1
|
Sun H, Qin P, Liang Y, Yang Y, Zhang J, Guo J, Hu X, Jiang Y, Zhou Y, Luo L, Wu Z. Sonochemically assisted the synthesis and catalytic application of bismuth-based photocatalyst: A mini review. ULTRASONICS SONOCHEMISTRY 2023; 100:106600. [PMID: 37741022 PMCID: PMC10520575 DOI: 10.1016/j.ultsonch.2023.106600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/25/2023]
Abstract
Recently, bismuth (Bi)-based photocatalysts have been a well-deserved hotspot in the field of photocatalysis owning to their photoelectrochemical properties driven by the distortion of the Bi 6 s orbital, while their narrow band gap and poor quantum efficiency still restrict their application. With the development of ultrasonic technology, it is expected to become a broom to clear the application obstacles of Bi-based photocatalysts. The special forces and environmental conditions brought by ultrasonic irradiation play beneficial roles in the preparation, modification and performance releasement of Bi-based photocatalysts. In this review, the role and influencing factors of ultrasound in the preparation and modification of Bi-based photocatalysts were introduced. Crucially, the mechanism of the improving the performance for various types of Bi-based photocatalysts by ultrasound in the whole process of photocatalysis was deeply analyzed. Then, the application of ultrasonic synergistic Bi-based photocatalysts in contaminants treatment and energy conversion was briefly introduced. Finally, based on an unambiguous understanding of ultrasonic technology in assisting Bi-based photocatalysts, the future directions and possibilities for ultrasonic synergistic Bi-based photocatalysts are explored.
Collapse
Affiliation(s)
- Haibo Sun
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Pufeng Qin
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Yunshan Liang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China.
| | - Yuan Yang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Jiachao Zhang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Jiayin Guo
- School of Resources and Environment, Hunan University of Technology and Business, Changsha 410205, PR China.
| | - Xiaolong Hu
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Yi Jiang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Yunfei Zhou
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Lin Luo
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Zhibin Wu
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China.
| |
Collapse
|
2
|
Li C, Wang X, Wu J, Gao J, Zhao R, Xia S, Yang H, Chen Z, Li L, Wang W. Harnessing ultrasound in photocatalysis: Synthesis and piezo-enhanced effect: A review. ULTRASONICS SONOCHEMISTRY 2023; 99:106584. [PMID: 37678068 PMCID: PMC10495625 DOI: 10.1016/j.ultsonch.2023.106584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/09/2023]
Abstract
The photocatalytic technique has drawn far-ranging interests in addressing the current issues; however, its property suffers from the limited visible light response and rapid recombination of carriers. To address these issues, two specific approaches have been proposed to enhance the photocatalytic activity: (1) ultrasound-assisted synthesis has been utilized to prepare photocatalysts, resulting in refined grain size, increased specific surface area, and reduced photogenerated carrier recombination; (2) sonophotocatalysis and piezoelectric enhanced photocatalysis have been developed to accelerate the reaction, which utilizes the synergism between ultrasound and light. On one side, sonophotocatalysis generates cavitation bubbles which induce more reactive radicals for redox reactions. On the other side, ultrasound induces deformation of the piezoelectric material structure, which changes the internal piezoelectric potential and improves the photocatalytic performance. Currently, intensive efforts have been devoted to related research and great progress has been reached with applications in pollutant degradation, new energy production, and other fields. This work starts by elucidating the fundamental concept of ultrasound-assisted photocatalyst synthesis and photocatalysis. Then, the synergistic behavior between ultrasonic and light in ultrasonic-assisted photocatalysis has been thoroughly discussed, including pollutant degradation, water splitting, and bacterial sterilization. Finally, the challenge and outlook are investigated and proposed.
