1
|
Schieppati D, Mohan M, Blais B, Fattahi K, Patience GS, Simmons BA, Singh S, Boffito DC. Characterization of the acoustic cavitation in ionic liquids in a horn-type ultrasound reactor. ULTRASONICS SONOCHEMISTRY 2024; 102:106721. [PMID: 38103370 PMCID: PMC10765111 DOI: 10.1016/j.ultsonch.2023.106721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
Most ultrasound-based processes root in empirical approaches. Because nearly all advances have been conducted in aqueous systems, there exists a paucity of information on sonoprocessing in other solvents, particularly ionic liquids (ILs). In this work, we modelled an ultrasonic horn-type sonoreactor and investigated the effects of ultrasound power, sonotrode immersion depth, and solvent's thermodynamic properties on acoustic cavitation in nine imidazolium-based and three pyrrolidinium-based ILs. The model accounts for bubbles, acoustic impedance mismatch at interfaces, and treats the ILs as incompressible, Newtonian, and saturated with argon. Following a statistical analysis of the simulation results, we determined that viscosity and ultrasound input power are the most significant variables affecting the intensity of the acoustic pressure field (P), the volume of cavitation zones (V), and the magnitude of the maximum acoustic streaming surface velocity (u). V and u increase with the increase of ultrasound input power and the decrease in viscosity, whereas the magnitude of negative P decreases as ultrasound power and viscosity increase. Probe immersion depth positively correlates with V, but its impact on P and u is insignificant. 1-alkyl-3-methylimidazolium-based ILs yielded the largest V and the fastest acoustic jets - 0.77 cm3 and 24.4 m s-1 for 1-ethyl-3-methylimidazolium chloride at 60 W. 1-methyl-3-(3-sulfopropyl)-imidazolium-based ILs generated the smallest V and lowest u - 0.17 cm3 and 1.7 m s-1 for 1-methyl-3-(3-sulfopropyl)-imidazolium p-toluene sulfonate at 20 W. Sonochemiluminescence experiments validated the model.
Collapse
Affiliation(s)
- Dalma Schieppati
- Department of Chemical Engineering, École Polytechnique Montréal, C.P. 6079, Succ. CV, Montréal H3C 3A7, Québec, Canada
| | - Mood Mohan
- Deconstruction Division, Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608, USA; Bioscience Division and Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Bruno Blais
- Department of Chemical Engineering, École Polytechnique Montréal, C.P. 6079, Succ. CV, Montréal H3C 3A7, Québec, Canada
| | - Kobra Fattahi
- Department of Chemical Engineering, École Polytechnique Montréal, C.P. 6079, Succ. CV, Montréal H3C 3A7, Québec, Canada
| | - Gregory S Patience
- Department of Chemical Engineering, École Polytechnique Montréal, C.P. 6079, Succ. CV, Montréal H3C 3A7, Québec, Canada
| | - Blake A Simmons
- Deconstruction Division, Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Seema Singh
- Deconstruction Division, Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608, USA
| | - Daria C Boffito
- Department of Chemical Engineering, École Polytechnique Montréal, C.P. 6079, Succ. CV, Montréal H3C 3A7, Québec, Canada.
