1
|
Majani SS, Basavaraj R, Venkatachalaiah K, Chandrasekhar T, Kollur SP. Versatile deep red-emitting SrCeO3: Eu3+ nanopowders for display devices and advanced forensic applications. J SOLID STATE CHEM 2024; 329:124360. [DOI: 10.1016/j.jssc.2023.124360] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
|
2
|
He J, Xu X, Li M, Zhou S, Zhou W. Recent advances in perovskite oxides for non-enzymatic electrochemical sensors: A review. Anal Chim Acta 2023; 1251:341007. [PMID: 36925293 DOI: 10.1016/j.aca.2023.341007] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023]
Abstract
Non-enzymatic electrochemical sensors with significant advantages of high sensitivity, long-term stability, and excellent reproducibility, are one promising technology to solve many challenges, such as the detection of toxic substances and viruses. Among various materials, perovskite oxides have become a promising candidate for use in non-enzymatic electrochemical sensors because of their low cost, flexible structure, and high intrinsic catalytic activity. A comprehensive overview of the recent advances in perovskite oxides for non-enzymatic electrochemical sensors is provided, which includes the synthesis methods of nanostructured perovskites and the electrocatalytic mechanisms of perovskite catalysts. The better sensing performance of perovskite oxides is mainly due to the lattice O vacancies and superoxide oxygen ions (O22-/O-), which are generated by the transfer of lattice oxygen to adsorbed -OH and have performed excellent properties suitable for electrooxidation of analytes. However, the limited electron transfer kinetics, stability, and selectivity of perovskite oxides alone make perovskite oxides far from ready for scientific development. Therefore, composites of perovskite oxides with other materials like graphitic carbon, metals, metal compounds, conducting organics, and biomolecules are summarized. Furthermore, a brief section describing the future challenges and the corresponding recommendation is presented in this review.
Collapse
Affiliation(s)
- Juan He
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, No.111 West Changjiang Road, Huaian, 223300, Jiangsu Province, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, PR China.
| | - Xiaomin Xu
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6102, Australia.
| | - Meisheng Li
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, No.111 West Changjiang Road, Huaian, 223300, Jiangsu Province, PR China.
| | - Shouyong Zhou
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, No.111 West Changjiang Road, Huaian, 223300, Jiangsu Province, PR China.
| | - Wei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, PR China.
| |
Collapse
|
3
|
Fabrication of a Highly Sensitive Electrochemical Sensor for the Rapid Detection of Nimodipine. INT J ELECTROCHEM SC 2023. [DOI: 10.1016/j.ijoes.2023.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
4
|
Carbon Quantum Dots Bridged TiO2/CdIn2S4 toward Photocatalytic Upgrading of Polycyclic Aromatic Hydrocarbons to Benzaldehyde. Molecules 2022; 27:molecules27217292. [PMID: 36364119 PMCID: PMC9653999 DOI: 10.3390/molecules27217292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/22/2022] [Accepted: 10/23/2022] [Indexed: 11/29/2022] Open
Abstract
Conversion of hazardous compounds to value-added chemicals using clean energy possesses massive industrial interest. This applies especially to the hazardous compounds that are frequently released in daily life. In this work, a S-scheme photocatalyst is optimized by rational loading of carbon quantum dots (CQDs) during the synthetic process. As a bridge, the presence of CQDs between TiO2 and CdIn2S4 improves the electron extraction from TiO2 and supports the charge transport in S-scheme. Thanks to this, the TiO2/CQDs/CdIn2S4 presents outstanding photoactivity in converting the polycyclic aromatic hydrocarbons (PAHs) released by cigarette to value-added benzaldehyde. The optimized photocatalyst performs 87.79% conversion rate and 72.76% selectivity in 1 h reaction under a simulated solar source, as confirmed by FT-IR and GC-MS. A combination of experiments and theoretical calculations are conducted to demonstrate the role of CQDs in TiO2/CQDs/CdIn2S4 toward photocatalysis.