Collapse
Affiliation(s)
- Chunyan Li
- College of Materials and Chemistry, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education Zone, Hangzhou 310018, China
| | - Xiaozhuo Wang
- College of Materials and Chemistry, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education Zone, Hangzhou 310018, China
| | - Jianhao Wu
- College of Materials and Chemistry, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education Zone, Hangzhou 310018, China
| | - Jingyang Gao
- College of Materials and Chemistry, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education Zone, Hangzhou 310018, China
| | - Rixu Zhao
- China Construction Ready Mixed Concrete Co., Ltd., Wuhan 430070, China
| | - Sasa Xia
- College of Materials and Chemistry, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education Zone, Hangzhou 310018, China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-products (Hangzhou), Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhi Chen
- College of Materials and Chemistry, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education Zone, Hangzhou 310018, China.
| | - Lan Li
- College of Materials and Chemistry, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education Zone, Hangzhou 310018, China.
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-products (Hangzhou), Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
3
|
Javidfar F, Fadaeian M, Safaei Ghomi J. Co 3O 4@chitosan/La 2O 3 nanocomposites as innovative, powerful, and recyclable nanocatalysts for sonochemical treatment of benzyl alcohols to obtain the corresponding benzaldehyde derivatives. RSC Adv 2022; 12:35959-35965. [PMID: 36545076 PMCID: PMC9752481 DOI: 10.1039/d2ra05154k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/01/2022] [Indexed: 12/23/2022] Open
Abstract
Ultrasonic (US) irradiation (100 W, 40 kHz) reactions, used as a safe and green technique, are often more efficient than traditional protocols. This leads us to introduce, for the first time, an efficient nanocatalyst and immobilization of La2O3 nanoparticles on Co3O4 nanoparticles for the selective oxidation of benzyl alcohol to the corresponding benzaldehyde at room temperature. The structural and morphological characteristics of the nanocatalysts were determined by FT-IR, XRD, FE-SEM, EDX, and VSM. The catalytic performance of the Co3O4@Cs/La2O3 composites used as heterogeneous nanocatalysts was investigated in the selective oxidation of benzylic alcohols to their corresponding benzaldehydes. Also, the performance of the oxidation parameters, including H2O2 concentration, time, effect of various solvents, and nanocatalyst dosage was checked. Significant benefits of this method can be named by using a non-toxic solvent, easy product isolation, excellent recoverability, low time of reaction, high yield, and ultrasound irradiation. Finally, a possible mechanism was proposed to show the nanocatalytic process.
Collapse
Affiliation(s)
- Fereshteh Javidfar
- Department of Chemistry, Qom Branch, Islamic Azad UniversityPost Box: 37491-13191QomIran+98 9128236206+98 2537780045
| | - Manoochehr Fadaeian
- Department of Chemistry, Qom Branch, Islamic Azad UniversityPost Box: 37491-13191QomIran+98 9128236206+98 2537780045
| | - Javad Safaei Ghomi
- Department of Chemistry, Qom Branch, Islamic Azad UniversityPost Box: 37491-13191QomIran+98 9128236206+98 2537780045,Department of Organic Chemistry, Faculty of Chemistry, University of KashanKashanIran
| |
Collapse
|
4
|
Li C, Zhu N, Yang S, He X, Zheng S, Sun Z, Dionysiou DD. A review of clay based photocatalysts: Role of phyllosilicate mineral in interfacial assembly, microstructure control and performance regulation. CHEMOSPHERE 2021; 273:129723. [PMID: 33524745 DOI: 10.1016/j.chemosphere.2021.129723] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/01/2021] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
Over the past decades, inspired by the outstanding properties of clay minerals such as abundance, low-cost, environmental benignity, high stability, and regularly arranged silica-alumina framework, researchers put much efforts on the interface assembly and surface modification of natural minerals with bare photocatalysts, i.e. TiO2, g-C3N4, ZnO, MoS2, etc. The clay-based hybrid photocatalysts have resulted in a rich database for their tailor-designed microstructures, characterizations, and environmental-related applications. Therefore, in this study, we took a brief introduction of three representative minerals, i.e. kaolinite, montmorillonite and rectorite, and discussed their basic merits in photocatalysis applications. After that, we summarized the recent advances in construction of stable visible-light driven photocatalysts based on these minerals. The structure-activity relationships between the properties of clay types, pore structure, distribution/dispersion and light absorption, carrier separation efficiency as well as redox performance were illustrated in detail. Such representative information would provide theoretical basis and scientific support for the application of clay based photocatalysts. Finally, we pointed out the major challenges and future directions at the end of this review. Undoubtedly, control and preparation of novel photocatalysts based on clays will continue to witness many breakthroughs in the arena of solar-driven technologies.
