, rheological behavior, surface tension, and morphology of emulsions was investigated. The experimental results showed good emulsifying characteristics with respect to droplet size and ζ-potential. If the mean values of the droplet size were significantly reduced and the ζ-potential increased. The ultrasound application had a significant impact on emulsion stability with no phase separation and significantly high lycopene retention. Ultrasound reduced the apparent viscosity by reducing the particle size due to the energy supplied to the system. The final emulsion that was treated at 360 W, and 2160 J/cm3 in 10 min, presented enhanced technological properties appropriate for food products.
Collapse
Affiliation(s)
- Saba Belgheisi
- Department of Food Science and Technology, Sari Agricultural Sciences and Natural Resources University (SANRU), PO Box 578, Sari, Mazandaran Iran
- Department of Food Science and Technology, Faculty of Food Industry and Agriculture, Standard Research Institute (SRI), Karaj, Iran
| | - Ali Motamedzadegan
- Department of Food Science and Technology, Sari Agricultural Sciences and Natural Resources University (SANRU), PO Box 578, Sari, Mazandaran Iran
| | - Jafar M Milani
- Department of Food Science and Technology, Sari Agricultural Sciences and Natural Resources University (SANRU), PO Box 578, Sari, Mazandaran Iran
| | - Ladan Rashidi
- Department of Food Science and Technology, Faculty of Food Industry and Agriculture, Standard Research Institute (SRI), Karaj, Iran
| | - Ali Rafe
- Department of Food Science and Technology, Research Institute of Food Science and Technology, Mashhad, Iran
| |
Collapse
|
13
|
Ultrasonic emulsification: An overview on the preparation of different emulsifiers-stabilized emulsions. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.09.024] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
14
|
Martins Strieder M, Neves MIL, Silva EK, Meireles MAA. Low-frequency and high-power ultrasound-assisted production of natural blue colorant from the milk and unripe Genipa americana L. ULTRASONICS SONOCHEMISTRY 2020; 66:105068. [PMID: 32224449 DOI: 10.1016/j.ultsonch.2020.105068] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/11/2020] [Accepted: 03/14/2020] [Indexed: 06/10/2023]
Abstract
This study presents the production of a novel natural blue colorant obtained from the cross-linking between milk proteins and genipin assisted by low-frequency and high-power ultrasound technology. Genipin was extracted from unripe Genipa americana L. using milk as a solvent. Also, milk colloidal system was used as a reaction medium and carrier for the blue color compounds. The effects of ultrasound nominal power (100, 200, 300, and 400 W) on the blue color formation kinetics in milk samples were evaluated at 2, 24, and 48 h of cold storage in relation to their free-genipin content and color parameters. In addition, Fourier transform infrared (FTIR) spectrum, droplet size distribution, microstructure, and kinetic stability of the blue colorant-loaded milk samples were assessed. Our results have demonstrated that the ultrasound technology was a promising and efficient technique to obtain blue colorant-loaded milk samples. One-step acoustic cavitation assisted the genipin extraction and its diffusion into the milk colloidal system favoring its cross-linking with milk proteins. Ultrasound process intensification by increasing the nominal power promoted higher genipin recovery resulting in bluer milk samples. However, the application of high temperatures associated with intensified acoustic cavitation processing favored the occurrence of non-enzymatic browning due to the formation of complex melanin substances from the Maillard reaction. Also, the blue milk samples were chemically stable since their functional groups were not modified after ultrasound processing. Likewise, all blue colorant-loaded milk samples were kinetically stable during their cold storage. Therefore, a novel natural blue colorant with high-potential application in food products like ice creams, dairy beverages, bakery products, and candies was produced.
Collapse
Affiliation(s)
- Monique Martins Strieder
- LASEFI/DEA/FEA (School of Food Engineering)/UNICAMP (University of Campinas), Rua Monteiro Lobato, 80, Campinas, SP CEP:13083-862, Brazil
| | - Maria Isabel Landim Neves
- LASEFI/DEA/FEA (School of Food Engineering)/UNICAMP (University of Campinas), Rua Monteiro Lobato, 80, Campinas, SP CEP:13083-862, Brazil
| | - Eric Keven Silva
- LASEFI/DEA/FEA (School of Food Engineering)/UNICAMP (University of Campinas), Rua Monteiro Lobato, 80, Campinas, SP CEP:13083-862, Brazil.