Collapse
|
5
|
Kokila GN, Mallikarjunaswamy C, Ranganatha VL. A review on synthesis and applications of versatile nanomaterials. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2081189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- G. N. Kokila
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce and Science, Mysuru, Karnataka, India
| | - C. Mallikarjunaswamy
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce and Science, Mysuru, Karnataka, India
| | | |
Collapse
|
6
|
Li Z, Shen F, Mishra RK, Wang Z, Zhao X, Zhu Z. Advances of Drugs Electroanalysis Based on Direct Electrochemical Redox on Electrodes: A Review. Crit Rev Anal Chem 2022; 54:269-314. [PMID: 35575782 DOI: 10.1080/10408347.2022.2072679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The strong development of mankind is inseparable from the proper use of drugs, and the electroanalytical research of drugs occupies an important position in the field of analytical chemistry. This review mainly elaborates the research progress of drugs electroanalysis based on direct electrochemical redox on various electrodes for the recent decade from 2011 to 2021. At first, we summarize some frequently used electrochemical data processing and electrochemical mechanism research derivation methods in the literature. Then, according to the drug therapeutic and application/usage purposes, the research progress of drugs electrochemical analysis is classified and discussed, where we focus on drugs electrochemical reaction mechanism. At the same time, the comparisons of electrochemical sensing performance of the drugs on various electrodes from recent studies are listed, so that readers can more intuitively compare and understand the electroanalytical sensing performance of each modified electrode for each of the drug. Finally, this review discusses the shortcomings and prospects of the drugs electroanalysis based on direct electrochemical redox research.
Collapse
Affiliation(s)
- Zhanhong Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Feichen Shen
- School of Energy and Materials, Shanghai Polytechnic University, Shanghai, China
| | - Rupesh K Mishra
- Identify Sensors Biologics at Bindley Bioscience Center, West Lafayette, Indiana, USA
- School of Material Science and Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Zifeng Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xueling Zhao
- School of Energy and Materials, Shanghai Polytechnic University, Shanghai, China
| | - Zhigang Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- School of Energy and Materials, Shanghai Polytechnic University, Shanghai, China
| |
Collapse
|
7
|
Transesterification of dimethyl carbonate with glycerol by perovskite-based mixed metal oxide nanoparticles for the atom-efficient production of glycerol carbonate. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Agrawal N, Savalia R, Chatterjee S. Nanostructured zinc oxide film amalgamated with functionalized carbon nanotubes for facile electrochemical determination of nifedipine. Colloids Surf B Biointerfaces 2021; 201:111635. [PMID: 33647712 DOI: 10.1016/j.colsurfb.2021.111635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/02/2021] [Accepted: 02/13/2021] [Indexed: 11/25/2022]
Abstract
An innovative approach has been employed for the detection of nifedipine at glassy carbon electrode fabricated with zinc oxide nanoparticles embedded on functionalized multi walled carbon nanotubes. Herein, square wave voltammetry being an expeditious electrochemical technique has been utilized for the first time for the determination of nifedipine. Instrumental variables were altered to acquire optimized operational parameters. The electrochemical oxidation peak of nifedipine was procured at ∼ 807 mV which was recorded versus Ag/AgCl reference electrode. The oxidation peak was used to quantify the analyte in the dynamic linear range of 1 nM to 40 μM with highest sensitivity and lowest detection limit of 21.8 μA μM-1 and 0.49 nM respectively. The influence of common physiological interferents on the current signal of the analyte was examined. Pronounced stability and reproducibility of fabricated sensor was attained by the neoteric electrochemical approach. The developed protocol was efficaciously applied to quantify nifedipine in pharmaceutical formulations. The urine and blood serum sample of patients being treated for hypertension was effectively detected with nifedipine for the first time. The biological sample assay without the interference of the metabolites coexisting in the samples outlined the insight of selectivity of the developed sensor.