| |
Collapse
|
2
|
Wang T, Ji H, Koppala S, Zhang Y, Song D, Yan Y, Phan D, Le T, Zhang L. Efficient and eco-friendly cadmium ion recycling: Ultrasonic enhancement of aluminum powder replacement for low-temperature industrial applications. ULTRASONICS SONOCHEMISTRY 2024; 102:106764. [PMID: 38219549 PMCID: PMC10825664 DOI: 10.1016/j.ultsonch.2024.106764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/24/2023] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
Replacing cadmium ions in cadmium-containing solutions with aluminum powder is beneficial for cadmium resource recycling and environmental protection. However, the conventional aluminum powder replacement method requires harsh temperatures and prolonged conditions. In this study, the effect and mechanism of ultrasound on the replacement of cadmium with aluminum powder were investigated at low temperatures. Ultrasound has been proven to promote the etching of alumina films through the use of TEM and XPS, providing mechanistic support for the superiority of the new process. A degree of Cd replacement as high as 95.08 % is achieved at a low temperature (60 ℃) and in a short time (20 min) when using ultrasonicated aluminum powder replacement, which is 42.17 % higher than that of conventional aluminum powder. Compared with conventional aluminum powder replacement conditions with the same effect, the introduction of ultrasound can reduce the temperature by 30℃ and shorten the replacement time by 2/3, which has significant advantages in reaction efficiency and safety. The strengthening mechanism of ultrasound on the replacement effect of aluminum powder at low temperatures is revealed through detailed discussions on the corrosion of alumina films, agglomeration of aluminum powder, and adhesion of replacement products to the surface of aluminum powder, dissolved oxygen in the solution, and redissolution of cadmium. Therefore, a new approach for replacing aluminum powder in solutions with high Cd2+ concentrations at low temperatures is proposed in this work, which is expected to solve the existing harsh and dangerous problems of industrial aluminum powder replacement.
Collapse
Affiliation(s)
- Tian Wang
- State Key Laboratory of Complex Non-ferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Hongtu Ji
- Henan Jinli Gold and Lead Group Co., Ltd., Jiyuan 454650, Henan, China
| | - Sivasankar Koppala
- Department of Biomaterials, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600077, Tamil Nadu, India
| | - Yimin Zhang
- Henan Jinli Gold and Lead Group Co., Ltd., Jiyuan 454650, Henan, China
| | - Deyang Song
- Henan Jinli Gold and Lead Group Co., Ltd., Jiyuan 454650, Henan, China
| | - Yongzhou Yan
- Henan Jinli Gold and Lead Group Co., Ltd., Jiyuan 454650, Henan, China
| | - Duclenh Phan
- Science and Technology Center, MienTrung Industry and Trade College, Phu Yen 56000, Viet Nam
| | - Thiquynhxuan Le
- State Key Laboratory of Complex Non-ferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China.
| | - Libo Zhang
- State Key Laboratory of Complex Non-ferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China.
| |
Collapse
|
3
|
Wang T, Qu H, Ravindra AV, Ma S, Hu J, Zhang H, Le T, Zhang L. Treatment of complex sulfur-containing solutions in ammonia desulfurization ammonium sulfate production by ultrasonic-assisted ozone technology. ULTRASONICS SONOCHEMISTRY 2023; 95:106386. [PMID: 37003211 PMCID: PMC10457592 DOI: 10.1016/j.ultsonch.2023.106386] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/10/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
In this work, the cause of abnormal color in ammonium sulfate products formed by flue gas desulfurization is revealed by investigating the conversion relationship between different sulfur-containing ions and their behavior in a sulfuric acid medium. Both thiosulfate (S2O32-) and sulfite (SO32- & HSO3-) impurities affect the quality of ammonium sulfate. The S2O32- is the main reason for the yellowing of the product due to the formation of sulfur impurities in concentrated sulfuric acid. To address the yellowing of ammonium sulfate products, a unified technology (US/O3), using ozone (O3) and ultrasonic waves (US) simultaneously, is exploited to remove both thiosulfate and sulfite impurities from the mother liquor. The effect of different reaction parameters on the degree of removal of thiosulfate and sulfite is investigated. The synergistic effect of ultrasound and ozone on ion oxidation is further explored and demonstrated by the comparative experiments with O3 and US/O3. Under the optimized conditions, the thiosulfate and sulfite concentration in the solution is 2.07 and 5.93 g/L, respectively, and the degree of removal is 91.39 and 90.83%, respectively. The product obtained after evaporation and crystallization is pure white and meets the national standard requirements for ammonium sulfate products. Under the same conditions, the US/O3 process has apparent advantages, such as saving reaction time compared with the O3 process alone. Introducing an ultrasonically intensified field improves the generation of oxidation radicals ·OH, 1O2, and ·O2- in the solution. Furthermore, the effectiveness of different oxidation components in the decolorization process is studied by adding other radical shielding agents using the US/O3 process supplemented with EPR analysis. The order of the different oxidation components is O3(86.04%) > 1O2(6.53%) > •OH(4.45%) > •O2-(2.97%) for the oxidation of thiosulfate, and it is O3(86.28%) > •OH(7.49%) > 1O2(4.99%) > •O2-(1.25%) for the oxidation of sulfite.