Collapse
Affiliation(s)
- Chunquan Li
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, PR China
| | - Ningyuan Zhu
- Zigui Ecological Station for Three Gorges Dam Project, State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing, 210008, China
| | - Shanshan Yang
- School of Earth and Space Sciences, Peking University, Beijing, 100871, PR China
| | - Xuwen He
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, PR China
| | - Shuilin Zheng
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, PR China
| | - Zhiming Sun
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, PR China.
| | - Dionysios D Dionysiou
- Department of Chemical and Environmental Engineering (DCEE), University of Cincinnati, Cincinnati, OH, 45221-0012, USA
| |
Collapse
|
5
|
Dheyab MA, Aziz AA, Khaniabadi PM, Jameel MS. Potential of a sonochemical approach to generate MRI-PPT theranostic agents for breast cancer. Photodiagnosis Photodyn Ther 2021; 33:102177. [PMID: 33429101 DOI: 10.1016/j.pdpdt.2021.102177] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/22/2020] [Accepted: 12/31/2020] [Indexed: 01/25/2023]
Abstract
The production of nanomaterials integrating diagnostic and therapeutic roles within one nanoplatform is important for medical applications. Such theranostics nanoplatforms could provide information on imaging, accurate diagnosis and, at the same time, could eradicate cancer cells. Fe3O4@Au core@shell nanoparticles (Fe3O4@AuNPs) have gained broad attention due to their unique innovations in magnetic resonance imaging (MRI) and photothermal therapy (PTT). Seed-mediated growth procedures were used to produce the Fe3O4@AuNPs. In these processes, complicated surface modifications, resulted in unsatisfactory properties. This work used the ability of the sonochemical approach to synthesize highly efficient theranostics agent Fe3O4@AuNPs with a size of approximately 22 nm in 5 min. The inner core of Fe3O4 acts as an MRI agent, whereas the photothermal effect stands accomplished by near-infrared absorption of the gold shell (Au shell), which results in the eradication of cancer cells. We have shown that Fe3O4@AuNPs have great biocompatibility and no major cytotoxicity has been identified. Relaxivity value (r2) of synthesized Fe3O4@Au NPs, measured at 233 mM-1s-1, is significantly higher than those reported previously. The as-synthesized NPs have shown substantial photothermal ablation ability on MCF-7 in vitro under near-infrared laser irradiation. Consequently, Fe3O4@AuNPs synthesized in this study have great potential as an ideal candidate for MR imaging and PTT.
Collapse
Affiliation(s)
- Mohammed Ali Dheyab
- Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia; Nano-Optoelectronics Research and Technology Lab (NORLab), School of Physics, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia.
| | - Azlan Abdul Aziz
- Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia; Nano-Optoelectronics Research and Technology Lab (NORLab), School of Physics, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia.