Collapse
Affiliation(s)
- Nikita Agrawal
- Department of Chemistry, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Rutesh Savalia
- Department of Chemistry, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Sanghamitra Chatterjee
- Department of Chemistry, Institute of Chemical Technology, Matunga, Mumbai, 400019, India.
| |
Collapse
|
9
|
Simultaneous electrochemical determination of nitrofurantoin and nifedipine with assistance of needle-shaped perovskite structure: barium stannate fabricated glassy carbon electrode. Mikrochim Acta 2021; 188:19. [DOI: 10.1007/s00604-020-04645-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 11/14/2020] [Indexed: 02/07/2023]
|
10
|
Rajakumaran R, Krishnapandi A, Chen SM, Balamurugan K, Chang FM, Sakthinathan S. Electrochemical investigation of zinc tungstate nanoparticles; a robust sensor platform for the selective detection of furazolidone in biological samples. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105750] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Alagumalai K, Shanmugam R, Chen SM, Balamurugan M. Facile synthesis of Co( ii)-doped cobalt oxide nanostructures: their application in the sensitive determination of the prophylactic drug furazolidone. NEW J CHEM 2021. [DOI: 10.1039/d1nj01261d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Electrochemical detection of prophylactic drug furazolidone through Co–Co2O4 modified GCE.
Collapse
Affiliation(s)
- Krishnapandi Alagumalai
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Ragurethinam Shanmugam
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Muthukutty Balamurugan
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| |
Collapse
|
12
|
Ibrahim AB, Mahmoud GA, Meurer F, Bodensteiner M. Preparation and crystallographic studies of a new mercuric salicylaldimine complex for fabrication of microscaled and nanoscaled mercuric sulfide as antimicrobial agents against human pathogenic yeasts and filamentous fungi. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.6134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ahmed B.M. Ibrahim
- Department of Chemistry, Faculty of Science Assiut University Assiut 71516 Egypt
| | | | - Florian Meurer
- Faculty of Chemistry and Pharmacy University of Regensburg Regensburg Germany
| | | |
Collapse
|
13
|
Electrochemical reduction of Procardia drug with aid of silver phosphate/strontium phosphate nanoparticles (AgP/SrP NPs) modified glassy carbon electrode. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105565] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Ibrahim AB, Mahmoud GA. Chemical‐ vs sonochemical‐assisted synthesis of ZnO nanoparticles from a new zinc complex for improvement of carotene biosynthesis from
Rhodotorula toruloides
MH023518. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.6086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ahmed B.M. Ibrahim
- Department of Chemistry, Faculty of Science Assiut University Assiut 71516 Egypt
| | | |
Collapse
|
15
|
Arumugam B, Muthukutty B, Chen SM, Kannan Ramaraj S, Vinoth Kumar J, Nagarajan ER. Ultrasonication-aided synthesis of nanoplates-like iron molybdate: Fabricated over glassy carbon electrode as an modified electrode for the selective determination of first generation antihistamine drug promethazine hydrochloride. ULTRASONICS SONOCHEMISTRY 2020; 66:104977. [PMID: 32315841 DOI: 10.1016/j.ultsonch.2020.104977] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/28/2019] [Accepted: 01/16/2020] [Indexed: 05/21/2023]
Abstract
The innovation of novel and proficient nanostructured materials for the precise level determination of pharmaceuticals in biological fluids is quite crucial to the researchers. With this in mind, we synthesized iron molybdate nanoplates (Fe2(MoO4)3; FeMo NPs) via simple ultrasonic-assisted technique (70 kHz with a power of 100 W). The FeMo NPs were used as the efficient electrocatalyst for electrochemical oxidation of first-generation antihistamine drug- Promethazine hydrochloride (PMH). The as-synthesized FeMo NPs were characterized and confirmed by various characterization techniques such as XRD, Raman, FT-IR, FE-SEM, EDX and Elemental mapping analysis and electron impedance spectroscopy (EIS). In addition, the electrochemical characteristic features of FeMo NPs were scrutinized by electrochemical techniques like cyclic voltammetry (CV) and differential pulse voltammetry technique (DPV). Interestingly, the developed FeMo NPs modified glassy carbon electrode (FeMo NPs/GCE) discloses higher peak current with lesser anodic potential on comparing to bare GCE including wider linear range (0.01-68.65 µM), lower detection limit (0.01 µM) and greater sensitivity (0.97 µAµM-1cm-2). Moreover, the as-synthesized FeMo NPs applied for selectivity, reproducibility, repeatability and storage ability to investigate the practical viability. In the presence of interfering species like cationic, anionic and biological samples, the oxidation peak current response doesn't cause any variation results disclose good selectivity towards the detection of PMH. Additionally, the practical feasibility of the FeMo NPs/GCE was tested by real samples like, commercial tablet (Phenergan 25 mg Tablets) and lake water samples which give satisfactory recovery results. All the above consequences made clear that the proposed sensor FeMo NPs/GCE exhibits excellent electrochemical behavior for electrochemical determination towards oxidation of antihistamine drug PMH.