Collapse
Affiliation(s)
- Tian Wang
- State Key Laboratory of Complex Non-ferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Hongtao Qu
- Yunnan Chihong Zinc and Germanium Co., Ltd., Qujing 655011, Yunnan, China
| | - A V Ravindra
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu 603203, India
| | - Shaobin Ma
- Yunnan Chihong Zinc and Germanium Co., Ltd., Qujing 655011, Yunnan, China
| | - Jue Hu
- State Key Laboratory of Complex Non-ferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Hong Zhang
- Yunnan Chihong Zinc and Germanium Co., Ltd., Qujing 655011, Yunnan, China
| | - Thiquynhxuan Le
- State Key Laboratory of Complex Non-ferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China.
| | - Libo Zhang
- State Key Laboratory of Complex Non-ferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China.
| |
Collapse
|
4
|
Cabriolu R, Pollet BG, Ballone P. Effect of Organic Ions on The Formation and Collapse of Nanometric Bubbles in Ionic Liquid/Water Solutions: A Molecular Dynamics Study. J Phys Chem B 2023; 127:1628-1644. [PMID: 36786732 PMCID: PMC9969518 DOI: 10.1021/acs.jpcb.2c07950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Molecular dynamics simulation is applied to investigate the effect of two ionic liquids (IL) on the nucleation and growth of (nano)cavities in water under tension and on the cavities' collapse following the release of tension. Simulations of the same phenomena in two pure water samples of different sizes are carried out for comparison. The first IL, i.e., tetra-ethylammonium mesylate ([Tea][Ms]), is relatively hydrophilic and its addition to water at 25 wt % concentration decreases its tendency to nucleate cavities. Apart from quantitative details, cavity formation and collapse are similar to those taking place in water and qualitatively follow the Rayleigh-Plesset (RP) equation. The second IL, i.e., tetrabutyl phosphonium 2,4-dimethylbenzenesulfonate ([P4444][DMBS]), is amphiphilic and forms nanostructured solutions with water. At 25 wt % concentrations, [P4444][DMBS] favors the nucleation of bubbles that tend to form at the interface between water-rich and IL-rich domains. Cavity collapse in [P4444][DMBS]/water solutions are greatly hindered by a shell of ions decorating the interface between the solution and the vapor phase. A similar effect is observed for the equilibration of a population of bubbles of different sizes. The drastic slowing down of the bubbles' relaxation processes suggests ways to produce long-lived nanometric cavities in the liquid phase that could be useful for nanotechnology and drug delivery.
Collapse
Affiliation(s)
- Raffaela Cabriolu
- Department
of Physics, Norwegian University of Science
and Technology (NTNU), 7491 Trondheim, Norway,E-mail:
| | - Bruno G. Pollet
- Green
Hydrogen Laboratory, Université du
Québec á Trois-Riviéres, 3351 Boulevard des Forges, Trois-Riviéres, Quebec G9A 5H7, Canada
| | - Pietro Ballone
- School
of Physics, University College, Dublin D04 V1W8, Ireland,Conway
Institute for Biomolecular and Biomedical Research, University College, Dublin D04 V1W8, Ireland
| |
Collapse
|
5
|
Urango ACM, Strieder MM, Silva EK, Meireles MAA. Impact of Thermosonication Processing on Food Quality and Safety: a Review. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02760-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
6
|
Numerical Characterization of Acoustic Cavitation Bubbles with Respect to the Bubble Size Distribution at Equilibrium. Processes (Basel) 2021. [DOI: 10.3390/pr9091546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In addition to bubble number density, bubble size distribution is an important population parameter governing the activity of acoustic cavitation bubbles. In the present paper, an iterative numerical method for equilibrium size distribution is proposed and combined to a model for bubble counting, in order to approach the number density within a population of acoustic cavitation bubbles of inhomogeneous sizing, hence the sonochemical activity of the inhomogeneous population based on discretization into homogenous groups. The composition of the inhomogeneous population is analyzed based on cavitation dynamics and shape stability at 300 kHz and 0.761 W/cm2 within the ambient radii interval ranging from 1 to 5 µm. Unstable oscillation is observed starting from a radius of 2.5 µm. Results are presented in terms of number probability, number density, and volume probability within the population of acoustic cavitation bubbles. The most probable group having an equilibrium radius of 3 µm demonstrated a probability in terms of number density of 27%. In terms of contribution to the void, the sub-population of 4 µm plays a major role with a fraction of 24%. Comparisons are also performed with the homogenous population case both in terms of number density of bubbles and sonochemical production of HO•,HO2•, and H• under an oxygen atmosphere.