| | - Pegah Moradi Khaniabadi
- Department of Radiology and Molecular Imaging, College of Medicine and Health Science, Sultan Qaboos University. PO. Box: 35, 123, Al Khod, Muscat, Oman
| | - Mahmood S Jameel
- Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia; Nano-Optoelectronics Research and Technology Lab (NORLab), School of Physics, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia
| |
Collapse
|
6
|
Fuentes-García JA, Santoyo-Salzar J, Rangel-Cortes E, Goya GF, Cardozo-Mata V, Pescador-Rojas JA. Effect of ultrasonic irradiation power on sonochemical synthesis of gold nanoparticles. ULTRASONICS SONOCHEMISTRY 2021; 70:105274. [PMID: 32771910 PMCID: PMC7786535 DOI: 10.1016/j.ultsonch.2020.105274] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/13/2020] [Accepted: 07/21/2020] [Indexed: 05/12/2023]
Abstract
In this work, optimized size distribution and optical properties in the colloidal synthesis of gold nanoparticles (GNPs) were obtained using a proposed ultrasonic irradiation assisted Turkevich-Frens method. The effect of three nominal ultrasound (20 kHz) irradiation powers: 60, 150, and 210 W have been analyzed as size and shape control parameters. The GNPs colloidal solutions were obtained from chloroauric acid (HAuCl4) and trisodium citrate (C6H5Na3O7·2H2O) under continuous irradiation for 1 h without any additional heat or stirring. The surface plasmon resonance (SPR) was monitored in the UV-Vis spectra every 10 min to found the optimal time for localized SPR wavelength (λLSPR), and the 210 sample procedure has reduced the λLSPR localization at 20 min, while 150 and 60 samples have showed λLSPR at 60 min. The nucleation and growth of GNPs showed changes in shape and size distribution associated with physical (cavitation, temperature) and chemical (radical generation, pH) conditions in the aqueous solution. The results showed quasi-spherical GNPs as pentakis dodecahedron (λLSPR = 560 nm), triakis icosahedron (λLSPR = 535 nm), and tetrakis hexahedron (λLSPR = 525 nm) in a size range from 12 to 16 nm. Chemical effects of ultrasound irradiation were suggested in the disproportionation process, electrons of AuCl2- are rapidly exchanged through the gold surface. After AuCl4- and Cl- were desorbed, a tetrachloroaurate complex was recycled for the two-electron reduction by citrate, aurophilic interaction between complexes AuCl2-, electrons exchange, and gold seeds, the deposition of new gold atoms on the surface promoting the growth of GNPs. These mechanisms are enhanced by the effects of ultrasound, such as cavitation and transmitted energy into the solution. These results show that the plasmonic response from the reported GNPs can be tuned using a simple methodology with minimum infrastructure requirements. Moreover, the production method could be easily scalable to meet industrial manufacturing needs.
Collapse
Affiliation(s)
- J A Fuentes-García
- Instituto de Nanociencia de Aragón (INA) , Universidad de Zaragoza, 50018 Zaragoza, Spain; Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas del Instituto Politécnico Nacional, UPIITA-IPN, Av. IPN 2580, Ticomán 07340, Mexico
| | - J Santoyo-Salzar
- Departamento de Física, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, CINVESTAV-IPN, Av. IPN 2508, Zacatenco 07360, Mexico
| | - E Rangel-Cortes
- Universidad Autónoma del Estado de Hidalgo, Escuela Superior de Apan, Carretera Apan-Calpulalpan Km.8, Col. Chimalpa, 43920 Apan, Hgo., Mexico
| | - G F Goya
- Instituto de Nanociencia de Aragón (INA) , Universidad de Zaragoza, 50018 Zaragoza, Spain; Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - V Cardozo-Mata
- Universidad Autónoma del Estado de Hidalgo, Escuela Superior de Apan, Carretera Apan-Calpulalpan Km.8, Col. Chimalpa, 43920 Apan, Hgo., Mexico
| | - J A Pescador-Rojas
- Universidad Autónoma del Estado de Hidalgo, Escuela Superior de Apan, Carretera Apan-Calpulalpan Km.8, Col. Chimalpa, 43920 Apan, Hgo., Mexico.
| |
Collapse
|
7
|
Souri B, Rezvani AR, Hayati P, Centore R. Achieving Different Morphologies for a Zinc(II) Coordination Polymer by Green Sonochemical Synthesis and New Precursors for the Preparation of Zinc(II)oxide. ChemistrySelect 2019. [DOI: 10.1002/slct.201903337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bagher Souri
- Department of ChemistryFaculty of SciencesUniversity of Sistan and Baluchestan P.O. Box 98135–674 Zahedan Iran
| | - Ali Reza Rezvani
- Department of ChemistryFaculty of SciencesUniversity of Sistan and Baluchestan P.O. Box 98135–674 Zahedan Iran
| | - Payam Hayati
- Department of ChemistryFaculty of SciencesUniversity of Sistan and Baluchestan P.O. Box 98135–674 Zahedan Iran
| | - Roberto Centore
- Department of Chemical SciencesUniversity of Naples Federico II, Via Cintia I-80126 Naples Italy
| |
Collapse
|
8
|
Facile synthesis of Ag Bi25GaO39Bi2WO6 heterostructure with enhanced photocatalytic performance based on interface structure design. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|