Collapse
Affiliation(s)
- Balamurugan Arumugam
- PG & Research Department of Chemistry, Thiagarajar College, Madurai 09, Tamil Nadu, India
| | - Balamurugan Muthukutty
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC.
| | - Sayee Kannan Ramaraj
- PG & Research Department of Chemistry, Thiagarajar College, Madurai 09, Tamil Nadu, India.
| | - Jeyaraj Vinoth Kumar
- Department of Chemistry, Nanomaterials Laboratory, International Research Center, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu 626 126, India
| | - E R Nagarajan
- Department of Chemistry, Nanomaterials Laboratory, International Research Center, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu 626 126, India
| |
Collapse
|
16
|
Suvina V, Kokulnathan T, Wang TJ, Balakrishna RG. Unraveling the electrochemical properties of lanthanum cobaltite decorated halloysite nanotube nanocomposite: An advanced electrocatalyst for determination of flutamide in environmental samples. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110098. [PMID: 31901811 DOI: 10.1016/j.ecoenv.2019.110098] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/09/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
Prostate cancer is one of the primary causes of death around the world. As an important drug, flutamide has been used in the clinical diagnosis of prostate cancer. However, the over dosage and improper discharge of flutamide could affect the living organism. Thus, it necessary to develop the sensor for detection of flutamide with highly sensitivity. In this paper, we report the synthesis of lanthanum cobaltite decorated halloysite nanotube (LCO/HNT) nanocomposite prepared by a facile method and evaluated for selective reduction of flutamide. The as-prepared LCO/HNT nanocomposite shows the best catalytic performance towards detection of flutamide, when compared to other bare and modified electrodes. The good electrochemical performance of the LCO/HNT nanocomposite modified electrode is ascribed to abundant active sites, large specific surface area and their synergetic effects. Furthermore, the LCO/HNT modified electrode exhibits low detection limit (0.002 μM), wide working range (0.009-145 μM) and excellent selectivity with remarkable stability. Meaningfully, the developed electrochemical sensor was applied in real environmental samples with an acceptable recovery range.
Collapse
Affiliation(s)
- V Suvina
- Centre for Nano and Material Sciences, Jain Global Campus, Jain University, Kanakapura, Bangalore, 562112, India
| | - Thangavelu Kokulnathan
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan, ROC
| | - Tzyy-Jiann Wang
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan, ROC.
| | - R Geetha Balakrishna
- Centre for Nano and Material Sciences, Jain Global Campus, Jain University, Kanakapura, Bangalore, 562112, India.
| |
Collapse
|
17
|
Rajakumaran R, Abinaya M, Chen SM, Balamurugan K, Muthuraj V. Ultrasonication and hydrothermal assisted synthesis of cloud-like zinc molybdate nanospheres for enhanced detection of flutamide. ULTRASONICS SONOCHEMISTRY 2020; 61:104823. [PMID: 31669843 DOI: 10.1016/j.ultsonch.2019.104823] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/28/2019] [Accepted: 10/03/2019] [Indexed: 06/10/2023]
Abstract
Ultrasonication is one of the emerging probes for nanoparticles synthesis as well as promoting the material property by treasuring the precious time during a chemical reaction. In this present work, we successfully designed a cloud-like α-ZnMoO4 nanospheres (ZMNS) using ultrasound assistance (bath sonication with the power of 60 W and frequency of 37/80 kHz) hydrothermal method for catalyzing the effective electrochemical determination of anti-androgen drug candidate flutamide (FLT). The crystallinity and phase purity were investigated using powder X-ray diffractometric analysis. The FTIR and Raman spectra information were compared to detect the possible bonding in ZMNS. The texture and surface morphology were studied using Field emission scanning electron microscope and High-resolution Transmission electron microscope images. The presence of the elements (Zn, Mo and O) and the absence of any other impurities were monitored and confirmed using EDAX analysis. The fabrication of ZMNS modified GCE was performed carefully. Additionally, the ZMNS modified glassy carbon electrode (GCE) exhibits superior electrocatalytic activity by means of higher cathodic peak current towards the detection of FLT. The fashioned electrode attained two wide linear response ranges (0.1 to 73 µM; 111 to 1026 µM) with a lower detection limit of about 33 nM correspondingly. Furthermore, the fabricated sensor displayed excellent sensitivity of 1.095 µA µM-1 cm-2 and good selectivity for FLT sensing even in the existence of similar interfering compounds and biomolecules. Along with that, the designed sensor executed noticeable reproducibility, repeatability, and enduring stability.