| | - M Angela A Meireles
- LASEFI/DEA/FEA (School of Food Engineering)/UNICAMP (University of Campinas), Rua Monteiro Lobato, 80, Campinas, SP CEP:13083-862, Brazil
| |
Collapse
|
15
|
Investigation the Stability of Water in Oil Biofuel Emulsions Using Sunflower Oil. CHEMENGINEERING 2020. [DOI: 10.3390/chemengineering4020036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Targets to reduce CO2 emissions by 75% and NOx emissions by 90% by 2050 in aviation have been set by The Advisory Council for Aviation Research and Innovation in Europe. Sustainable fuels, e.g., emulsified biofuel, have demonstrated promise in reducing emissions and greenhouse gases. The aim of this project is to investigate the stability of a water in oil emulsion using sunflower oil. The primary objective is to achieve an emulsion which is stable for at least 4 days, and the secondary objective is to investigate how altering the emulsification parameter values of the surfactant hydrophilic-lipophilic balance (HLB), energy density and sonotrode depth in an ultrasonication procedure can impact the stability. The stability of each emulsion was measured over a period of 14 days. The main outcome is that two of the 14 emulsions made remained stable for at least 14 days using a surfactant HLB of five, which proved to be the optimum value from those tested. The results also show that, by using the sonotrode in a higher starting position, emulsions achieved a greater stability. Furthermore, over-processing of the emulsion was determined, with the point of over-processing lying between an energy density of 75 and 200 W.s/mL.
Collapse
|
16
|
Chen K, Lei L, Lou H, Niu J, Yang D, Qiu X, Qian Y. High internal phase emulsions stabilized with carboxymethylated lignin for encapsulation and protection of environmental sensitive natural extract. Int J Biol Macromol 2020; 158:430-442. [PMID: 32320804 DOI: 10.1016/j.ijbiomac.2020.04.106] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/12/2020] [Accepted: 04/15/2020] [Indexed: 12/13/2022]
Abstract
Oil-in-water (O/W) high internal phase emulsions (HIPEs) are widely used in foods, pharmaceuticals and cosmetics due to the high drug loading ratio, specific rheological behaviors and long shelf life. However, protective performance of active components within HIPEs maintains a low level. Herein, a series of carboxymethylated enzymatic hydrolysis lignin (EHL-CM-x) were synthesized by nucleophilic substitution and applied as macromolecular surfactant to stabilize the O/W HIPEs. It was found that EHL-CM-x combined with a small dosage of alkyl polyglycoside (APG) are able to stabilize HIPEs with 87 vol% soybean oil under neutral condition, which could be recognized as the highest internal phase reported in foods and pharmaceuticals. As a bioactive compound carrier, such EHL-CM-x stabilized HIPEs enable to provide outstanding UV, thermal and oxidation protection for sensitive natural extracts. The residual drug level obtained in this work is more than two times other gliadin/chitosan hybrid particles and sulfomethylated lignin stabilized HIPEs after UV irradiation. In vitro experiments showed that the minimum inhibitory concentration of curcumin within HIPEs against S. aureus and E. coli was 3.13 mg/mL and 12.5 mg/mL, respectively. Such lignin stabilized HIPEs could be potentially used in various areas, especially those with high stability and biosafety requirements.
Collapse
Affiliation(s)
- Kai Chen
- School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou 510640, China
| | - Lei Lei
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Hongming Lou
- School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou 510640, China
| | - Juntao Niu
- School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou 510640, China
| | - Dongjie Yang
- School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou 510640, China
| | - Xueqing Qiu
- School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou 510640, China.