Collapse
|
7
|
Frizzo CP, Vieira JCB, Krüger N, Paz AV, Zanatta N, Villetti MA. Heating Profile of Long Alkyl Chain Ionic Liquid Doped Solvents Under Ultrasound Irradiation. J SOLUTION CHEM 2021. [DOI: 10.1007/s10953-021-01054-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Richter J, Ruck M. Synthesis and Dissolution of Metal Oxides in Ionic liquids and Deep Eutectic Solvents. Molecules 2019; 25:E78. [PMID: 31878305 PMCID: PMC6983208 DOI: 10.3390/molecules25010078] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 12/02/2022] Open
Abstract
Ionic liquids (ILs) and deep eutectic solvents (DESs) have proven to be suitable solvents and reactants for low-temperature reactions. To date, several attempts were made to apply this promising class of materials to metal oxide chemistry, which, conventionally, is performed at high temperatures. This review gives an overview about the scientific approaches of the synthesis as well as the dissolution of metal oxides in ILs and DESs. A wide range of metal oxides along with numerous ILs and DESs are covered by this research. With ILs and DESs being involved, many metal oxide phases as well as different particle morphologies were obtained by means of relatively simple reactions paths. By the development of acidic task-specific ILs and DESs, even difficultly soluble metal oxides were dissolved and, hence, made accessible for downstream chemistry. Especially the role of ILs in these reactions is in the focus of discussion.
Collapse
Affiliation(s)
- Janine Richter
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany;
| | - Michael Ruck
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany;
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Strasse 40, 01187 Dresden, Germany
| |
Collapse
|
9
|
Synthesis, thermal stability, vibrational spectra and conformational studies of novel dicationic meta-xylyl linked bis-1-methylimidazolium ionic liquids. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.03.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
Pflieger R, Lejeune M, Noel C, Belmonte T, Nikitenko SI, Draye M. Diagnosing the plasma formed during acoustic cavitation in [BEPip][NTf 2] ionic liquid. Phys Chem Chem Phys 2018; 21:1183-1189. [PMID: 30548038 DOI: 10.1039/c8cp06967k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sonoluminescence (SL) spectra of a very dry [BEPip][NTf2] ionic liquid were measured in the first minutes of sonication under Ar. The intense sonoluminescence allowed us to monitor the time-evolution of the SL spectra. Several molecular emissions were observed. Rovibronic temperatures of C2 and CN were determined giving vibrational temperatures of 5800 ± 500 K and 6000 ± 500 K and rotational temperatures (i.e. translational or gas temperatures) of 4000 ± 500 K. These temperatures stay remarkably constant during the sonolysis, while SL spectra undergo strong changes that illustrate the very fast evolution of the plasma during the first minutes of sonication. The expected strong decrease in the plasma electron energy also reflects in the evolution of the populations of CH electronically excited states. The physical meaning of temperatures derived from molecular emissions in SL spectra is discussed.
Collapse
Affiliation(s)
- Rachel Pflieger
- Institut de Chimie Séparative de Marcoule, ICSM UMR 5257 - CEA, CNRS, Univ Montpellier, ENSCM, Bagnols-sur-Cèze Cedex, France.
| | | | | | | | | | | |
Collapse
|