Collapse
Affiliation(s)
- Ramachandran Rajakumaran
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | | | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC.
| | - Karuppaiah Balamurugan
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | - Velluchamy Muthuraj
- Department of Chemistry, VHNSN College (Autonomous), Virudhunagar, TN, India.
| |
Collapse
|
18
|
George K J, Halali VV, C. G. S, Suvina V, Sakar M, Balakrishna RG. Perovskite nanomaterials as optical and electrochemical sensors. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00306a] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The perovskite family is comprised of a great number of members because of the possible and flexible substitution of numerous ions in its system.
Collapse
Affiliation(s)
- Jesna George K
- Centre for Nano and Material Sciences
- Jain University
- Bangalore 562112
- India
| | - Vishaka V Halali
- Centre for Nano and Material Sciences
- Jain University
- Bangalore 562112
- India
| | - Sanjayan C. G.
- Centre for Nano and Material Sciences
- Jain University
- Bangalore 562112
- India
| | - V. Suvina
- Centre for Nano and Material Sciences
- Jain University
- Bangalore 562112
- India
| | - M. Sakar
- Centre for Nano and Material Sciences
- Jain University
- Bangalore 562112
- India
| | | |
Collapse
|
19
|
Karimi F, Rajabi HR, Kavoshi L. Rapid sonochemical water-based synthesis of functionalized zinc sulfide quantum dots: Study of capping agent effect on photocatalytic activity. ULTRASONICS SONOCHEMISTRY 2019; 57:139-146. [PMID: 31208609 DOI: 10.1016/j.ultsonch.2019.05.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 06/09/2023]
Abstract
This study presents a rapid water-based chemical precipitation method for synthesis of zinc sulfide (ZnS) quantum dots (QDs), under the ultrasonic radiation, using two capping agents; including 2-mercaptoethanol and l-cysteine. It is demonstrated that by applying ultrasonic radiation, the synthesis time can be significantly decreased. The effect of capping agent type on the color specifications (using colorimetry), absorption spectra (using ultraviolet-visible absorption spectroscopy) and ZnS structure (using X-ray diffraction) are investigated. The results of the research indicate that the as-synthesized QDs were cubic structures with dimensions less than 10 nm. After characterization, the QDs samples were performed as nano-scaled photoatalysts, through a UV-driven photodegradation process for the degradation of crystalline violet (CV) as a pollutant dye. Moreover, the present study assesses the effect of operating conditions including the pH of the dye solution, UV-irradiation time, ionic strength, type and dosage of nanophotocatalyst on degradation efficiency. Experimental results of the research demonstrate the QDs can be reused for at-least five times, without a significant decrease in their photocatalytic properties. The maximum photodegradation efficiency for the CV solution adjusted at pH 11, in the presence of a low amount of QDs (i.e. 5 mg) was observed after 90 min irradiation time. Finally, the probable mechanism and kinetics of degradation reaction are proposed in the study. From the kinetic data, the acceptable regression coefficient values (>0.98) for the pseudo first-order kinetic model was obtained for expression the present QD-based photodegradation approach.
Collapse
Affiliation(s)
- Fatemeh Karimi
- Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran
| | | | - Leila Kavoshi
- Chemical Engineering Department, Naghshe Jahan Institute of Higher Education, Baharestan, Isfahan, Iran
| |
Collapse
|