| | - Yong Qian
- School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
17
|
Abesinghe A, Vidanarachchi J, Islam N, Prakash S, Silva K, Bhandari B, Karim M. Effects of ultrasonication on the physicochemical properties of milk fat globules of Bubalus bubalis (water buffalo) under processing conditions: A comparison with shear-homogenization. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2019.102237] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Chen K, Qian Y, Wu S, Qiu X, Yang D, Lei L. Neutral fabrication of UV-blocking and antioxidation lignin-stabilized high internal phase emulsion encapsulates for high efficient antibacterium of natural curcumin. Food Funct 2019; 10:3543-3555. [PMID: 31150025 DOI: 10.1039/c9fo00320g] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
By adjusting the polarity and conformation via the sulfomethylation modification, the bio-renewable enzymatic hydrolysis lignin (EHL) combined with alkyl polyglucoside (APG) was used as an emulsifier to stabilize the oil-in-water (O/W) high internal phase emulsions (HIPEs) for the first time under neutral conditions. The structure and sulfonation degree of the sulfomethylated lignin (EHL-XS) were characterized using gel permeation chromatography (GPC), Fourier transform infrared (FT-IR) spectroscopy, dynamic light scattering (DLS) and an automatic potentiometric titrator. The effects of the EHL-XS concentration, sulfonation degree and oil/water ratio on the microstructure and stability of HIPEs were investigated using an optical microscope and a rheometer. The results suggest that commercial lignosulfonates (LS) could not to stabilize HIPEs due to their high hydrophilicity. However, by using EHL-XS with sulfonation degree between 0.89 and 1.05 mmol g-1, up to 2.0 wt% of EHL-XS with the assistance of 3.5 wt% APG could stabilize HIPEs containing 80 vol% of internal oil phase, which were super stable and displayed no significant microstructure changes over one month. Rheological investigation indicated that HIPEs with smaller droplet size and higher oil/water ratio exhibited higher surface elasticity and stability due to the tighter overall droplet packing. In addition, the EHL-XS stabilized O/W HIPEs could be used as encapsulates for the protection and delivery of the environmentally sensitive curcumin. It was found that such HIPEs encapsulation system exhibited superior UV protection of at least 30% higher than curcumin dispersed in bulk oil after 72 h of UV irradiation or 30 days at room temperature, respectively. Meanwhile, such HIPEs within curcumin also demonstrated good inhibitory activity against S. aureus.
Collapse
Affiliation(s)
- Kai Chen
- School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou 510640, China.
| | | | | | | | | | | |
Collapse
|
19
|
Taha A, Ahmed E, Hu T, Xu X, Pan S, Hu H. Effects of different ionic strengths on the physicochemical properties of plant and animal proteins-stabilized emulsions fabricated using ultrasound emulsification. ULTRASONICS SONOCHEMISTRY 2019; 58:104627. [PMID: 31450289 DOI: 10.1016/j.ultsonch.2019.104627] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 05/28/2019] [Accepted: 06/03/2019] [Indexed: 05/15/2023]
Abstract
In this study, high intensity ultrasound (HIU) was used to produce food protein stabilized emulsions under different ionic strengths (0, 25, 50, 100, 200 and 300 mM NaCl). Five plant and animal food proteins, whey protein isolate (WPI), soy protein isolate (SPI), bovine gelatin, peanut protein isolate (PPI) and corn zein were selected as protein emulsifiers. PPI and zein could not form emulsions using ultrasound emulsification at all ionic strengths (from 0 to 300 mM NaCl). However, ultrasound could induce stable emulsions using SPI, WPI and gelatin as emulsifiers. Moreover, different ionic strengths and protein types influenced the physicochemical properties of HIU induced emulsions obviously. It was found that the droplet sizes of gelatin emulsions were lower than those of SPI and WPI emulsions at salt concentrations of 300 mM NaCl. Furthermore, gelatin emulsions had better stability against environmental stresses (salt and temperature) than that of SPI and WPI emulsions. Moreover, the adsorbed protein (%) at the oil/water interface of SPI emulsions was higher than those of WPI and gelatin emulsions. However, the adsorbed protein amount of all proteins stabilized emulsions increased significantly after salt addition. The absolute ζ-potential values decreased with the increase of salt concentrations. The microrheology results indicated that the SPI emulsions formed a gel-like structure at high salt concentrations (>50 mM NaCl) as SPI emulsions exhibited higher elasticity than WPI and gelatin emulsions. In conclusion, the ultrasound as a green emulsification technique could be used to fabricate emulsions stabilized by plant and animal proteins.
