1
|
Lee J, Lee H, Kim C, Nguyen TTT, Kim Y, Jeong G, Chang M, Yun C, Yoon H. Controlled Growth of Perovskite Nanocrystals on Nanotubes via a Nanoseeding Intermediate Stage: Toward Novel Optoelectronic Applications. J Phys Chem Lett 2023; 14:8837-8845. [PMID: 37751387 DOI: 10.1021/acs.jpclett.3c02391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
CsPbBr3 perovskite nanocrystals (CNCs) were densely anchored on multiwalled carbon nanotubes (MWNTs) via a nanoseeding intermediate stage, in which lead-based nuclei are formed on the nanotube surface. After the formation of the intermediate, a cesium precursor was added to promote the growth of CNCs from the surface nuclei and to thereby obtain CNC-decorated MWNT nanohybrids (CMNHs). The morphology and properties of the CMNHs were determined by the reaction temperature employed during their synthesis. Importantly, the use of MWNTs promoted the formation of larger CNCs that emitted intense green light and modified the electronic structure and bandgap energy of the CNCs. Consequently, the CMNHs could function as optoelectronic transducers and exhibit a "turn-on" photocurrent response when exposed to UV light of narrow specific-range wavelengths. In a novel approach for preventing counterfeit products, the CMNHs were used as a light-emitting black ink to create quick-response codes with fake pixels.
Collapse
Affiliation(s)
- Jisun Lee
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
| | - Haney Lee
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
| | - Changjun Kim
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
| | - Thi Thuong Thuong Nguyen
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
| | - Yejin Kim
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
| | - Ganghoon Jeong
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
| | - Mincheol Chang
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
| | - Changhun Yun
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
| | - Hyeonseok Yoon
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
| |
Collapse
|
2
|
The effect of ultrasonic irradiation power and initial concentration on the particle size of nano copper(II) coordination polymer: Precursors for preparation of CuO nanostructures. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02913-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
3
|
Zhao M, Zhang N, Yang R, Chen D, Zhao Y. Which is Better for Nanomedicines: Nanocatalysts or Single-Atom Catalysts? Adv Healthc Mater 2021; 10:e2001897. [PMID: 33326185 DOI: 10.1002/adhm.202001897] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/30/2020] [Indexed: 12/24/2022]
Abstract
With the rapid advancements in nanotechnology and materials science, numerous nanomaterials have been used as catalysts for nanomedical applications. Their design and modification according to the microenvironment of diseases have been shown to achieve effective treatment. Chemists are in pursuit of nanocatalysts that are more efficient, controllable, and less toxic by developing innovative synthetic technologies and improving existing ones. Recently, single-atom catalysts (SACs) with excellent catalytic activity and high selectivity have attracted increasing attention because of their accurate design as nanomaterials at the atomic level, thereby highlighting their potential for nanomedical applications. In this review, the recent advances in nanocatalysts and SACs are briefly summarized according to their synthesis, characterizations, catalytic mechanisms, and nanomedical applications. The opportunities and future scope for their development and the issues and challenges for their application as nanomedicine are also discussed. As far as it is known, the review is the systematic comparison of nanocatalysts and SACs, especially in the field of nanomedicine, which has promoted the development of nanocatalytic medicine.
Collapse
Affiliation(s)
- Mengyang Zhao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment Department of Pharmaceutics School of Pharmaceutical Sciences Zhengzhou University No. 100 Kexue Ave Zhengzhou 450001 P. R. China
- School of Materials Science and Engineering Zhengzhou University No. 100 Kexue Ave Zhengzhou 450001 P. R. China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases Zhengzhou University No. 100 Kexue Ave Zhengzhou 450001 P. R. China
| | - Nan Zhang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment Department of Pharmaceutics School of Pharmaceutical Sciences Zhengzhou University No. 100 Kexue Ave Zhengzhou 450001 P. R. China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases Zhengzhou University No. 100 Kexue Ave Zhengzhou 450001 P. R. China
| | - Ruigeng Yang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment Department of Pharmaceutics School of Pharmaceutical Sciences Zhengzhou University No. 100 Kexue Ave Zhengzhou 450001 P. R. China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases Zhengzhou University No. 100 Kexue Ave Zhengzhou 450001 P. R. China
| | - Deliang Chen
- School of Materials Science and Engineering Zhengzhou University No. 100 Kexue Ave Zhengzhou 450001 P. R. China
- School of Materials Science and Engineering Dongguan University of Technology Dongguan 523808 P. R. China
| | - Yongxing Zhao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment Department of Pharmaceutics School of Pharmaceutical Sciences Zhengzhou University No. 100 Kexue Ave Zhengzhou 450001 P. R. China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases Zhengzhou University No. 100 Kexue Ave Zhengzhou 450001 P. R. China
| |
Collapse
|
4
|
Ramezani B, Hossein Shahverdizadeh G, Edjlali L, Ramezani F, Babazadeh M. Sonochemical Synthesis of Differently‐Sized Nanoparticles of a Silver(I) Compound: An Optical, Anticancer, and Thermal Activity Evaluation Study. ChemistrySelect 2020. [DOI: 10.1002/slct.202003173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Bahman Ramezani
- Department of Chemistry, Tabriz Branch Islamic Azad University Tabriz Iran
| | | | - Ladan Edjlali
- Department of Chemistry, Tabriz Branch Islamic Azad University Tabriz Iran
| | - Fatemeh Ramezani
- Department of Molecular Medicine School of Advanced Medical Sciences Tabriz Iran
| | | |
Collapse
|