Collapse
Affiliation(s)
- Ahmed Taha
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Department of Food Science, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | - Eman Ahmed
- Department of Food Science, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | - Tan Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xiaoyun Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China
| | - Hao Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China.
| |
Collapse
|
20
|
Negris L, Simonassi P, Saidler LA, Vicente MA, Flores EMM, Santos MFP. Evaluation of models for predicting relative viscosity of ultrasound-assisted synthetic water-in-oil emulsions of Brazilian crude oil. J DISPER SCI TECHNOL 2019. [DOI: 10.1080/01932691.2019.1664910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Luana Negris
- Laboratório LaPAQui, Departamento de Ciências Naturais, Centro Universitário Norte do Espírito Santo, Universidade Federal do Espírito Santo (UFES) , São Mateus , Brazil
| | - Petterson Simonassi
- Laboratório LaPAQui, Departamento de Ciências Naturais, Centro Universitário Norte do Espírito Santo, Universidade Federal do Espírito Santo (UFES) , São Mateus , Brazil
| | - Luila A. Saidler
- Laboratório LaPAQui, Departamento de Ciências Naturais, Centro Universitário Norte do Espírito Santo, Universidade Federal do Espírito Santo (UFES) , São Mateus , Brazil
| | - Maristela A. Vicente
- Laboratório LaPAQui, Departamento de Ciências Naturais, Centro Universitário Norte do Espírito Santo, Universidade Federal do Espírito Santo (UFES) , São Mateus , Brazil
| | - Erico M. M. Flores
- Department of Chemistry, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Maria F. P. Santos
- Laboratório LaPAQui, Departamento de Ciências Naturais, Centro Universitário Norte do Espírito Santo, Universidade Federal do Espírito Santo (UFES) , São Mateus , Brazil
| |
Collapse
|
21
|
Modarres-Gheisari SMM, Gavagsaz-Ghoachani R, Malaki M, Safarpour P, Zandi M. Ultrasonic nano-emulsification - A review. ULTRASONICS SONOCHEMISTRY 2019; 52:88-105. [PMID: 30482437 DOI: 10.1016/j.ultsonch.2018.11.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/10/2018] [Accepted: 11/06/2018] [Indexed: 05/11/2023]
Abstract
The emulsions with nano-sized dispersed phase is called nanoemulsions having a wide variety of applications ranging from food, dairy, pharmaceutics to paint and oil industries. As one of the high energy consumer methods, ultrasonic emulsification (UE) are being utilized in many processes providing unique benefits and advantages. In the present review, ultrasonic nano-emulsification is critically reviewed and assessed by focusing on the main parameters such pre-emulsion processes, multi-frequency or multi-step irradiations and also surfactant-free parameters. Furthermore, categorizing aposematic data of experimental researches such as frequency, irradiation power and time, oil phase and surfactant concentration and also droplet size and stability duration are analyzed and conceded in tables being beneficial to indicate uncovered fields. It is believed that the UE with optimized parameters and stimulated conditions is a developing method with various advantages.
Collapse
Affiliation(s)
| | | | - Massoud Malaki
- Mechanical Engineering Department, Isfahan University of Technology, Isfahan, Iran
| | - Pedram Safarpour
- Mechanical and Energy Systems Engineering Faculty, Shahid Beheshti University, Tehran, Iran
| | - Majid Zandi
- Mechanical and Energy Systems Engineering Faculty, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
22
|
Stepišnik Perdih T, Zupanc M, Dular M. Revision of the mechanisms behind oil-water (O/W) emulsion preparation by ultrasound and cavitation. ULTRASONICS SONOCHEMISTRY 2019; 51:298-304. [PMID: 30327174 DOI: 10.1016/j.ultsonch.2018.10.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/10/2018] [Accepted: 10/04/2018] [Indexed: 05/09/2023]
Abstract
Today emulsion preparation is receiving a lot of scientific attention, since emulsions are playing an essential role in many of the big industries, such as food, pharmaceutical or cosmetic industry. One of the most promising techniques for emulsion preparation is ultrasound emulsification. The purpose of this study is to expand the knowledge on the ultrasonically assisted emulsification model, that has not been amended since 1978. The model explains that oil-in-water emulsion formation is a two-step process. Firstly, the surface of the oil phase is disturbed and separated by the acoustic waves. Secondly, cavitation implosions further disrupt and disperse oil drops. We have used a high-speed camera to closely observe oil-in-water emulsion formation. The images show, that the ultrasound emulsification process is profoundly more complex. While the first and the last step of emulsion formation are the same as believed until now, additional intermediate stages of water-in-oil and even oil-in-water-in-oil occur.
Collapse
Affiliation(s)
- Tadej Stepišnik Perdih
- Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana, Slovenia
| | - Mojca Zupanc
- Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana, Slovenia
| | - Matevž Dular
- Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana, Slovenia.
| |
Collapse
|